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Abstract

This introduction to the R package sets is a (slightly) modified version of Meyer and
Hornik (2009a), published in the Journal of Statistical Software.

We present data structures and algorithms for sets and some generalizations thereof
(fuzzy sets, multisets, and fuzzy multisets) available for R through the sets package. Fuzzy
(multi-)sets are based on dynamically bound fuzzy logic families. Further extensions
include user-definable iterators and matching functions.
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1. Introduction

Only few will deny the importance of sets and set theory, building the fundamentals of mod-
ern mathematics. For theory-building typically axiomatic approaches (e.g., Zermelo 1908;
Fraenkel 1922) are used. However, even the primal, “naive” concept of sets representing “col-
lections of distinct objects” (Cantor 1895) discarding order and count information seems both
natural and practical. The main operation being “is-element-of”, sets alone are of limited
practical use—they most of the times serve as basic building blocks for more complex struc-
tures such as relations and generalized sets. A common way is to consider pairs (X,m) with
set X (“universe”) and membership function m : X → D mapping each member to its “grade”.
The subset of X of elements with non-zero membership is called “support”. In multisets, ele-
ments may appear more than once, i.e., D = N0 (m is also called the multiplicity function).
There are many applications in computer science and other disciplines (for a survey, see, e.g.,
Singh, Ibrahim, Yohanna, and Singh 2007). In statistics, multisets appear as frequency tables.
Fuzzy sets have become quite popular since their introduction by Zadeh (1965). Here, the
membership function maps into the unit interval. An interesting characteristic of fuzzy sets
is that the actual behavior of set operations depends on the underlying fuzzy logic employed,
which can be chosen according to domain-specific needs. Fuzzy sets are actively used in fields
such as machine learning, engineering, medical science, and artificial intelligence (Dubois,
Prade, and Yager 1996). Fuzzy multisets (Yager 1986) combine both approaches by allowing
each element to map to more than one fuzzy membership grade, i.e., D is the power set of
multisets over the unit interval. Examples for the application of fuzzy multisets can be found
in the field of information retrieval (e.g., Matthé, Caluwe, de Tré, Hallez, Verstraete, Leman,
Cornelis, Moelants, and Gansemans 2006).

The use of sets and variants thereof is common in modern general purpose programming
languages: Java and C++ provide corresponding abstract data types (ADTs) in their class
libraries, Pascal and Python offer sets as native data type. Indeed, since set elements are order-
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invariant and unique, lookup mechanisms can be implemented very efficiently (for example
via hashing, resulting in nearly constant run-time complexity, compared to linear search,
requiring n/2 steps on the average for n elements). Surprisingly enough, sets are not standard
in many mathematical programming environments such as MATLAB and Mathematica, and
also R. Although the two latter offer set operations such as union and intersection, these are
applied to linearly indexable structures (lists and vectors, respectively), interpreting them
as sets. When it comes to R, this emulation is far from complete, and occasionally leads to
inconsistent behavior. First of all, the existing infrastructure has no clear concept of how to
compare elements, leading to possibly confusing results when different data types are involved
in computations:

R> s <- list(1, "1")

R> union(s, s)

[[1]]
[1] 1

[[2]]
[1] "1"

R> intersect(s, s)

[[1]]
[1] 1

The reason is that most of the existing operations rely on match() which automatically
performs type conversions disturbing in this context. Also, quite a few other basic operations
such as the Cartesian product, the power set, the subset predicate, etc., are missing, let
alone more specialized operations such as the closure under union or intersection. Then,
the current facilities do not make use of a class system, making extensions hard (if not
impossible). Another consequence is that no distinction can be made between sequences
(ordered collections of objects) and sets (unordered collections of objects), which is key for
the definition of complex structures where both concepts are combined such as relations. Also,
there is no support in base R for extensions such as fuzzy sets or multisets.

A few extension packages available from the Comprehensive R Archive Network deal with
fuzzy concepts: Package fuzzyFDR (Lewin 2007) calculates fuzzy decision rules for multiple
testing, but does not provide any explicit data structures for fuzzy sets. The main functions
in fso (Roberts 2007) for fuzzy set ordination compute and return, among other information,
membership values represented by numeric matrices for some variables of the the input data.
fuzzyRankTests (Geyer 2007) provides statistical tests based on fuzzy p values and fuzzy con-
fidence intervals, the latter being returned as two separate numeric vectors for values and
memberships. The gcl package (Vinterbo 2007) infers fuzzy rules from the input data, encap-
sulated in a classifying function returned by the training function. The rules are composed of
triangular fuzzy sets, represented by triples describing the triangles’ corner points for which
the memberships become (0, 1, 0), respectively. Similarly, the FKBL package for fuzzy knowl-
edge base learning (Alvarez 2007) uses sequences of triangular fuzzy sets, defined by a vector
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of corner points. Finally, fuzzyOP (Aklan, Altindas, Macit, Umar, and Unal 2008) provides
support for fuzzy numbers: A set of n numbers is represented by a k × 2n numeric matrix,
where two consecutive columns represent (at most k) supporting points and memberships,
respectively, of the corresponding piecewise linear membership function. If some numbers
have fewer supporting points than others, the remaining cells are filled with missing values
(NAs).

The sets package (Meyer and Hornik 2009b) presented here provides a flexible and customiz-
able basic infrastructure for finite sets and the generalizations mentioned above, including
basic operations for fuzzy logic. Apart from complementing the data structures implemented
in base R, extension packages like the ones mentioned above could gain in flexibility from
building on a common infrastructure, facilitating data exchange and leveraging synergies.

The remainder of the paper is structured as follows. In Section 2, we discuss the design
rationale of data structures and core algorithms. Section 3 introduces the most important
set operations. Section 4 starts with constructors and specific methods for generalized sets,
followed by a more focused presentation of the fuzzy logic infrastructure, and of functional-
ity for handling and visualizing membership information. Section 5 shows how generalized
sets can further be customized by specifying user-definable matching functions and iterators.
Section 6 presents three examples before Section 7 concludes.

2. Design issues

There are many ways of implementing sets. Choice and efficiency largely depend on the
domain range (i.e., the number of possible values for each element). If the domain is relatively
small, i.e. in the range of integral data types such as byte, integer, word etc., the probably
most efficient representation is an array of bits representing the domain elements like in
Pascal (Wirth 1983). Operations such as union and intersection can then straightforwardly
be implemented using logical OR and AND, respectively. This approach obviously fails for
intractably large domains (e.g., strings or recursive objects). Without further application
knowledge, one needs to resort to generic container ADTs with efficient element access such
as hash tables or search trees (for unique elements). Operations can then be implemented
following the classical element-based definitions: Union by inserting all elements of the smaller
set into the larger one; intersection by creating a new set with all elements of the smaller set
also contained in the larger one; etc.

Clearly, set comparison must be permutation invariant. Some care is needed for nested sets.
Assume, e.g., the comparison of A = {1, {2, 3}} and B = {1, {3, 2}} which clearly are identical.
To implement set equality, a matching operator would be used to check if all elements of A are
contained in B. If elements were internally stored in this order during creation, the objects
representing {2, 3} and {3, 2} would be different. Comparing two set elements for equality
would thus require to recursively compare all elements down the nested structures, which
can quickly become infeasible computationally. We avoid this by using a canonical ordering
during set creation, guaranteeing that identical sets have identical physical representation
as well. We chose to sort elements using the natural order for numeric values, the Unicode
character representation for strings, and the serialization byte sequence (as strings) for other
objects. Eventually, the ordered elements are stored in a list.

For the sets package, further limitations are imposed by the extensions presented in Sections 4
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and 5: Generalized sets require, for each element, the membership information, and we also
support user-defined, high-level matching functions for comparing elements. Since operations
defined for generalized sets basically operate on the memberships, it seems appropriate to
store these as (generic) vectors in the same order than the corresponding elements. Thus,
memberships of separate sets can simply be combined element-wise.

Many operations (e.g., testing for equality, subsetting, intersection, etc.) are based on match-
ing elements of the sets involved. This is implemented by inserting the elements of the larger
one into a hash table (we use hashed environments), and to look up the elements of the
smaller set in this table (Knuth 1973, p. 391). As hash key, we use the elements’ character
representation. Since different objects might map to the same hash key, we actually store the
indexes of the list elements, and match the actual objects using a simple linear search. (Note
that since the element list is sorted, elements with same representation are grouped, so the
search will typically be fast.)

The implementation is based on R’s S3 class system, allowing the definition of generic func-
tions, dispatching appropriate methods depending on the first argument’s class information.
Objects for sets, generalized sets, and customizable sets have classes ‘set’, ‘gset’, and ‘cset’,
respectively, with ‘set’ inheriting from ‘gset’ in turn inheriting from ‘cset’. Suitable opera-
tors (such as & for intersection) are then “overloaded” to dispatch the right internal function
corresponding to the operands’ classes by defining corresponding methods for group generics.
Additionally, all operations can directly be accessed using the corresponding name combined
with a set_, gset_, or cset_ prefix to give the user the choice of up- or downcasts when
objects of different class levels are involved in one computation. For example, consider the
union of the set {1} and the fuzzy set {2/0.5}: using the generic operator will give an error
since the operands’ classes differ. The user needs, in fact, resolve the semantic ambiguity by
explicitly choosing the intended operation: If the result should be a generalized (fuzzy) set,
gset_union() should be used. To make the result a set (stripping membership information),
s/he employs set_union() instead.

3. Sets

The basic constructor for creating sets is the set() function accepting any number of R objects
as arguments.

R> s <- set(1L, 2L, 3L)

R> print(s)

{1L, 2L, 3L}

For elements that are not sets or atomic vectors of length 1, the print method for sets will
use labels indicating the class (and length for vectors):

R> set("test", c, set("a", 2.5), list(1, 2))

{"test", <<function>>, {"a", 2.5}, <<list(2)>>}

Mainly for cosmetic reasons, there is also a tuple class that can be used for vectors:
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R> set(1, pair(1, 2), tuple(1L, 2L, 3L))

{1, (1, 2), (1L, 2L, 3L)}

In addition, there is a generic as.set() function coercing suitable objects to sets.

R> s2 <- as.set(2:4)

R> print(s2)

{2L, 3L, 4L}

There are some basic predicate functions (and corresponding generic operators) defined for
the (in)equality (!=, ==), (proper) subset (<, <=), (proper) superset (>, >=), and element-of
(%e%) operations:

R> set_is_empty(set())

[1] TRUE

R> set(1) <= set(1, 2)

[1] TRUE

Note that all predicate functions are vectorized for convenience: 1:4 The sequence 1:4 as one
element would be looked up by using list(1:4) on the left-hand side. The class-specific func-
tions dispatched by the generic operators are set_contains_element(), set_is_equal(),
etc. Other than these predicate functions, one can use length() for the cardinality:

R> length(s)

[1] 3

c() and | for the union, & for the intersection, %D% for the symmetric difference:

R> s | set("a")

{"a", 1L, 2L, 3L}

R> s & s2

{2L, 3L}

R> s %D% s2

{1L, 4L}
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* and ^n for the (n-fold) Cartesian product (yielding a set of n-tuples):

R> s * s2

{(1L, 2L), (1L, 3L), (1L, 4L), (2L, 2L), (2L, 3L), (2L, 4L), (3L,
2L), (3L, 3L), (3L, 4L)}

R> s^2L

{(1L, 1L), (1L, 2L), (1L, 3L), (2L, 1L), (2L, 2L), (2L, 3L), (3L,
1L), (3L, 2L), (3L, 3L)}

and 2^ for the power set:

R> 2^s

{{}, {1L}, {2L}, {3L}, {1L, 2L}, {1L, 3L}, {2L, 3L}, {1L, 2L, 3L}}

The class-specific functions set_union(), set_intersection(), and set_symdiff() accept
more than two arguments.1 It is also possible to compute the relative complement of a set X
in Y , basically removing the elements of X from Y :

R> set_complement(set(1), set(1, 2, 3))

{2, 3}

Note, however, that for sets (as opposed to generalized sets), the concept of a “universe” is
not necessarily required, and therefore the absolute complement of a set not a well-defined
operation. In the sets package, objects of class ‘set’ are special cases of generalized sets. To
stay faithful to the simplicity of the original set concept, we define a ‘set’ object’s universe
to be identical to the set itself. The absolute complement of a ‘set’ object is therefore always
the empty set:

R> !set(1)

{}

set_combn() returns the set of all subsets of specified length:

R> set_combn(s, 2L)

{{1L, 2L}, {1L, 3L}, {2L, 3L}}

closure() and reduction() compute the closure and reduction under union or intersection
for a set family (i.e., a set of sets):

1The n-ary symmetric difference of a collection of sets consists of all elements contained in an odd number
of the sets in the collection.
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R> cl <- closure(set(set(1), set(2), set(3)), "union")

R> print(cl)

{{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

R> reduction(cl, "union")

{{1}, {2}, {3}}

The Summary() group methods will also work if defined for the elements:

R> sum(s)

[1] 6

R> range(s)

[1] 1 3

Because set elements are unordered, it is not allowed to use positional subscripting. However,
sets can be subset and elements be replaced by using the elements as index themselves:

R> s2 <- set(1, 2, c, list(1, 2))

R> print(s2)

{<<function>>, 1, 2, <<list(2)>>}

R> s2[[c]] <- "foo"

R> s2[[list(1, 2)]] <- "bar"

R> print(s2)

{"bar", "foo", 1, 2}

R> s2[list("foo", 1)]

{"foo", 1}

Further, iterations over all elements can be carried out using for() and lapply()/sapply():

R> sapply(s, sqrt)

[1] 1.000000 1.414214 1.732051

R> for (i in s) print(i)
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[1] 1
[1] 2
[1] 3

Note that for() only works because the underlying C code ignores the class information, and
directly processes the low-level list representation instead. This will be replaced by a more
intelligent “foreach” mechanism as soon as it exists in base R. sapply() and lapply() call the
generic as.list() function before iterating over the elements. Since a corresponding method
exists for sets objects, this is “safer” than using for().

Using set_outer(), it is possible to apply a function on all factorial combinations of the
elements of two sets. If only one set is specified, the function is applied on all pairs of this
set.

R> set_outer(set(1, 2), set(1, 2, 3), "/")

1 2 3
1 1 0.5 0.3333333
2 2 1.0 0.6666667

4. Generalized sets

There are several extensions of sets such as fuzzy sets and multisets. Both can be be seen as
special cases of fuzzy multisets. All have in common that they are defined on some universe
of elements, and that each element maps to some membership information. We present how
generalized sets are constructed, and demonstrate the effect of choosing different fuzzy logic
families.

4.1. Constructors and specific methods

Generalized sets are created using the gset() function. The required arguments depend on
whether membership information is specified extensionally (listing members) or intensionally
(giving a rule for membership):

1. Extensional specification:

a) Specify support and memberships as separate vectors. If memberships are omitted,
they are assumed to be 1.

b) Specify a set of elements along with their individual membership grades, using the
element function (e()).

2. Intensional specification: Specify universe and membership function.

Note that for efficiency reasons, gset() will not store elements with zero memberships grades,
and the specification of a universe is only required with membership functions. For conve-
nience (and storage efficiency), a default universe can be defined using sets_options(). Set-
specific universes supersede the default universe, if any. If no universe (general or specific) is
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defined, the support of a set will be interpreted as its universe. For multisets, the definition
of a (general or set-specific) universe can be complemented by a maximum multiplicity or
bound.

Without membership information, gset() creates a set (the support is converted to a set
internally):

R> X <- c("A", "B", "C")

R> gset(support = X)

{"A", "B", "C"}

Note, however, that unlike for ‘set’ objects, it is possible to define a universe that differs from
(i.e., is a proper superset of) the support:

R> gset(support = X, universe = LETTERS[1:10])

{"A", "B", "C"}

A multiset requires an integer membership vector:

R> multi <- 1:3

R> gset(support = X, memberships = multi)

{"A" [1], "B" [2], "C" [3]}

For fuzzy sets, the memberships need to be out of the unit interval:

R> ms <- c(0.1, 0.3, 1)

R> gset(support = X, memberships = ms)

{"A" [0.1], "B" [0.3], "C" [1]}

Alternatively to separate support/membership specification, each elements can be paired with
its membership value using e():

R> gset(elements = list(e("A", 0.1), e("B", 0.2), e("C", 0.3)))

{"A" [0.1], "B" [0.2], "C" [0.3]}

Fuzzy sets can, additionally, be created using a membership function, applied to a specified
(or the default) universe:

R> f <- function(x) switch(x, A = 0.1, B = 0.2, C = 1, 0)

R> gset(universe = X, charfun = f)

{"A" [0.1], "B" [0.2], "C" [1]}
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For fuzzy multisets, the membership argument expects a list of membership grades, either
specified as vectors, or as multisets:

R> ms2 <- list(c(0.1, 0.3, 0.4), c(1, 1),

+ gset(support = ms, memberships = multi))

R> gset(support = X, memberships = ms2)

{"A" [{0.1, 0.3, 0.4}], "B" [{1 [2]}], "C" [{0.1 [1], 0.3 [2], 1
[3]}]}

gset_cardinality() returns the (relative) cardinality of a generalized set, computed as the
sum (mean) of all memberships. gset_support(), gset_memberships(), gset_height()
and gset_core() can be used to retrieve support, memberships, height (maximum member-
ship degree), and the core (elements with membership 1), respectively, of a generalized set.
gset_charfun() returns a (point-wise defined) characteristic function for a given gset. Note
that in general, this will be different from the characteristic function possibly used for the
creation.

As for sets, the usual operations such as union and intersection are available:

R> X <- gset(c("A", "B", "C"), 4:6)

R> Y <- gset(c("B", "C", "D"), 1:3)

R> X | Y

{"A" [4], "B" [5], "C" [6], "D" [3]}

R> X & Y

{"B" [1], "C" [2]}

Additionally, the product (gset_product()), sum (+), and difference (-) of sets are defined,
which multiply, add, and subtract multiplicities (or memberships for fuzzy sets):

R> X + Y

{"A" [4], "B" [6], "C" [8], "D" [3]}

R> X - Y

{"A" [4], "B" [4], "C" [4]}

R> gset_product(X, Y)

{"B" [5], "C" [12]}

For fuzzy (multi-)sets, not only the relative, but also the absolute complement (!) is defined:
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R> !gset(1, 0.3)

{1 [0.7]}

R> X <- gset("a", universe = letters[1:3])

R> !X

{"b", "c"}

R> !(!X)

{"a"}

R> !gset(1L, 2, universe = 1:3, bound = 3)

{1L [1], 2L [3], 3L [3]}

gset_mean() creates a new set by averaging corresponding memberships using the arithmetic,
geometric or harmonic mean. Note that missing elements have 0 membership degree:

R> x <- gset(1:3, 1:3/3)

R> y <- gset(1:2, 1:2/2)

R> gset_mean(x, y)

{1L [0.4166667], 2L [0.8333333], 3L [0.5]}

R> gset_mean(x, y, "harmonic")

{1L [0.4], 2L [0.8]}

R> gset_mean(set(1), set(1, 2))

{1 [1], 2 [0.5]}

The membership vector of a generalized set can be transformed via
gset_transform_memberships(), applying any vectorized function to the memberships:

R> x <- gset(1:10, 1:10/10)

R> gset_transform_memberships(x, pmax, 0.5)

{1L [0.5], 2L [0.5], 3L [0.5], 4L [0.5], 5L [0.5], 6L [0.6], 7L
[0.7], 8L [0.8], 9L [0.9], 10L [1]}

Note that for multisets, an element’s membership (multiplicity) m is interpreted as a one-
vector of length m, yielding possibly unexpected results:
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R> x <- gset(1, 2)

R> gset_transform_memberships(x, `*`, 0.5)

{1 [{0.5 [2]}]}

For multisets, the rep() function is a more natural choice for membership transformations:

R> rep(x, 0.5)

{1}

In addition, three convenience functions are defined for fuzzy (multi-)sets:
gset_concentrate() and gset_dilate() apply the square and the square root function,
and gset_normalize() normalizes the memberships to a specified maximum:

R> gset_dilate(y)

{1L [0.7071068], 2L [1]}

R> gset_concentrate(y)

{1L [0.25], 2L [1]}

R> gset_normalize(y, 0.5)

{1L [0.25], 2L [0.5]}

(Note that these functions clearly have no effect for multisets.)

4.2. Fuzzy logic and fuzzy sets

For fuzzy (multi-)sets, the user can choose the logic underlying the operations using the
fuzzy_logic() function. Fuzzy logics are represented as named lists with four compo-
nents N, T, S, and I containing the corresponding functions for negation, conjunction (“t-
norm”), disjunction (“t-conorm”), and (residual) implication (Klement, Mesiar, and Pap
2000). The fuzzy logic is selected by calling fuzzy_logic() with a character string spec-
ifying the fuzzy logic “family”, and optional parameters. The exported functions .N.(),
.T.(), .S.(), and .I.() reflect the currently selected bindings. Available families include:
"Zadeh" (default), "drastic", "product", "Lukasiewicz", "Fodor", "Frank", "Hamacher",
"Schweizer-Sklar", "Yager", "Dombi", "Aczel-Alsina", "Sugeno-Weber",
"Dubois-Prade", and "Yu" (see Appendix A). A call to fuzzy_logic() without arguments
returns the current logic.

R> x <- 1:10/10

R> y <- rev(x)

R> .S.(x, y)
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[1] 1.0 0.9 0.8 0.7 0.6 0.6 0.7 0.8 0.9 1.0

R> fuzzy_logic("Fodor")

R> .S.(x, y)

[1] 1 1 1 1 1 1 1 1 1 1

Fuzzy set operations automatically use the active fuzzy logic setting:

R> X <- gset(c("A", "B", "C"), c(0.3, 0.5, 0.8))

R> print(X)

{"A" [0.3], "B" [0.5], "C" [0.8]}

R> Y <- gset(c("B", "C", "D"), c(0.1, 0.3, 0.9))

R> print(Y)

{"B" [0.1], "C" [0.3], "D" [0.9]}

First, we try the Zadeh logic (default):

R> fuzzy_logic("Zadeh")

R> X & Y

{"B" [0.1], "C" [0.3]}

R> X | Y

{"A" [0.3], "B" [0.5], "C" [0.8], "D" [0.9]}

R> gset_complement(X, Y)

{"B" [0.1], "C" [0.2]}

The results are different by switching to the Fodor logic:

R> fuzzy_logic("Fodor")

R> X & Y

{"C" [0.3]}

R> X | Y

{"A" [0.3], "B" [0.5], "C" [1], "D" [0.9]}

R> gset_complement(X, Y)
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{}

The cut() method for generalized sets “filters” all elements with memberships exceeding a
specified level (α-cuts)—the result, thus, is a crisp (multi)set:

R> cut(X, 0.5)

{"B", "C"}

The method can also be used for ν-cuts, selecting elements according to their multiplicity.

4.3. Characteristic functions and their visualization

The sets package provides several generators of characteristic functions to be used as templates
for the creation of fuzzy sets, including the following shapes: gaussian curve (fuzzy_normal()),
double gaussian curve (fuzzy_two_normals()), bell curve (fuzzy_bell()), sigmoid curve
(fuzzy_sigmoid()), Π-like curves (fuzzy_pi3(), fuzzy_pi4()), trapezoid
(fuzzy_trapezoid()), and triangle (fuzzy_triangular(), fuzzy_cone()). For example,
a fuzzy normal function and a corresponding fuzzy set are created using:

R> N <- fuzzy_normal(mean = 0, sd = 1)

R> N(-3:3)

[1] 0.01110900 0.13533528 0.60653066 1.00000000 0.60653066 0.13533528
[7] 0.01110900

R> gset(charfun = N, universe = -3:3)

{-3L [0.01110900], -2L [0.1353353], -1L [0.6065307], 0L [1], 1L
[0.6065307], 2L [0.1353353], 3L [0.01110900]}

For convenience, we also provide wrappers that directly generate corresponding sets, given a
specified universe:

R> fuzzy_normal_gset(universe = -3:3)

{-3L [0.01110900], -2L [0.1353353], -1L [0.6065307], 0L [1], 1L
[0.6065307], 2L [0.1353353], 3L [0.01110900]}

(If no universe is specified, the default universe is used; if this is also missing, the universe
currently defaults to seq(0, 20, 0.1).) It is also possible to create function generators for
characteristic functions from other functions (such as distribution functions):

R> fuzzy_poisson <- charfun_generator(dpois)

R> gset(charfun = fuzzy_poisson(10), universe = seq(0, 20, 2))
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{0 [0.00036288], 2 [0.018144], 4 [0.1512], 6 [0.504], 8 [0.9], 10
[1], 12 [0.7575758], 14 [0.4162504], 16 [0.1734377], 18
[0.05667898], 20 [0.01491552]}

fuzzy_tuple() generates a sequence (tuple) of sets based on any of the generating functions
(except fuzzy_trapezoid() and fuzzy_triangular()). The chosen generating function is
called with different values (chosen along the universe) passed to the first argument, thus
varying the position or the resulting graph:

R> fuzzy_tuple(fuzzy_normal, 5)

(<<gset(201)>>, <<gset(201)>>, <<gset(201)>>, <<gset(201)>>,
<<gset(201)>>)

(<<gset(201)>> denotes an object of class ‘gset’ with 201 elements—the size of the default
universe). The sets package provides support for visualizing the membership functions of
generalized sets, and in particular fuzzy sets. For (fuzzy) multisets, the plot method produces
a (grouped) barplot for the membership vector (see Figure 1, top left):

R> X <- gset(c("A", "B"), list(1:2/2, 0.5))

R> plot(X)

Characteristic function generators can directly be plotted using a default universe (see Fig-
ure 1, top right):

R> plot(fuzzy_bell)

There is a plot method for tuples for visualizing a sequence of sets (see Figure 1, bottom left):

R> plot(fuzzy_tuple(fuzzy_cone, 10), col = gray.colors(10))

Plots of several sets can be superposed using the line method (see Figure 1, bottom right):

R> x <- fuzzy_normal_gset()

R> y <- fuzzy_trapezoid_gset(corners = c(5, 10, 15, 17), height = c(0.7, 1))

R> plot(tuple(x, y), lty = 3)

R> lines(x | y, col = 2)

R> lines(gset_mean(x, y), col = 3, lty = 2)

Finally, we note that the sets package provides basic infrastructure for fuzzy inference
(fuzzy_inference()), involving the definition of linguistic variables (fuzzy_variable(),
fuzzy_partition()) and fuzzy rules (fuzzy_rule()) to build a fuzzy system
(fuzzy_system()). A few methods for defuzzification (gset_defuzzify()) are also provided.
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Figure 1: Membership plots for fuzzy sets. Top left: grouped barplot for a fuzzy multiset.
Top right: graph of a bell curve. Bottom left: sequence of triangular functions. Bottom right:
two combinations of a normal and a trapezoid function (dotted lines: basic shapes; solid (red)
line: union; dashed (green) line: arithmetic mean).

5. User-definable extensions

We added customizable sets extending generalized sets in two ways: First, users can control
the way elements are matched, i.e., define equivalence classes of elements. Second, arbitrary
iteration orders can be specified.

5.1. Matching functions

By default, sets and generalized sets use identical() to match elements which is maximally
restrictive. Note that this differs from the behavior of R’s equality operator or match() which
perform implicit type conversions and thus confound, e.g., 1, 1L and "1". In the following
example, note that on most computer systems, 3.3 − 2.2 will not be identical to 1.1 due to
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numerical issues.

R> x <- set("1", 1L, 1, 3.3 - 2.2, 1.1)

R> print(x)

{"1", 1L, 1, 1.1, 1.1}

R> y <- set(1, 1.1, 2L, "2")

R> print(y)

{"2", 2L, 1, 1.1}

R> 1L %e% y

[1] FALSE

R> x | y

{"1", "2", 1L, 2L, 1, 1.1, 1.1}

Customizable sets can be created using the cset() constructor, specifying the generalized set
and some matching function.

R> X <- cset(x, matchfun = match)

R> print(X)

{"1", 1.1}

R> Y <- cset(y, matchfun = match)

R> print(Y)

{"2", 1, 1.1}

R> 1L %e% Y

[1] TRUE

R> X | Y

{"1", "2", 1.1}

Matching functions take two vector arguments, say, x and table, with table being a vector
where the elements of x are looked up. The function should be vectorized in the x, i.e. return
the first matching position for each element of x. In order to make use of non-vectorized
predicates such as all.equal(), the sets package provides matchfun() to generate one:
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R> FUN <- matchfun(function(x, y) isTRUE(all.equal(x, y)))

R> X <- cset(x, matchfun = FUN)

R> print(X)

{"1", 1L, 1.1}

R> Y <- cset(y, matchfun = FUN)

R> print(Y)

{"2", 2L, 1, 1.1}

R> 1L %e% Y

[1] TRUE

R> X | Y

{"1", "2", 1L, 2L, 1.1}

sets_options() can be used to conveniently switch the default match and/or order function
if a number of ‘cset’ objects need to be created:

R> sets_options("matchfun", match)

R> cset(x)

{"1", 1.1}

R> cset(y)

{"2", 1, 1.1}

R> cset(1:3) <= cset(c("1", "2", "3"))

[1] FALSE

5.2. Iterators

In addition to specifying matching functions, it is possible to change the order in which itera-
tors such as as.list() (but not for()—see end of Section 3) process the elements. Note that
the behavior of as.list() influences the labeling and print methods for customizable sets.
Sets and generalized sets use the canonical internal ordering for iterations. With customizable
sets, a “natural” ordering of elements can be kept by specifying either a permutation vector
or an order function:

R> cset(letters[1:5], orderfun = 5:1)
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{"e", "d", "c", "b", "a"}

R> FUN <- function(x) order(as.character(x), decreasing = TRUE)

R> Z <- cset(letters[1:5], orderfun = FUN)

R> print(Z)

{"e", "d", "c", "b", "a"}

R> as.character(Z)

[1] "e" "d" "c" "b" "a"

Note that converters for ordered factors keep the order:

R> o <- ordered(c("a", "b", "a"), levels = c("b", "a"))

R> as.set(o)

{a, b}

R> as.gset(o)

{a [2], b [1]}

R> as.cset(o)

{b [1], a [2]}

Converters for other data types will use the order information only if elements are unique:

R> as.cset(c("A", "quick", "brown", "fox"))

{"A", "quick", "brown", "fox"}

R> as.cset(c("A", "quick", "brown", "fox", "quick"))

{"A" [1], "brown" [1], "fox" [1], "quick" [2]}

6. Examples

In the following, we present two examples for the use of multisets and fuzzy multisets.

6.1. Multisets

Multisets are frequent in statistics since they can be seen as frequency tables of some objects.
Using the sets package, a “generalized” table can easily be constructed from a list of R objects
using the as.gset() coercion function. Assume, e.g., that one samples a number of fourfold
tables given the margins using r2dtable():
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R> set.seed(4711)

R> l <- r2dtable(1000, r = 1:2, c = 2:1)

Since the sum of the first row (and second column) are constrained to 1, the top left cell entry
can only be 0 or 1. Also, given the marginals, there is only one degree of freedom in fourfold
tables, so the value of this first cell determines the others, and thus only two possible tables
exist:

R> l[1:2]

[[1]]
[,1] [,2]

[1,] 0 1
[2,] 2 0

[[2]]
[,1] [,2]

[1,] 1 0
[2,] 1 1

To count them, we can simply use as.gset() that will construct a multiset from the list:

R> s <- as.gset(l)

R> print(s)

{<<2x2 matrix>> [330], <<2x2 matrix>> [670]}

Replace the matrices by the first cells’ values:

R> for (i in s) s[[i]] <- i[1]

R> print(s)

{0L [330], 1L [670]}

The estimated probabilities of having 0 or 1 in the first cell can thus be obtained by:

R> gset_memberships(s)/1000

1 2
0.33 0.67

The probability for 0 clearly corresponds to the p value of the corresponding Fisher test:

R> fisher.test(l[[1]])$p.value

[1] 0.3333333
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6.2. Fuzzy multisets

Fuzzy multisets can be used to represent objects appearing several times with different mem-
bership grades (e.g., weights, degrees of credibility, . . . ). Mizutani, Inokuchi, and Miyamoto
(2008) describe an interesting application of fuzzy multisets to text mining: The occurrences
of some terms of interest (“neural network”, “fuzzy”, “image”) in titles, abstracts, and keywords
of 30 documents on fuzzy theory are represented by fuzzy multisets, with varying member-
ships depending on whether a term occurs in the title (degree 1), the keywords (degree 0.6),
and/or the abstract (degree 0.2).

R> data("fuzzy_docs")

R> print(fuzzy_docs[8:9])

$x8
{"fuzzy" [{0.2, 0.6}], "neural network" [{0.2, 1}]}

$x9
{"fuzzy" [{0.2, 0.6, 1}], "image" [{0.6}], "neural network" [{0.2,
0.6, 1}]}

This information is then used to compute distances between documents, and ultimately to
compare several (non-linear) clustering methods regarding their abilities of recovering the true
underlying structure. In fact, it is known that the first 12 documents are related to neural
networks, and the remaining 18 to image processing.

In the following, we will perform simple hierarchical clustering. We start by computing a
distance matrix for the 30 documents. The sets package implements the Jaccard dissimilarity,
defined for two generalized sets X and Y as 1 − |X ∩ Y |/|X ∪ Y | where | · | denotes the
cardinality for generalized sets. A corresponding dissimilarity matrix can be obtained using,
e.g., the proxy package (Meyer and Buchta 2009):

R> library("proxy")

R> d <- dist(fuzzy_docs, gset_dissimilarity)

We then apply Ward’s clustering method:

R> cl1 <- hclust(d, "ward")

resulting in a clustering depicted in Figure 2. Clearly, the neural network-related documents
(#1–#12) are separated from the image processing papers:

R> labs1 <- cutree(cl1, 2)

R> print(labs1)

[1] 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Note that for this data, using different weightings for terms in titles, keywords and abstracts
are key to recover the subgroups. Naive text mining approaches operate on “classical” term-
document-matrices only, counting term occurrences without further information on their rel-
evance:
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Figure 2: Dendrogram for the fuzzy_docs data, clustered using Ward’s method on Jaccard
distances computed from fuzzy multisets.

R> tdm <- set_outer(c("neural networks", "fuzzy", "image"),

+ fuzzy_docs, `%in%`)

R> print(tdm)

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
neural networks FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
fuzzy TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
image FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE

x11 x12 x13 x14 x15 x16 x17 x18 x19 x20
neural networks FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
fuzzy TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE FALSE TRUE
image TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

x21 x22 x23 x24 x25 x26 x27 x28 x29 x30
neural networks FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
fuzzy TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
image TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

By again computing Jaccard distances

R> d <- dist(tdm, "Jaccard", by_rows = FALSE)
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and the corresponding hierarchical clustering, visualized in Figure 3,

R> cl2 <- hclust(d, "ward")

we can see that the “standard” text mining approach fails to correctly assign four documents
(#9–#12):

R> labs2 <- cutree(cl2, 2)

R> print(labs2)

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19
1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2

x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 x30
2 2 2 2 2 2 2 2 2 2 2

R> table(labs1, labs2)

labs2
labs1 1 2

1 8 4
2 0 18

7. Conclusion

In this paper, we described the sets package for R, providing infrastructure for sets and gener-
alizations thereof such as fuzzy sets, multisets and fuzzy multisets. The fuzzy variants make
use of a dynamic fuzzy logic infrastructure offering several fuzzy logic families. Generalized
sets are further extended to allow for user-defined iterators and matching functions. Current
work focuses on data structures and algorithms for relations, an important application of sets.
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Matthé T, Caluwe RD, de Tré G, Hallez A, Verstraete J, Leman M, Cornelis O, Moelants D,
Gansemans J (2006). “Similarity Between Multi-valued Thesaurus Attributes: Theory and
Application in Multimedia Systems.” In Flexible Query Answering Systems, Lecture Notes
in Computer Science, pp. 331–342. Springer-Verlag.

Meyer D, Buchta C (2009). proxy: Distance and Similarity Measures. R package version 0.4-3,
URL http://CRAN.R-project.org/package=proxy.

Meyer D, Hornik K (2009a). “Generalized and Customizable Sets in R.” Journal of Statistical
Software, 31(2), 1–27. URL http://www.jstatsoft.org/v31/i02/.

http://CRAN.R-project.org/package=fuzzyRankTests
http://CRAN.R-project.org/package=fuzzyFDR
http://CRAN.R-project.org/package=proxy
http://www.jstatsoft.org/v31/i02/


David Meyer, Kurt Hornik 25

Meyer D, Hornik K (2009b). sets: Sets, Generalized Sets, and Customizable Sets. R package
version 1.0, URL http://CRAN.R-project.org/package=sets.

Mizutani K, Inokuchi R, Miyamoto S (2008). “Algorithms of Nonlinear Document Clustering
Based on Fuzzy Multiset Model.” International Journal of Intelligent Systems, 23, 176–198.

Roberts DW (2007). fso: Fuzzy Set Ordination. R package version 1.0-1, URL http://CRAN.
R-project.org/package=fso.

Singh D, Ibrahim A, Yohanna T, Singh J (2007). “An Overview of the Applications of
Multisets.” Novi Sad Journal of Mathematics, 37(3), 73–92.

Vinterbo SA (2007). gcl: Compute a Fuzzy Rules or Tree Classifier from Data. R package
version 1.06.5, URL http://CRAN.R-project.org/package=gcl.

Wirth N (1983). Algorithmen und Datenstrukturen. Teubner, Stuttgart.

Yager RR (1986). “On the Theory of Bags.” International Journal of General Systems, 13,
23–37.

Zadeh LA (1965). “Fuzzy Sets.” Information and Control, 8(3), 338–353.

Zermelo E (1908). “Untersuchungen über die Grundlagen der Mengenlehre.” In Mathematische
Annalen, volume 65, pp. 261–281. Springer-Verlag.

A. Available fuzzy logic families

Let us refer to N(x) = 1 − x as the standard negation, and, for a t-norm T , let S(x, y) =
1 − T (1 − x, 1 − y) be the dual (or complementary) t-conorm. Available specifications and
corresponding families are as follows, with the standard negation used unless stated otherwise.

"Zadeh" Zadeh’s logic with T = min and S = max. Note that the minimum t-norm, also
known as the Gödel t-norm, is the pointwise largest t-norm, and that the maximum
t-conorm is the smallest t-conorm.

"drastic" The drastic logic with t-norm T (x, y) = y if x = 1, x if y = 1, and 0 otherwise,
and complementary t-conorm S(x, y) = y if x = 0, x if y = 0, and 1 otherwise. Note
that the drastic t-norm and t-conorm are the smallest t-norm and largest t-conorm,
respectively.

"product" The family with the product t-norm T (x, y) = xy and dual t-conorm S(x, y) =
x+ y − xy.

"Lukasiewicz" The  Lukasiewicz logic with t-norm T (x, y) = max(0, x + y − 1) and dual
t-conorm S(x, y) = min(x+ y, 1).

"Fodor" The family with Fodor’s nilpotent minimum t-norm given by T (x, y) = min(x, y)
if x + y > 1, and 0 otherwise, and the dual t-conorm given by S(x, y) = max(x, y) if
x+ y < 1, and 1 otherwise.

http://CRAN.R-project.org/package=sets
http://CRAN.R-project.org/package=fso
http://CRAN.R-project.org/package=fso
http://CRAN.R-project.org/package=gcl
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"Frank" The family of Frank t-norms Tp, p ≥ 0, which gives the Zadeh, product and
 Lukasiewicz t-norms for p = 0, 1, and ∞, respectively, and otherwise is given by
T (x, y) = logp(1 + (px − 1)(py − 1)/(p− 1)).

"Hamacher" The three-parameter family of Hamacher, with negation Nγ(x) = (1 − x)/(1 +
γx), t-norm Tα(x, y) = xy/(α+ (1−α)(x+ y− xy)), and t-conorm Sβ(x, y) = (x+ y+
(β − 1)xy)/(1 + βxy), where α ≥ 0 and β, γ ≥ −1. This gives a deMorgan triple (for
which N(S(x, y)) = T (N(x), N(y)) iff α = (1 + β)/(1 + γ).

The following parametric families are obtained by combining the corresponding families of
t-norms with the standard negation and complementary t-conorm.

"Schweizer-Sklar" The Schweizer-Sklar family Tp, −∞ ≤ p ≤ ∞, which gives the Zadeh
(minimum), product and drastic t-norms for p = −∞, 0, and ∞, respectively, and
otherwise is given by Tp(x, y) = max(0, (xp + yp − 1)1/p).

"Yager" The Yager family Tp, p ≥ 0, which gives the drastic and minimum t-norms for p = 0
and ∞, respectively, and otherwise is given by Tp(x, y) = max(0, 1 − ((1 − x)p + (1 −
y)p)1/p).

"Dombi" The Dombi family Tp, p ≥ 0, which gives the drastic and minimum t-norms for
p = 0 and ∞, respectively, and otherwise is given by Tp(x, y) = 0 if x = 0 or y = 0, and
Tp(x, y) = 1/(1 + ((1/x− 1)p + (1/y − 1)p)1/p) if both x > 0 and y > 0.

"Aczel-Alsina" The family of t-norms Tp, p ≥ 0, introduced by Aczél and Alsina, which
gives the drastic and minimum t-norms for p = 0 and ∞, respectively, and otherwise is
given by Tp(x, y) = exp(−(| log(x)|p + | log(y)|p)1/p).

"Sugeno-Weber" The family of t-norms Tp, −1 ≤ p ≤ ∞, introduced by Weber with dual t-
conorms introduced by Sugeno, which gives the drastic and product t-norms for p = −1
and∞, respectively, and otherwise is given by Tp(x, y) = max(0, (x+y−1+pxy)/(1+p)).

"Dubois-Prade" The family of t-norms Tp, 0 ≤ p ≤ 1, introduced by Dubois and Prade,
which gives the minimum and product t-norms for p = 0 and 1, respectively, and
otherwise is given by Tp(x, y) = xy/max(x, y, p).

"Yu" The family of t-norms Tp, p ≥ −1, introduced by Yu, which gives the product and
drastic t-norms for p = −1 and ∞, respectively, and otherwise is given by T (x, y) =
max(0, (1 + p)(x+ y − 1)− pxy).
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