Using the rsm package

Russell V. Lenth
The University of lowa

November 29, 2008

1 Overview

The rsm package provides several useful functions to facilitate response-surface analysis. The
primary one is the rsm function itself, which is an extension of 1m but with some enhancements.
In specifying a model in rsm, the model formula is just like in 1m, ut the response-surface portion
of the model is specified using one or more of the special functions F0 (first-order), TWI (two-
way interactions), PQ (pure quadratic), or SO (second-order, and alias for all three of the previous
functions, combined). The summary method for rsm results includes the usual regression summary
(but with the coefficients compactly relabeled), an analysis of variance table with a lack-of-fit test,
and additional information depending on the order of the model.

An important aspect of response-surface analysis is using an appropriate coding transforma-
tion of the data. The functions coded.data, as.coded.data, decode.data, code2val, and val2code
facilitate these transformations; we simply provide formulas for the desired transformations. If a
coded.data object is used in place of an ordinary data.frame in the call, to rsm, then appropriate
additional output is provided in the summary and steepest outputs.

Auxiliary functions include steepest for finding a path of steepest ascent (for second-order
models, this uses ridge analysis); and contour for obyaining a contour plot of the response surface.

2 Chemical reactor example

The provided dataset ChemReact comes from Table 7.7 of Myers and Montgomery (2002).

R> library(rsm)
R> ChemReact

Time Temp Block Yield
80.00 170.00 B1 80.
80.00 180.00 B1 81.
90.00 170.00 Bl 82.
90.00 180.00 B1 83.
85.00 175.00 Bl 83.
85.00 175.00 B1 84.
85.00 175.00 Bl 84.
85.00 175.00 B2 79.
85.00 175.00 B2 79.
10 85.00 175.00 B2 79.

© 00 N O O b W N -
O 00 N O W w o1 O o1 o

11 92.07 175.00 B2 78.4
12 77.93 175.00 B2 75.6
13 85.00 182.07 B2 78.5
14 85.00 167.93 B2 77.0

The context is that block B1 of this data were collected first and analyzed, after which block B2 was
added and a new analysis was done. Accordingly, we woll illustrate the analysis in two stages.

First, though, we need to take care of coding issues. The data are provided in their orig-
inal units, and the original experiment (block B1) used factor settings of Time = 85 45 and
Temp = 175 + 5, with three center points. Thus, the coded variables are x; = (Time — 85)/5
and x; = (Temp — 175) /5. Let’s create a coded dataset with the appropriate codings. We do this
via formulas:

R> CR = coded.data (ChemReact, x1 ~ (Time - 85)/5, x2 ~ (Temp - 175)/5)
R> CR[1:7,] ### Initial experiment only

x1 x2 Block Yield
1 -1 -1 B1 80.
2 -1 1 B1 81.
3 1-1 B1 82.
1 1 B1 83.
0 0 B1 83.
0 B1 84.
0 0 B1 84.
Variable codings ...
x1 ~ (Time - 85)/5
x2 ~ (Temp - 175)/5

S W W o1 O oo

~N O O b
(@)

2.1 Analysis of initial block

The initial 7 runs are only good enough to estimate a first-order model. We will fit this by calling
rsm just like we would 1m, but use the special function FO (first-order response surface) in the
model formula:

R> CR.rsm! = rsm (Yield ~ FO(x1, x2), data = CR, subset = 1:7)
R> summary(CR.rsm1)

Call:
rsm(formula = Yield ~ FO(xl, x2), data = CR, subset = 1:7)
Residuals:

1 2 3 4 5 6 7
-0.8143 -1.0643 -1.0643 -0.8143 1.0857 1.4857 1.1857
Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 82.8143 0.5472 151.346 1.14e-08 *x*x
x1 0.8750 0.7239 1.209 0.293
x2 0.6250 0.7239 0.863 0.437
Signif. codes: O 'xxx' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.448 on 4 degrees of freedom
Multiple R-squared: 0.3555, Adjusted R-squared: 0.0333
F-statistic: 1.103 on 2 and 4 DF, p-value: 0.4153
Analysis of Variance Table
Response: Yield
Df Sum Sq Mean Sq F value Pr(>F)
FO(x1, x2) 2 4.6250 2.3125 1.1033 0.41534
Residuals 4 8.3836 2.0959
Lack of fit 2 8.2969 4.1485 95.7335 0.01034
Pure error 2 0.0867 0.0433
Direction of steepest ascent (at radius 1):
x1 x2
0.8137335 0.5812382
Corresponding increment in original units:
Time Temp
4.068667 2.906191

Note that the summary includes a lack-of-fit test, and it is significant. We can try adding two-way
interactions to see if it helps:

R> CR.rsm1.5 = update(CR.rsml, . ~ . + TWI(x1, x2))
R> summary (CR.rsml.5)

Call:
rsm(formula = Yield ~ FO(x1, x2) + TWI(x1l, x2), data = CR, subset = 1:7)
Residuals:

1 2 3 4 5 6 7
-0.9393 -0.9393 -0.9393 -0.9393 1.0857 1.4857 1.1857
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 82.8143 0.6295 131.560 9.68e-07 **x%
x1 0.8750 0.8327 1.051 0.371
x2 0.6250 0.8327 0.751 0.507
x1:x2 0.1250 0.8327 0.150 0.890
Signif. codes: O '#*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.665 on 3 degrees of freedom
Multiple R-squared: 0.3603, Adjusted R-squared: -0.2793

F-statistic: 0.5633 on 3 and 3 DF, p-value: 0.6755
Analysis of Variance Table
Response: Yield

Df Sum Sq Mean Sq F value Pr(>F)

FO(x1, x2) 2 4.6250 2.3125 0.8337 0.515302
TWI(x1, x2) 1 0.0625 0.0625 0.0225 0.890202
Residuals 3 8.3211 2.7737
Lack of fit 1 8.2344 8.2344 190.0247 0.005221
Pure error 2 0.0867 0.0433

Stationary point of response surface:
x1 x2

-6 -7
Stationary point in original units:
Time Temp

60 140
Eigenanalysis:
$values
[1] 0.0625 -0.0625
$vectors

[,1] [,2]

[1,] 0.7071068 -0.7071068
[2,] 0.7071068 0.7071068

The lack of fit is still significant. Note that the summary output now shows a canonical analysis
rather than the direction of steepest ascent, as the response surface now has second-order terms.

2.2 Analysis of combined blocks

The lack-of-fit results motivate us to collect additional runs at “star” points, plus some additional
center points; these are the second block. In coded units, the data are

R> CR[8:14,]

x1 x2 Block Yield
8 0.000 0.000 B2 79.7
9 0.000 0.000 B2 79.8
10 0.000 0.000 B2 79.5
11 1.414 0.000 B2 78.4
12 -1.414 0.000 B2 75.6
13 0.000 1.414 B2 78.5
14 0.000 -1.414 B2 77.0

Variable codings ...
x1 7 (Time - 85)/5
x2 = (Temp - 175)/5

The choice of & = /2 provides for rotatability, and the blocks are orthogonal as well. To do the
analysis of the combined data, we should account for the block effect. We could fit a full second-
order model by including FO, TWI, and PQ terms, but this is more easily done using SO which
generates all three sets of variables:

R> CR.rsm2 = rsm (Yield ~ Block + SO(x1, x2), data = CR)
R> summary(CR.rsm2)

Call:
rsm(formula = Yield ~ Block + SO(x1, x2), data = CR)
Residuals:

Min 1Q Median 3Q Max
-0.19543 -0.09369 0.02157 0.06153 0.20457
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 84.09543 0.07963 1056.067 < 2e-16 *x**

BlockB2 -4.45753 0.08723 -51.103 2.88e-10 *x*x*

x1 0.93254 0.05770 16.162 8.44e-07 *x**

x2 0.57771 0.05770 10.013 2.12e-05 *x*x*

x1:x2 0.12500 0.08159 1.532 0.169

x1°2 -1.30856 0.06006 -21.786 1.08e-07 *x**

X272 -0.93344 0.06006 -15.541 1.10e-06 *x**

Signif. codes: O '¥*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1632 on 7 degrees of freedom
Multiple R-squared: 0.9981, Adjusted R-squared: 0.9964

F-statistic: 607.2 on 6 and 7 DF, p-value: 3.811e-09
Analysis of Variance Table
Response: Yield

Df Sum Sq Mean Sq F value Pr(>F)

Block 1 69.531 69.531 2611.0950 2.879e-10
FO(x1, x2) 2 9.626 4.813 180.7341 9.450e-07
TWI(x1, x2) 1 0.063 0.063 2.3470 0.1694
PQ(x1, x2) 2 17.791 8.896 334.0539 1.135e-07
Residuals 7 0.186 0.027

Lack of fit 3 0.053 0.018 0.5307 0.6851
Pure error 4 0.133 0.033

Stationary point of response surface:

x1 x2

0.3722954 0.3343802
Stationary point in original units:

Time Temp
86.86148 176.67190
Eigenanalysis:
$values
[1] -0.9233027 -1.3186949
$vectors
[,1] [,2]

[1,] -0.1601375 -0.9870947
[2,] -0.9870947 0.1601375

This model fits well. The canonical analysis reveals that the stationary point is near the center of
the experiment and that both eigenvalues are negative. This indicates that the fitted surface has
a maximum at Time ~ 86.9, Temp ~ 176.7. We may visualize the response surface using the 1m
method for contour, provided with this package:

R> contour (CR.rsm2, list(x1=NULL, x2=NULL))
R> points (.372, .334, pch = 2)

X2

3 Helicopter example

The provided dataset heli is presented in Table 12.5 of Box, Hunter, and Hunter (2005). It is also
a central composite design in two blocks. There are four variables and 30 observations altogether.
This is a coded .data object already; here are a few observations:

R> heli[1:4,]

block x1 x2 x3 x4 ave logl00s

1 1 -1-1-1-1 367 72
2 1 1-1-1-1 369 72
3 1 -1 1-1-12374 T4
4 1 1 1-1-12370 79

Variable codings ...
x1 7 (A - 12.4)/0.
x2 7 (R - 2.52)/0.26
x3 7 (W - 1.25)/0.25
x4 ~ (L - 2)/0.5

The response variable ave is the average flight time (in csec.) of four test runs each of paper
helicopters made with different wing areas W, wing-length ratios R, body widths W, and body
lengths L. The goal is to maximize flight time.

Like the Chemical Reaction data, the first block was analyzed first and then the star points
were added. We'll skip the first part and go straight to the second-order analysis.

R> heli.rsm = rsm(ave ~ block + SO(x1, x2, x3, x4), data=heli)
R> summary(heli.rsm)

Call:
rsm(formula = ave ~ block + S0(x1, x2, x3, x4), data = heli)
Residuals:

Min 1Q Median 3Q Max
-3.850 -1.579 -0.175 1.925 4.200
Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) 372.80000 1.50638 247.481 < 2e-16 **x*

block2 -2.95000 1.20779 -2.442 0.028452 *

x1 -0.08333 0.63656 -0.131 0.897707

x2 5.08333 0.63656 7.986 1.40e-06 *x*:x

x3 0.25000 0.63656 0.393 0.700429

x4 -6.08333 0.63656 -9.557 1.63e-07 *x**

x1:x2 -2.87500 0.77962 -3.688 0.002436 *x*

x1:x3 -3.75000 0.77962 -4.810 0.000277 *x*:x

x1:x4 4.37500 0.77962 5.612 6.41e-05 *x*x

x2:x3 4.62500 0.77962 5.932 3.66e-05 *xx

x2:x4 -1.50000 0.77962 -1.924 0.074926 .

x3:x4 -2.12500 0.77962 -2.726 0.016410 =*

x172 -2.03750 0.60389 -3.374 0.004542 =x*

x272 -1.66250 0.60389 -2.753 0.015554 =*

x372 -2.53750 0.60389 -4.202 0.000887 *x*:x

x4-2 -0.16250 0.60389 -0.269 0.791788

Signif. codes: 0 '*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.118 on 14 degrees of freedom
Multiple R-squared: 0.9555, Adjusted R-squared: 0.9078

F-statistic: 20.04 on 15 and 14 DF, p-value: 6.54e-07
Analysis of Variance Table
Response: ave

Df Sum Sq Mean Sq F value Pr(>F)
block 1 16.81 16.81 1.7281 0.209786
FO(x1, x2, x3, x4) 4 1510.00 377.50 38.8175 1.965e-07
TWI(x1, x2, x3, x4) 6 1114.00 185.67 19.0917 5.355e-06
PQ(x1, x2, x3, x4) 4 282.54 70.64 7.2634 0.002201

Residuals 14 136.15 9.72
Lack of fit 10 125.40 12.54 4.6660 0.075500
Pure error 4 10.75 2.69
Stationary point of response surface:
x1 x2 x3 x4

0.8607107 -0.3307115 -0.8394866 -0.1161465
Stationary point in original units:

A R W L
12.916426 2.434015 1.040128 1.941927
Eigenanalysis:
$values
[1] 3.258222 -1.198324 -3.807935 -4.651963
$vectors

[,1] [,2] [,3] [,4]
[1,] 0.5177048 0.04099358 0.7608371 -0.38913772
[2,] -0.4504231 0.58176202 0.5056034 0.45059647
[3,] -0.4517232 0.37582195 -0.1219894 -0.79988915
[4,] 0.5701289 0.72015994 -0.3880860 0.07557783

This time, the situation is more complicated. Since the eigenvalues are of mixed sign, we have a
saddle point. Here we obtain contour plots of each pair of variables, holding the other two fixed
at their stationary values. The plots are shown in Figure 1.

R> par (mfrow = c(2, 3))

R> contour(heli.rsm, list(x1=NULL, x2=NULL, x3=-.84, x4=-.12))
R> points(.86, -.33, pch=2)
R> contour(heli.rsm, list(x1=NULL, x3=NULL, x2=-.33, x4=-.12))
R> points(.86, -.84, pch=2)
R> contour(heli.rsm, list(x1=NULL, x4=NULL, x2=-.33, x3=-.84))
R> points(.86, -.12, pch=2)
R> contour(heli.rsm, list(x2=NULL, x3=NULL, x1= .86, x4=-.12))
R> points(-.33, -.84, pch=2)
R> contour(heli.rsm, list(x2=NULL, x4=NULL, x1= .86, x3=-.84))

£

x4
0
1
99%”
e‘ﬁ/

-2

N
°

Lfg\
B

\

B
@
@

3,

o

T
-1

T
0

X2

R
o I 28
x4
-1 0 1 2
1 1

-2

Figure 1: Contour plots for heli data.

o’

<
-

R> points(-.33, -.12, pch=2)
R> contour(heli.rsm, list(x3=NULL, x4=NULL, x1= .86, x2=-.33))
R> points(-.84, -.12, pch=2)

Since we have not found a maximum, our next step might be to experiment in the direction of
steepest ascent:

R> steepest (heli.rsm)

Path of steepest ascent from ridge analysis:

dist x1 x2 x3 x4 | A R W L | yhat
1 0.0 0.000 0.000 0.000 0.000 | 12.4000 2.52000 1.25000 2.0000 | 372.800
2 0.5 -0.127 0.288 0.116 -0.371 | 12.3238 2.59488 1.27900 1.8145 | 377.106
3 1.0 -0.351 0.538 0.312 -0.700 | 12.1894 2.65988 1.32800 1.6500 | 382.675
4 1.5 -0.595 0.775 0.526 -1.009 | 12.0430 2.72150 1.38150 1.4955 | 389.783
5 2.0 -0.846 1.007 0.745 -1.309 | 11.8924 2.78182 1.43625 1.3455 | 398.485
6 2.5 -1.101 1.237 0.966 -1.605 | 11.7394 2.84162 1.49150 1.1975 | 408.819
7 3.0 -1.356 1.465 1.189 -1.897 | 11.5864 2.90090 1.54725 1.0515 | 420.740
8 3.5 -1.613 1.693 1.413 -2.188 | 11.4322 2.96018 1.60325 0.9060 | 434.322
9 4.0 -1.870 1.920 1.637 -2.477 | 11.2780 3.01920 1.65925 0.7615 | 449.497
10 4.5 -2.127 2.147 1.862 -2.766 | 11.1238 3.07822 1.71550 0.6170 | 466.323
11 5.0 -2.385 2.373 2.086 -3.054 | 10.9690 3.13698 1.77150 0.4730 | 484.750

This gives a path that starts at the origin in the coded variables. An alternative is to explore along
a path through the stationary point. The function canonical.path, by default, returns the path of
steepest ascent each direction from the stationary point. This path is linear.

R> canonical.path(heli.rsm)

dist x1 x2 x3 x4 | A R W L | yhat
1 -5.0 -1.728 1.921 1.419 -2.967 | 11.3632 3.01946 1.60475 0.5165 | 453.627
2 -4.5-1.469 1.696 1.193 -2.682 | 11.5186 2.96096 1.54825 0.6590 | 438.150
3 -4.0 -1.210 1.471 0.967 -2.397 | 11.6740 2.90246 1.49175 0.8015 | 424.302
4 -3.5-0.951 1.246 0.742 -2.112 | 11.8294 2.84396 1.43550 0.9440 | 412.094
5 -3.0 -0.692 1.021 0.516 -1.827 | 11.9848 2.78546 1.37900 1.0865 | 401.504
6 -2.5-0.434 0.795 0.290 -1.541 | 12.1396 2.72670 1.32250 1.2295 | 392.534
7 -2.0 -0.175 0.570 0.064 -1.256 | 12.2950 2.66820 1.26600 1.3720 | 385.203
8 -1.5 0.084 0.345 -0.162 -0.971 | 12.4504 2.60970 1.20950 1.5145 | 379.502
9 -1.0 0.343 0.120 -0.388 -0.686 | 12.6058 2.55120 1.15300 1.6570 | 375.429
10 -0.5 0.602 -0.105 -0.614 -0.401 | 12.7612 2.49270 1.09650 1.7995 | 372.986
11 0.0 0.861 -0.331 -0.839 -0.116 | 12.9166 2.43394 1.04025 1.9420 | 372.172
12 0.5 1.120 -0.556 -1.065 0.169 | 13.0720 2.37544 0.98375 2.0845 | 372.987
13 1.0 1.378 -0.781 -1.291 0.454 | 13.2268 2.31694 0.92725 2.2270 | 375.428
14 1.5 1.637 -1.006 -1.517 0.739 | 13.3822 2.25844 0.87075 2.3695 | 379.499
15 2.0 1.896 -1.232 -1.743 1.024 | 13.5376 2.19968 0.81425 2.5120 | 385.206
16 2.5 2.155 -1.457 -1.969 1.309 | 13.6930 2.14118 0.75775 2.6545 | 392.538
17 3.0 2.414 -1.682 -2.195 1.594 | 13.8484 2.08268 0.70125 2.7970 | 401.498
18 3.5 2.673 -1.907 -2.421 1.879 | 14.0038 2.02418 0.64475 2.9395 | 412.088
19 4.0 2.932 -2.132 -2.646 2.164 | 14.1592 1.96568 0.58850 3.0820 | 424.295
20 4.5 3.190 -2.358 -2.872 2.449 | 14.3140 1.90692 0.53200 3.2245 | 438.140
21 5.0 3.449 -2.583 -3.098 2.734 | 14.4694 1.84842 0.47550 3.3670 | 453.615

These paths match fairly closely in one direction as we proceed outward. For example, the point
at distance —5 from canonical.path is similar to the one at distance 4 from steepest.

4 Miscellaneous notes and examples

4.1 Coded data

Use coded.data as shown in the Chemical reactor example to convert a dataset that has its predic-
tors in raw units. If the dataset is already in coded units, you may embed the coding information
using as.coded.data:

R> dat = expand.grid(t = c(-1,1), w = -1:1)
R> dat = as.coded.data(dat, t ~ (Thickness - 3.5) / .5, w ~ (Width - 12)/2)
R> dat

t w
1 -1 -1
2 1 -1
3-1 0
4 1 O
5 -1 1
6 1 1

Variable codings ...
t ~ (Thickness - 3.5)/0.5
w =~ (Width - 12)/2

R> decode.data(dat)

Thickness Width

1 3 10
2 4 10
3 3 12
4 4 12
5 3 14
6 4 14
R> code2val(c(t = -.5, w = .25), attr(dat, "codings"))
Thickness Width
3.25 12.50

4.2 Contour plots

The contour method provided by this package works for any 1m object, not just response surfaces.
By default, it overlays the contour plot on an image plot using terrain colors. Arguments provide
for the image portion to be disabled or the colors changed if desired.

To make contour work, it was necessary to obtain the data used by a 1m object. The standard
function get_all_vars does not make it very easy, and model.frame incorporates transformations
and expands polynomials and factors. The provided function model.data makes it very easy to
obtain just the variables included in the model formula. For example, following the first-order
model for the chemical reactor example,

10

R> model.data (CR.rsmi)

Yield x1 x2
1 80.5 -1 -1
2 81.5 -1 1
3 82.0 1 -1
4 83.5 1 1
5 83.9 0 O
6 84.3 0 O
7 8.0 0 O

Note that only the observations in the subset argument are included.

References

Box, G.E.P, Hunter,].S., and Hunter, W.G. (2005), Statistics for Experimenters: Design, Innovation,
and Discovery (2nd ed.), New York: Wiley-Interscience.

Myers, R. H. and Montgomery, D. C. (2002), Response Surface Mehodology: Process and Product
Optimization Using Designed Experiments (2nd ed.), New York: Wiley-Interscience.

Contact information

Russell V. Lenth
Department of Sttaistics
The University of lowa
Iowa City, IA, USA 52242
russell-lenth@uiowa.edu

11

