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1 Introduction

Reshaping data is a common task in practical data analysis, and it is usually tedious and unintuitive.
Data often has multiple levels of grouping (nested treatments, split plot designs, or repeated

measurements) and typically requires investigation at multiple levels. For example, from a long
term clinical study we may be interested in investigating summarising patients, treatments, trends
over time or combinations of each. Performing these investigations fluently requires the data to be
reshaped in different ways, but most software packages make it difficult to generalise these tasks
and code needs to be written for each specific case.

While most practitioners are intuitively familiar with the idea of reshaping, it is useful define it a
little more formally. Data reshaping is easiest to define with respect to aggregation. Aggregation is
a common and familiar task where data is reduced and rearranged into a smaller, more convenient
form, with a concomitant reduction in the amount of information. One commonly used aggregation
tool is Excel’s Pivot tables. Reshaping involves a similar rearrangement, but preserves all original
information; where aggregation reduces many cells in the original data set to one cell in the new
dataset, reshaping preserves a one-to-one connection. These ideas are expanded and formalised in
the next section.

In R, there are a number of general functions that can aggregate data, for example tapply, by
and aggregate, and a function specifically for reshaping data, reshape. Each of these functions
deals well with one or two specific scenarios, and each requires slightly different input arguments.
In practice, careful thought is required to piece together the correct sequence of operations to get
your data into the form that you want. The reshape package overcomes these problems with a
general conceptual framework that needs just two functions: melt and cast.

This document introduces to the conceptual framework of melting and casting, §2, then provides a
detailed description of each with plenty of examples, §3 and 4. The reshape package also provides
a number of convenience functions for general data manipulation, described in §5. The paper
concludes with case studies using melt and cast in real life examples, §6.
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2 Conceptual framework

To help us think about the many ways we might rearrange a data set it is useful to think about
data in a new way. Usually, we think about data in terms of a matrix or data frame, where we
have observations in the rows and variables in the columns. For the purposes of reshaping, we can
divide the variables into two groups: identifier and measured variables.

1. Identifier, or id, variables identify the unit that measurements take place on. Id variables are
usually discrete, and are typically fixed by design. In ANOVA notation (Yijk), id variables
are the indices on the variables (i, j, k). In database terminology, these are the primary keys.

2. Measured variables represent what attributes measured on each unit (Y ).

It is possible to take this abstraction a step further and say there are only id variables and a value,
where the id variables also identify what measured variable the value represents. For example, we
could represent this data set, which has two id variables, subject and time,

subject time age weight height
1 John Smith 1 33 90 2
2 Mary Smith 1 2

as:

subject time variable value
1 John Smith 1 age 33
2 John Smith 1 weight 90
3 John Smith 1 height 2
4 Mary Smith 1 height 2

where each row represents one observation of one variable. This operation is called melting and
produces “molten” data. Compared to the original data set, it has a new id variable “variable”, and
a new column “value”, which represents the value of that observation. We now have the data in a
form in which there are only id variables and a value.

From this form, we can create new forms by specifying which variables should form the columns
and rows. This operating is called casting. In the original data frame, the “variable” id variable
forms the columns, and all identifiers form the rows. We don’t have to specify all the original id
variables in the new form. When we don’t, the id variables no longer uniquely identify one row,
and in this case we need a function that reduces these many numbers to one. This is called an
aggregation function.

The following section continues with the example and describes the melting operation in detail
with an implementation in R.
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3 Melting data

Melting a data frame is a little trickier in practice than it is in theory. This section describes the
practical use of the melt function in R.

The melt function needs to know which variables are measured and which are identifiers. This
distinction should be obvious from your design: if you fixed the value, it is an id variable. If you
don’t specify the variables explicitly, melt will assume that any factor or integer column is an id
variable. If you specify only one of measured and identifier variables, melt assumes that all the
other variables are the other sort. For example, with the smiths dataset, as used in the previous
section, all the following calls have the same effect:

melt(smiths, id=c("subject","time"), measured=c("age","weight","height"))
melt(smiths, id=c("subject","time"))
melt(smiths, id=1:2)
melt(smiths, measured=c("age","weight","height"))
melt(smiths)

> melt(smiths)
subject time variable value

1 John Smith 1 age 33.0
2 Mary Smith 1 age NA
3 John Smith 1 weight 90.0
4 Mary Smith 1 weight NA
5 John Smith 1 height 1.9
6 Mary Smith 1 height 1.5

Melt doesn’t make many assumptions about your measured and id variables: there can be any
number, in any order, and the values within the columns can be in any order too. You do, however,
need to ensure there are no missing values in id variables. There is only one assumption that melt
makes: all measured values must be of the same type. This is usually ok, because most of the time
measured variables are numeric, but unfortunately if you are working with measured variables of
different types, you will need to split them intop separate data frames.

3.1 Melting data with id variables encoded in column names

A more complicated case is where the variable names contain information about more than one
variable. For example, here we have an experiment with two treatments (A and B) with data
recorded on two time points (1 and 2), and the column names represent both treatment and time.

> trial <- data.frame(id = factor(1:4), A1 = c(1, 2, 1, 2), A2 = c(2,
+ 1, 2, 1), B1 = c(3, 3, 3, 3))
> (trialm <- melt(trial))

id variable value
1 1 A1 1
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2 2 A1 2
3 3 A1 1
4 4 A1 2
5 1 A2 2
6 2 A2 1
7 3 A2 2
8 4 A2 1
9 1 B1 3
10 2 B1 3
11 3 B1 3
12 4 B1 3

To fix this we need to create a time and treatment column after reshaping:

> (trialm <- cbind(trialm, colsplit(trialm$variable, names = c("treatment",
+ "time"))))

id variable value treatment time
1 1 A1 1 A 1
2 2 A1 2 A 1
3 3 A1 1 A 1
4 4 A1 2 A 1
5 1 A2 2 A 2
6 2 A2 1 A 2
7 3 A2 2 A 2
8 4 A2 1 A 2
9 1 B1 3 B 1
10 2 B1 3 B 1
11 3 B1 3 B 1
12 4 B1 3 B 1

I’m not aware of any general way to do this, so you may need to modify the code in colsplit
depending on your situation.

3.2 Melting arrays

Sometimes, especially if your data is highly balanced or crossed, the data you want to reshape may
be stored in an array. In this case, each array index acts as an id variable, and the value in the cell
is the measured value. The melt method uses the dimnames component to determine the names
and values of the id variables, as shown in this example:

> (a <- array(sample(1:6), c(3, 2, 1)))
, , 1

5



[,1] [,2]
[1,] 6 3
[2,] 2 4
[3,] 1 5

> melt(a)
X1 X2 X3 value

1 1 1 1 6
2 2 1 1 2
3 3 1 1 1
4 1 2 1 3
5 2 2 1 4
6 3 2 1 5

> dimnames(a) <- lapply(dim(a), function(x) LETTERS[1:x])
> melt(a)
X1 X2 X3 value

1 A A A 6
2 B A A 2
3 C A A 1
4 A B A 3
5 B B A 4
6 C B A 5

> names(dimnames(a)) <- c("trt", "loc", "time")
> melt(a)
trt loc time value

1 A A A 6
2 B A A 2
3 C A A 1
4 A B A 3
5 B B A 4
6 C B A 5

3.3 Missing values in molten data

Finally, it’s important to discuss what happens to missing values when you melt your data. Explic-
itly coded missing values usually denote sampling zeros rather than structural missings, which are
usually implicit in the data. Clearly a structural missing depends on the structure of the data and
as we are changing the structure of the data, we might expect some changes to structural missings.
Structural missings change from implicit to explicit when we change from a nested to a crossed
structure. For example, imagine a dataset with two id variables, sex (male or female) and pregnant
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(yes or no). When the variables are nested (ie. both on the same dimension) then the missing value
“pregnant male” is encoded by its absence. However, in a crossed view, we need to add an explicit
missing as there will now be a cell which must be filled with something. This is illustrated below.

sex pregnant value
1 male no 10.00
2 female no 14.00
3 female yes 4.00

sex no yes
1 female 14.00 4.00
2 male 10.00

Continuing along this path, the molten form is a perfectly nested form: there are no crossings.
For this reason, it is possible to encode all missing values implicitly (by omitting that combination
of id variables) rather than explicitly (with an NA value).

However, you may expect these to be in the data frame, and it is a bad idea for a function to
throw data away by default, so you need to explicitly state that implicit missing values are ok. In
most cases it is safe to get rid of them, which you can do by using preserve.na = FALSE in the
call to melt. The two different results are illustrated below.

> melt(smiths)
subject time variable value

1 John Smith 1 age 33.0
2 Mary Smith 1 age NA
3 John Smith 1 weight 90.0
4 Mary Smith 1 weight NA
5 John Smith 1 height 1.9
6 Mary Smith 1 height 1.5

> melt(smiths, preserve.na = FALSE)
subject time variable value

1 John Smith 1 age 33.0
2 John Smith 1 weight 90.0
3 John Smith 1 height 1.9
4 Mary Smith 1 height 1.5

If you don’t use preserve.na = FALSE you will need to make sure to account for possible missing
values when aggregating (§4.2, pg. 11), for example, by supplying na.rm = TRUE to mean, sum and
var.
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4 Casting molten data

Once you have your data in the molten form, you can use cast to create the form you want. Cast
has two arguments that you will always supply:

� data: the molten data set to cast

� formula: the casting formula which describes the shape of the output format (if you omit
this argument, cast will return the data frame to its pre-molten form)

This section explains the different casting formulas you can use. It also explains the use of the
other optional arguments to cast:

� fun.aggregate: aggregation function to use (if necessary)

� margins: what marginal values should be computed

� subset: only operate on a subset of the original data.

4.1 Basic use

The casting formula has the following basic form: col_var_1 + col_var_2 ∼ row_var_1 + row_var_2.
This describes which variables you want to appear in the columns and which in the rows. These
variables need to come from the molten data frame or be one of the following special variables:

� . corresponds to no variable, useful when creating formulas of the form . ∼ x or x ∼ .

� ... represents all variables not previously included in the casting formula. Including this in
your formula will guarantee that no aggregation occurs. There can be only one ... in a cast
formula.

� result_variable is used when your aggregation formula returns multiple results. See §4.4,
pg. 13 for more details.

The first set of examples illustrate reshaping: all the original variables are retained in the new
form. Each of these reshaping changes which of the identifier variables appear in the columns and
which in the rows. The typical view of a data frame has the “variable” variable in the columns and
all others in the rows, but if we were interested in investigating the relationships between subjects
or times, we might put those in the columns instead.

> cast(smithsm, time + subject ~ variable)
time subject age weight height

1 1 John Smith 33 90 1.9
2 1 Mary Smith NA NA 1.5

> cast(smithsm, ... ~ variable)
subject time age weight height

1 John Smith 1 33 90 1.9
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2 Mary Smith 1 NA NA 1.5

> cast(smithsm, ... ~ subject)
time variable John.Smith Mary.Smith

1 1 age 33.0 NA
2 1 weight 90.0 NA
3 1 height 1.9 1.5

> cast(smithsm, ... ~ time)
subject variable X1

1 John Smith age 33.0
2 John Smith weight 90.0
3 John Smith height 1.9
4 Mary Smith height 1.5

The following examples demonstrate aggregation. See §4.2, pg. 11 for more details. These
examples use the french fries dataset included in the reshape package. The first few rows are
shown in 4.1. It is data from a sensory experiment on french fries, where different types of frier oil,
treatment, were tested by different people, subject, over ten weeks time.

time treatment subject rep potato buttery grassy rancid painty
61 1 1 3 1.00 2.90 0.00 0.00 0.00 5.50
25 1 1 3 2.00 14.00 0.00 0.00 1.10 0.00
62 1 1 10 1.00 11.00 6.40 0.00 0.00 0.00
26 1 1 10 2.00 9.90 5.90 2.90 2.20 0.00
63 1 1 15 1.00 1.20 0.10 0.00 1.10 5.10
27 1 1 15 2.00 8.80 3.00 3.60 1.50 2.30

The most severe type of aggregation is reducing an entire table to one number. This is what
happens when you use the cast formula . ∼ .

The next example produces a summary for each treatment. We can get the same results using
taply, or for the special case of length, table. The disadvantage of these methods is their lack of
generality – they can only produce certain “shapes” of data.

Here are some more examples illustrating the effects of changing the order ad position of variables
in the cast formula. Each of these examples displays exactly the same data, just arranged in
a slightly different form. When thinking about how to arrange your data, think about which
comparisons are most important.

> ffm <- melt(french_fries, id = 1:4, preserve = FALSE)
> cast(ffm, . ~ ., length)
value value.1

1 value 3471
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> cast(ffm, treatment ~ ., length)
treatment value

1 1 1159
2 2 1157
3 3 1155

> cast(ffm, . ~ treatment, length)
value X1 X2 X3

1 value 1159 1157 1155

> cast(ffm, rep ~ treatment, length)
rep X1 X2 X3

1 1 579 578 575
2 2 580 579 580

> cast(ffm, treatment ~ rep, length)
treatment X1 X2

1 1 579 580
2 2 578 579
3 3 575 580

> cast(ffm, treatment + rep ~ ., length)
treatment rep value

1 1 1 579
2 1 2 580
3 2 1 578
4 2 2 579
5 3 1 575
6 3 2 580

> cast(ffm, rep + treatment ~ ., length)
rep treatment value

1 1 1 579
2 1 2 578
3 1 3 575
4 2 1 580
5 2 2 579
6 2 3 580

> cast(ffm, . ~ treatment + rep, length)
value X1_1 X1_2 X2_1 X2_2 X3_1 X3_2

1 value 579 580 578 579 575 580
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As illustrated above, the order in which the row and column variables are specified in is very
important. As with a contingency table there are many possible ways of displaying the same
variables, and the way they are organised reveals different patterns in the data. Variables specified
first vary slowest, and those specified last vary fastest. Because comparisons are made most easily
between adjacent cells, the variable you are most interested in should be specified last, and the
early variables should be thought of as conditioning variables. An additional constraint is that
displays have limited width but essentially infinite length, so variables with many levels must be
specified as row variables.

4.2 Aggregation

Whenever there are fewer cells in the cast form than there were in the original data format, an
aggregation function is necessary. This formula reduces multiple cells into one, and is supplied
in the fun.aggregate argument, which defaults (with a warning) to length. Aggregation is a
very common and useful operation and the case studies section (§??, pg. ??) contains many other
examples of aggregation.

The aggregation function will be passed the vector of values for one cell. It may take other
arguments, passed in through ... in cast. Here are a few examples:

> cast(ffm, . ~ treatment)
Warning: Aggregation requires fun.aggregate: length used as default
value X1 X2 X3

1 value 1159 1157 1155

> cast(ffm, . ~ treatment, function(x) length(x))
value X1 X2 X3

1 value 1159 1157 1155

> cast(ffm, . ~ treatment, length)
value X1 X2 X3

1 value 1159 1157 1155

> cast(ffm, . ~ treatment, sum)
value X1 X2 X3

1 value 3702 3640 3640

> cast(ffm, . ~ treatment, mean)
value X1 X2 X3

1 value 3.2 3.1 3.2

> cast(ffm, . ~ treatment, mean, trim = 0.1)
value X1 X2 X3

1 value 2.6 2.5 2.6
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4.3 Margins

It’s often useful to be able to add margins to your tables. What is a margin? It is marginal
in the statistical sense: we have averaged over the other variables. You can tell cast to dis-
play all margins with margins = TRUE, or list individual variables in a character vector, mar-
gins=c("subject","day"). There are two special margins, "grand_col" and "grand_row", which
display margins for the overall columns and rows respectively. Margins are displayed with a “.” in-
stead of the value of the variable.

These examples illustrate some of the possible ways to use margins. I’ve used sum as the ag-
gregation function so that you can check the results yourself. Note that changing the order and
position of the variables in the cast formula affects the margins that appear.

> cast(ffm, treatment ~ ., sum, margins = TRUE)
treatment value

1 1 3702
2 2 3640
3 3 3640

> cast(ffm, treatment ~ ., sum, margins = "grand_row")
treatment value

1 1 3702
2 2 3640
3 3 3640

> cast(ffm, treatment ~ rep, sum, margins = TRUE)
treatment X1 X2 .

1 1 1857 1845 3702
2 2 1836 1804 3640
3 3 1739 1901 3640
4 <NA> 5433 5550 10983

> cast(ffm, treatment + rep ~ ., sum, margins = TRUE)
treatment rep value

1 1 1 1857
2 1 2 1845
3 1 NA 3702
4 2 1 1836
5 2 2 1804
6 2 NA 3640
7 3 1 1739
8 3 2 1901
9 3 NA 3640

> cast(ffm, treatment + rep ~ time, sum, margins = TRUE)
treatment rep X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 .

12



1 1 1 156 213 206 181 208 182 156 185 176 194 1857
2 1 2 216 195 194 154 204 185 158 216 122 201 1845
3 1 NA 373 408 400 335 412 366 314 402 298 396 3702
4 2 1 187 213 172 193 157 183 175 173 185 199 1836
5 2 2 168 157 186 187 173 215 172 189 145 212 1804
6 2 NA 355 370 358 380 330 398 347 362 330 411 3640
7 3 1 189 212 172 190 151 161 165 150 173 175 1739
8 3 2 217 180 199 192 183 192 218 175 164 182 1901
9 3 NA 406 392 372 382 334 353 384 325 337 357 3640
10 <NA> NA 1134 1170 1129 1097 1076 1117 1045 1088 965 1163 10983

> cast(ffm, treatment + rep ~ time, sum, margins = "treatment")
treatment rep X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

1 1 1 156 213 206 181 208 182 156 185 176 194
2 1 2 216 195 194 154 204 185 158 216 122 201
3 1 NA 373 408 400 335 412 366 314 402 298 396
4 2 1 187 213 172 193 157 183 175 173 185 199
5 2 2 168 157 186 187 173 215 172 189 145 212
6 2 NA 355 370 358 380 330 398 347 362 330 411
7 3 1 189 212 172 190 151 161 165 150 173 175
8 3 2 217 180 199 192 183 192 218 175 164 182
9 3 NA 406 392 372 382 334 353 384 325 337 357

> cast(ffm, rep + treatment ~ time, sum, margins = "rep")
rep treatment X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

1 1 1 156 213 206 181 208 182 156 185 176 194
2 1 2 187 213 172 193 157 183 175 173 185 199
3 1 3 189 212 172 190 151 161 165 150 173 175
4 1 <NA> 532 637 550 564 515 526 497 509 534 568
5 2 1 216 195 194 154 204 185 158 216 122 201
6 2 2 168 157 186 187 173 215 172 189 145 212
7 2 3 217 180 199 192 183 192 218 175 164 182
8 2 <NA> 601 533 579 533 560 591 548 580 430 595

4.4 Returning multiple values

Occasionally it is useful to aggregate with a function that returns multiple values, e.g. range or
summary. This can be thought of as combining multiple casts each with an aggregation function
that returns one variable. To display this we need to add an extra variable, result_variable that
differentiates the multiple return values. By default, this new id variable will be shown as the last
column variable, but you can specify the position manually by including result_variable in the
casting formula.

> cast(ffm, treatment ~ ., summary)
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treatment Min. X1st.Qu. Median Mean X3rd.Qu. Max.
1 1 0 0 1.6 3.2 5.4 15
2 2 0 0 1.4 3.1 5.4 15
3 3 0 0 1.5 3.1 5.7 14

> cast(ffm, treatment ~ ., quantile, c(0.05, 0.5, 0.95))
treatment X5. X50. X95.

1 1 0 1.6 11
2 2 0 1.4 11
3 3 0 1.5 11

> cast(ffm, treatment ~ rep, range)
treatment X1_X1 X1_X2 X2_X1 X2_X2

1 1 0 15 0 14
2 2 0 15 0 14
3 3 0 14 0 14

> named.range <- function(x) c(min = min(x), max = max(x))
> cast(ffm, treatment ~ rep, named.range)
treatment X1_min X1_max X2_min X2_max

1 1 0 15 0 14
2 2 0 15 0 14
3 3 0 14 0 14

> cast(ffm, treatment ~ result_variable + rep, named.range)
treatment min_1 min_2 max_1 max_2

1 1 0 0 15 14
2 2 0 0 15 14
3 3 0 0 14 14

> cast(ffm, treatment ~ rep ~ result_variable, named.range)
, , 1

[,1] [,2]
1 0 0
2 0 0
3 0 0

, , 2

[,1] [,2]
1 15 14
2 15 14
3 14 14
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Using an aggregation function that returns multidimensional objects (eg. matrices or arrays)
does not work. You may be able to work around this deficiency by creating a high-D array, and
then using iapply.

4.5 High-dimensional arrays

You can use more than one ∼ to create structures with more than two dimensions. For example,
a cast formula of x ∼ y ∼ z will create a 3D array with x, y, and z dimensions. You can still use
multiple variables in each dimension: x + a ∼ y + b ∼ z + c. The following example shows the
resulting dimensionality of various casting formulas (I don’t show the actual output for examples
because it would be too large. You may want to verify the results for yourself):

> dim(cast(ffm, time ~ variable ~ treatment, mean))
[1] 10 5 3

> dim(cast(ffm, time ~ variable ~ treatment + rep, mean))
[1] 10 5 6

> dim(cast(ffm, time ~ variable ~ treatment ~ rep, mean))
[1] 10 5 3 2

> dim(cast(ffm, time ~ variable ~ subject ~ treatment ~ rep))
[1] 10 5 12 3 2

> dim(cast(ffm, time ~ variable ~ subject ~ treatment ~ result_variable,
+ range))
[1] 10 5 12 3 2

The high-dimensional array form is useful for sweeping out margins with sweep, or modifying
with iapply (§??, pg. ??). See the case studies for examples.

The ∼ operator is a type of crossing operator, as all combinations of the variables will appear
in the output table. Compare this to the + operator, where only combinations that appear in the
data will appear in the output. For this reason, increasing the dimensionality of the output, i.e.
using more ∼s, will generally increase the number of (structural) missings. This is illustrated in
the next example:

> sum(is.na(cast(ffm, ... ~ .)))
[1] 0

> sum(is.na(cast(ffm, ... ~ rep)))
[1] 9
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> sum(is.na(cast(ffm, ... ~ subject)))
[1] 129

> sum(is.na(cast(ffm, ... ~ time ~ subject ~ variable ~ rep)))
[1] 129

Margins currently do not work with high-dimensional arrays.

4.6 Lists

You can also use cast to produce lists. This is done with the | operator. Using multiple variables
after | will create multiple levels of nesting.

> cast(ffm, treatment ~ rep | variable, mean)
$potato
treatment X1 X2

1 1 6.8 7.0
2 2 7.2 6.8
3 3 6.9 7.0

$buttery
treatment X1 X2

1 1 1.8 1.8
2 2 2.0 2.0
3 3 1.8 1.6

$grassy
treatment X1 X2

1 1 0.45 0.85
2 2 0.69 0.64
3 3 0.59 0.77

$rancid
treatment X1 X2

1 1 4.3 3.8
2 2 3.7 3.5
3 3 3.8 4.0

$painty
treatment X1 X2

1 1 2.7 2.4
2 2 2.3 2.6
3 3 2.0 3.0
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> length(cast(ffm, treatment ~ rep | variable, mean))
[1] 5

> length(cast(ffm, treatment ~ rep | subject, mean))
[1] 12

> length(cast(ffm, treatment ~ rep | time, mean))
[1] 10

> sapply(cast(ffm, treatment ~ rep | time + variable, mean), length)
1 2 3 4 5 6 7 8 9 10
5 5 5 5 5 5 5 5 5 5

This form is useful for input to lapply and sapply, and completes the discussion of the different
types of output you can create with reshape.
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5 Other convenience functions

There are many other problems encountered in practical analysis that can be painful to overcome
with out some handy functions. This section describes some of the functions that reshape provides
to make dealing with data a little bit easier.

5.1 Factors

� combine_factor combines levels in a factor. For example, if you have many small levels you
can combine them together into an “other” level.

� reorder_factor reorders a factor based on another variable. For example, you can order a
factor by the average value of a variable for each level.

5.2 Data frames

� rescaler performs column-wise rescaling of data frames, with a variety of different scaling
options including rank, common range and common variance. It automatically preserves
non-numeric variables.

� merge.all merges multiple data frames together, an extension of merge in base R. It assumes
that all columns with the same name should be equated.

� rbind.fill rbinds two data frames together, filling in any missing columns in the second
data frame with missing values.

5.3 Miscellaneous

� round_any allows you to round a number to any degree of accuracy, e.g. to the nearest 1, 10,
or any other number.

� iapply is an idempotent version of the apply function. This is useful when dealing with
high-dimensional arrays as it will return the array in the same shape that you sent it. It also
supports functions that return matrices or arrays in a sensible manner.
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6 Case studies

These case studies provide fuller exposition of using reshape for specific tasks.

6.1 Investigating balance

This data is from a sensory experiment investigating the effect of different frying oils on the taste of
french fries over time. There are three different types of frying oils (treatment), each in two different
fryers (rep), tested by 12 people (subject) on 10 different days (time). The sensory attributes
recorded, in order of desirability, are potato, buttery, grassy, rancid, painty flavours. The first few
rows of the data are shown in Table 4.1.

We first melt the data to use in subsequent analyses.

> ffm <- melt(french_fries, id = 1:4, preserve.na = FALSE)
> head(ffm)
time treatment subject rep variable value

1 1 1 3 1 potato 2.9
2 1 1 3 2 potato 14.0
3 1 1 10 1 potato 11.0
4 1 1 10 2 potato 9.9
5 1 1 15 1 potato 1.2
6 1 1 15 2 potato 8.8

One of the first things we might be interested in is how balanced this design is, and whether there
are many different missing values. We are interested in missingness, so we remove missings to put
structural and non-structural on an equal footing with preserve.na = FALSE. We can investigate
balance using length as our aggregation function:

> cast(ffm, subject ~ time, length, margins = TRUE)
subject X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 .

1 3 30 30 30 30 30 30 30 30 30 NA 270
2 10 30 30 30 30 30 30 30 30 30 30 300
3 15 30 30 30 30 25 30 30 30 30 30 295
4 16 30 30 30 30 30 30 30 29 30 30 299
5 19 30 30 30 30 30 30 30 30 30 30 300
6 31 30 30 30 30 30 30 30 30 NA 30 270
7 51 30 30 30 30 30 30 30 30 30 30 300
8 52 30 30 30 30 30 30 30 30 30 30 300
9 63 30 30 30 30 30 30 30 30 30 30 300
10 78 30 30 30 30 30 30 30 30 30 30 300
11 79 30 30 30 30 30 30 29 28 30 NA 267
12 86 30 30 30 30 30 30 30 30 NA 30 270
13 <NA> 360 360 360 360 355 360 359 357 300 300 3471
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Of course we can also use our own aggregation function. Each subject should have had 30
observations at each time, so by displaying the difference we can more easily see where the data is
missing.

> cast(ffm, subject ~ time, function(x) 30 - length(x))
subject X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

1 3 0 0 0 0 0 0 0 0 0 NA
2 10 0 0 0 0 0 0 0 0 0 0
3 15 0 0 0 0 5 0 0 0 0 0
4 16 0 0 0 0 0 0 0 1 0 0
5 19 0 0 0 0 0 0 0 0 0 0
6 31 0 0 0 0 0 0 0 0 NA 0
7 51 0 0 0 0 0 0 0 0 0 0
8 52 0 0 0 0 0 0 0 0 0 0
9 63 0 0 0 0 0 0 0 0 0 0
10 78 0 0 0 0 0 0 0 0 0 0
11 79 0 0 0 0 0 0 1 2 0 NA
12 86 0 0 0 0 0 0 0 0 NA 0

This table shows two types of missingness. Positive numbers indicate the number of observations
missing from the 30 that should have occurred (3 treatments × 2 reps × 5 sensory attributes).
Missing values (NA) indicate that there are no records present for that combination of subject and
time. If we want, we can replace those complete missings with 30:

6.2 Tables of means

When creating these tables, it is a good idea to restrict the number of digits displayed. You can do
this globally, by setting options(digits=2), or locally, by using round_any.

Since the data is fairly well balanced, we can do some (crude) investigation as to the effects of
the different treatments. For example, we can calculate the overall means for each sensory attribute
for each treatment:

> options(digits = 2)
> cast(ffm, treatment ~ variable, mean, margins = c("grand_col",
+ "grand_row"))
treatment potato buttery grassy rancid painty .

1 1 6.9 1.8 0.65 4.1 2.6 3.2
2 2 7.0 2.0 0.66 3.6 2.5 3.1
3 3 7.0 1.7 0.68 3.9 2.5 3.2
4 <NA> 7.0 1.8 0.66 3.9 2.5 3.2

A strong treatment effect is not apparent. This can be confirmed using a more formal analysis
of variance.
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6.3 Investigating inter-rep reliability

Since we have a repetition over treatments, we might be interested in how reliable each subject is:
are the scores for the two reps highly correlated? We can explore this graphically by reshaping the
data and plotting the data. Our graphical tools work best when the things we want to compare
are in different columns, so we’ll cast the data to have a column for each rep.

> qplot(X1, X2, . ~ variable, data = cast(ffm, ... ~ rep))
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This plot is not easy to understand, as we are plotting two rather unusual variables. Each point
corresponds to one measurement for a given subject, date and time. This gives a scatterplot for
each variable that can be used to assess the inter-rep relationship. The correlation looks strong for
potatoey, weak for buttery and grassy, and particularly poor for painty. This has a nice explanation:
subjects were trained in tasting potatoey flavours, but not any of the others.

If we wanted to explore the relationships between subjects or times or treatments we could follow
similar steps.
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7 Where to go next

Now that you’ve read this introduction, you should be able to get started using the reshape
package. You can find a quick reference and more examples in ?melt and ?cast. You can find
some additional information on the reshape website http://had.co.nz/reshape, including the
latest version of this document, as well as copies of presentations and papers related to reshape.

I would like to include more case studies of reshape in use. If you have an interesting example,
or there is something you are struggling with please let me know: h.wickham@gmail.com.
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