
Integrating Grid Graphics Output

with Base Graphics Output

Paul Murrell

October 1, 2003

The grid graphics package[1] is much more powerful than the standard R graph-
ics system (hereafter“base graphics”) when it comes to combining and arranging
graphical elements. It is possible to create a greater variety of graphs more easily
with grid (see, for example, Deepayan Sarkar’s lattice package[2]). However,
there are very many plots based on base graphics (e.g., biplots), that have not
been implemented in grid, and the task of reimplementing these in grid is ex-
tremely daunting. It would be nice to be able to combine the ready-made base
plots with the sophisticated arrangement features of grid.

This document describes the gridBase package which provides some support
for combining grid and base graphics output.

Annotating base graphics using grid

The gridBase package has one function, baseViewports(), that supports adding
grid output to a base graphics plot. This function creates a set of grid view-
ports that correspond to the current base plot. This allows simple annotations
such as adding lines and text using grid’s units to locate them relative to a
wide variety of coordinate systems, or something more complex involving push-
ing further grid viewports.

baseViewports() returns a list of three grid viewports. The first corresponds
to the base “inner” region. This viewport is relative to the entire device; it only
makes sense to push this viewport from the “top level” (i.e., only when no other
viewports have been pushed). The second viewport corresponds to the base
“figure” region and is relative to the inner region; it only makes sense to push it
after the “inner” viewport has been pushed. The third viewport corresponds to
the base “plot” region and is relative to the figure region; it only makes sense to
push it after the other two viewports have been pushed in the correct order.

A simple application of this facility involves adding text to the margins of a
base plot at an arbitrary orientation. The base function mtext() allows text
to be located in terms of a number of lines away from the plot region, but
only at rotations of 0 or 90 degrees. The base text() function allows arbitrary
rotations, but only locates text relative to the user coordinate system in effect

1

in the plot region (which is inconvenient for locating text in the margins of the
plot). By contrast, the grid function grid.text() allows arbitrary rotations
and can be used in any grid viewport. In the following code we first create a
base plot, leaving off the tick labels.

> midpts <- barplot(1:10, axes = FALSE)

> axis(2)

> axis(1, at = midpts, labels = FALSE)

Next we use baseViewports() to create grid viewports that correspond to the
base plot and we push those viewports1.

> vps <- baseViewports()

> par(new = TRUE)

> push.viewport(vps$inner, vps$figure, vps$plot)

Finally, we draw rotated labels using grid.text() (and pop the viewports to
clean up after ourselves).

> grid.text(c("one", "two", "three", "four", "five", "six", "seven",

+ "eight", "nine", "ten"), x = unit(midpts, "native"), y = unit(-1,

+ "lines"), just = "right", rot = 60)

> pop.viewport(3)

0
2

4
6

8
10

on
e

tw
o

th
re

e

fo
ur

fiv
e

si
x

se
ve

n

ei
gh

t

ni
ne te
n

1The par(new=TRUE) is necessary currently because the first grid action will try to move
to a new page; it should be possible to remove this step in future versions of R.

2

The next example is a bit more complicated because it involves embedding grid
viewports within a base graphics plot. The dataset is a snapshot of wind speed,
wind direction, and temperature at several weather stations in the South China
Sea, south west of Japan2. grid is used to produce novel plotting symbols for
a standard base plot.

First of all, we need to define the novel plotting symbol. This consists of a
dot at the data location, with a thermometer extending “below” and an arrow
extending “above”. The thermometer is used to encode temperature and the
arrow is used to indicate wind speed (both scaled to [0, 1]).

> novelsym <- function(speed, temp, width = unit(3, "mm"), length = unit(0.5,

+ "inches")) {

+ grid.rect(height = length, y = 0.5, just = "top", width = width,

+ gp = gpar(fill = "white"))

+ grid.rect(height = temp * length, y = unit(0.5, "npc") -

+ length, width = width, just = "bottom", gp = gpar(fill = "grey"))

+ grid.arrows(x = 0.5, y = unit.c(unit(0.5, "npc"), unit(0.5,

+ "npc") + speed * length), length = unit(3, "mm"), type = "closed",

+ gp = gpar(fill = "black"))

+ grid.points(unit(0.5, "npc"), unit(0.5, "npc"), size = unit(2,

+ "mm"), pch = 16)

+ }

Now we read in the data and generate a base plot, but plot no points.

> chinasea <- read.table("chinasea.txt", header = TRUE)

> plot(chinasea$lat, chinasea$long, type = "n", xlab = "latitude",

+ ylab = "longitude", main = "China Sea Wind Speed/Direction and Temperature")

Now we use baseViewports() to align a grid viewport with the plot region, and
draw the symbols by creating a grid viewport per (x, y) location and rotating
the viewport to represent the wind direction.

> speed <- 0.8 * chinasea$speed/14 + 0.2

> temp <- chinasea$temp/40

> vps <- baseViewports()

> par(new = TRUE)

> push.viewport(vps$inner, vps$figure, vps$plot)

> for (i in 1:25) {

+ push.viewport(viewport(x = unit(chinasea$lat[i], "native"),

+ y = unit(chinasea$long[i], "native"), angle = chinasea$dir[i]))

+ novelsym(speed[i], temp[i])

+ pop.viewport()

+ }

> pop.viewport(3)

2Obtained from the CODIAC web site: http://www.joss.ucar.edu/codiac/codiac-

www.html

3

22 23 24 25

11
9.

5
12

0.
0

12
0.

5
12

1.
0

12
1.

5
12

2.
0

China Sea Wind Speed/Direction and Temperature

latitude

lo
ng

itu
de

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Embedding base graphics plots in grid viewports

gridBase provides several functions for adding base graphics output to grid
output. There are three functions that allow base plotting regions to be aligned
with the current grid viewport; this makes it possible to draw one or more
base graphics plots within a grid viewport. The fourth function provides a
set of graphical parameter settings so that base par() settings can be made to
correspond to some of3 the current grid graphical parameter settings.

The first three functions are gridOMI(), gridFIG(), and gridPLT(). They
return the appropriate par() values for setting the base “inner”, “figure”, and
“plot” regions, respectively.

The main usefulness of these functions is to allow you to create a complex layout
using grid and then draw a base plot within relevant elements of that layout.
The following example uses this idea to create a lattice plot where the panels
contain dendrograms drawn using base graphics functions4.

First of all, we create a dendrogram and cut it into four subtrees5.

> library(mva)

3Only lwd, lty, col are available yet. More should be available in future versions.
4Recall that lattice is built on grid so the panel region in a lattice plot is a grid

viewport.
5the data and cluster analysis are copied from the example in help(plot.dendrogram).

4

> data(USArrests)

> hc <- hclust(dist(USArrests), "ave")

> dend1 <- as.dendrogram(hc)

> dend2 <- cut(dend1, h = 70)

Now we create some dummy variables which correspond to the four subtrees.

> x <- 1:4

> y <- 1:4

> height <- factor(round(unlist(lapply(dend2$lower, attr, "height"))))

Next we define a lattice panel function to draw the dendrograms. The first
thing this panel function does is push a viewport that is smaller than the view-
port lattice creates for the panel; the purpose is to ensure there is enough
room for the labels on the dendrogram. The space variable contains a measure
of the length of the longest label. The panel function then calls gridPLT() and
makes the base plot region correspond to the viewport we have just pushed.
Finally, we call the base plot() function to draw the dendrogram (and pop the
viewport we pushed)6.

> space <- max(unit(rep(1, 50), "strwidth", as.list(rownames(USArrests))))

> dendpanel <- function(x, y, subscripts, ...) {

+ push.viewport(viewport(y = space, width = 0.9, height = unit(0.9,

+ "npc") - space, just = "bottom"))

+ grid.rect(gp = gpar(col = "grey", lwd = 5))

+ par(plt = gridPLT(), new = TRUE, ps = 10)

+ plot(dend2$lower[[subscripts]], axes = FALSE)

+ pop.viewport()

+ }

Finally, we draw a lattice xyplot, using lattice to set up the arrangement
of panels and strips and our panel function to draw a base dendrogram in each
panel.

> library(lattice)

> xyplot(y ~ x | height, subscripts = TRUE, xlab = "", ylab = "",

+ strip = function(...) {

+ strip.default(style = 4, ...)

+ }, scales = list(draw = FALSE), panel = dendpanel)

6The grid.rect() call is just to show the extent of the extra viewport we pushed.

5

F
lo

rid
a

N
or

th
 C

ar
ol

in
a

39 44 45 55

C
al

ifo
rn

ia
M

ar
yl

an
d

A
riz

on
a

N
ew

 M
ex

ic
o

D
el

aw
ar

e
A

la
ba

m
a

Lo
ui

si
an

a
Ill

in
oi

s
N

ew
 Y

or
k

M
ic

hi
ga

n
N

ev
ad

a
A

la
sk

a
M

is
si

ss
ip

pi
S

ou
th

 C
ar

ol
in

a

39 44 45 55

W
as

hi
ng

to
n

O
re

go
n

W
yo

m
in

g
O

kl
ah

om
a

V
irg

in
ia

R
ho

de
 Is

la
nd

M
as

sa
ch

us
et

ts
N

ew
 J

er
se

y
M

is
so

ur
i

A
rk

an
sa

s
T

en
ne

ss
ee

G
eo

rg
ia

C
ol

or
ad

o
T

ex
as

39 44 45 55

Id
ah

o
N

eb
ra

sk
a

K
en

tu
ck

y
M

on
ta

na
O

hi
o

U
ta

h
In

di
an

a
K

an
sa

s
C

on
ne

ct
ic

ut
P

en
ns

yl
va

ni
a

H
aw

ai
i

W
es

t V
irg

in
ia

M
ai

ne
S

ou
th

 D
ak

ot
a

N
or

th
 D

ak
ot

a
V

er
m

on
t

M
in

ne
so

ta
W

is
co

ns
in

Io
w

a
N

ew
 H

am
ps

hi
re

39 44 45 55

The gridPLT() function is useful for embedding just the plot region of a base
graphics function (i.e., without labels and axes; another example of this usage is
given in the next section). If labelling and axes are to be included it will make
more sense to use gridFIG(). The gridOMI() function has pretty much the
same effect as gridFIG() except that it allows for the possibility of embedding
multiple base plots at once. In the following code, a lattice plot is placed
alongside base diagnostic plots arranged in a 2-by-2 array.

We use the data from page 93 of“An Introduction to Generalized Linear Models”
(Annette Dobson, 1990).

> counts <- c(18, 17, 15, 20, 10, 20, 25, 13, 12)

> outcome <- gl(3, 1, 9)

> treatment <- gl(3, 3)

We create two regions using grid viewports; the left region is for the lattice
plot and the right region is for the diagnostic plots. There is a middle column
of 1cm to provide a gap between the two regions.

> push.viewport(viewport(layout = grid.layout(1, 3, widths = unit(rep(1,

+ 3), c("null", "cm", "null")))))

We draw a lattice plot in the left region.

> push.viewport(viewport(layout.pos.col = 1))

> library(lattice)

6

> bwplot <- bwplot(counts ~ outcome | treatment)

> print(bwplot, newpage = FALSE)

> pop.viewport()

We draw the diagnostic plots in the right region. Here we use gridOMI() to set
the base inner region and par(mfrow) and par(mfg) to insert multiple plots7.

> push.viewport(viewport(layout.pos.col = 3))

> glm.D93 <- glm(counts ~ outcome + treatment, family = poisson())

> par(omi = gridOMI(), mfrow = c(2, 2), new = TRUE)

> par(cex = 0.5, mar = c(5, 4, 1, 2))

> par(mfg = c(1, 1))

> plot(glm.D93, caption = "", ask = FALSE)

> pop.viewport(2)

co
un

ts

●

●

●

10

15

20

25

1 2 3

1

●

●

●

1 2 3

2

●

●

●

1 2 3

3

2.6 2.7 2.8 2.9 3.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Predicted values

R
es

id
ua

ls

●

●

●
●

●

●

●

●

●

6

9

2

●

●

●
●

●

●

●

●

●

−1.5 −0.5 0.5 1.0 1.5

−
1.

0
0.

0
0.

5
1.

0
1.

5

Theoretical Quantiles
S

td
. d

ev
ia

nc
e

re
si

d.

6

9

2

2.6 2.7 2.8 2.9 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Predicted values

S
td

. d
ev

ia
nc

e
re

si
d.

●

●

●

●

●

●

●

●

●
6
92

2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Obs. number

C
oo

k’
s

di
st

an
ce

76

9

Notice that because there is only ever one current grid viewport, it only makes
sense to use one of gridOMI(), gridFIG(), or gridPLT(). In other words, it
only makes sense to align either the inner region, or the figure region, or the
plot region with the current grid viewport.

A more complex example

We will now look at a reasonably complex example involving embedding base
graphics within grid viewports which are themselves embedded within a base
plot. This example is motivated by the following problem8:

I am looking at a way of plotting a series of pie charts at specified
locations on an existing plot. The size of the pie chart would be

7We use par(mfrow) to specify the 2-by-2 array and par(mfg) to start at position (1, 1) in
the array.

8This description is from an email to R-help from Adam Langley, 18 July 2003

7

proportion to the magnitude of the total value of each vector (x)
and the values in x are displayed as the areas of pie slices.

First of all, we construct some fake data, consisting of four (x, y) values, and
four (z1, z2) values :

> x <- c(0.88, 1, 0.67, 0.34)

> y <- c(0.87, 0.43, 0.04, 0.94)

> z <- matrix(runif(4 * 2), ncol = 2)

Before we start any plotting, we save the current par() settings so that at the
end we can “undo” some of the complicated settings that we need to apply.

> oldpar <- par(no.readonly = TRUE)

Now we do a standard base plot of the (x, y) values, but do not plot anything
at these locations (we’re just setting up the user coordinate system).

> plot(x, y, xlim = c(-0.2, 1.2), ylim = c(-0.2, 1.2), type = "n")

Now we make use of baseViewports. This will create a list of grid viewports
that correspond to the inner, figure, and plot regions set up by the base plot. By
pushing these viewports, we establish a grid viewport that aligns exactly with
the plot region created by the base plot, including a (grid) “native” coordinate
system that matches the (base) user coordinate system9.

> vps <- baseViewports()

> par(new = TRUE)

> push.viewport(vps$inner, vps$figure, vps$plot)

> grid.segments(x0 = unit(c(rep(0, 4), x), rep(c("npc", "native"),

+ each = 4)), x1 = unit(c(x, x), rep("native", 8)), y0 = unit(c(y,

+ rep(0, 4)), rep(c("native", "npc"), each = 4)), y1 = unit(c(y,

+ y), rep("native", 8)), gp = gpar(lty = "dashed", col = "grey"))

Before we draw the pie charts, we need to perform a couple of calculations to de-
termine their size. In this case, we specify that the largest pie will be 1" in diam-
eter and the others will be a proportion of that size based on

∑
i z.i/max (

∑
i z.i)

> maxpiesize <- unit(1, "inches")

> totals <- apply(z, 1, sum)

> sizemult <- totals/max(totals)

We now enter a loop to draw a pie at each (x, y) location representing the
corresponding (z1, z2) values. The first step is to create a grid viewport at the

9The grid.segments call is just drawing some dashed lines to show that the pie charts we
end up with are centred correctly at the appropriate (x, y) locations.

8

(x, y) location, then we use gridPLT() to set the base plot region to correspond
to the grid viewport. With that done, we can use the base pie function to draw
a pie chart within the grid viewport10.

> for (i in 1:4) {

+ push.viewport(viewport(x = unit(x[i], "native"), y = unit(y[i],

+ "native"), width = sizemult[i] * maxpiesize, height = sizemult[i] *

+ maxpiesize))

+ grid.rect(gp = gpar(col = "grey", fill = "white", lty = "dashed"))

+ par(plt = gridPLT(), new = TRUE)

+ pie(z[i,], radius = 1, labels = rep("", 2))

+ pop.viewport()

+ }

Finally, we clean up after ourselves by popping the grid viewports and restoring
the initial par settings.

> pop.viewport(3)

> par(oldpar)

The final plot is shown below.

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2

x

y

10We draw a grid.rect with a dashed border just to show the extent of each grid viewport.
It is crucial that we again call par(new=TRUE) so that we do not move on to a new page.

9

Problems and limitations

The functions provided by the gridBase package allow the user to mix output
from two quite different graphics systems and there are limits to how much the
systems can be combined. It is important that users are aware that they are
mixing two not wholly compatible systems (which is why these functions are
provided in a separate package) and it is of course important to know what the
limitations are:

� The gridBase functions attempt to match grid graphics settings with
base graphics settings (and vice versa). This is only possible under certain
conditions. For a start, it is only possible if the device size does not change.
If these functions are used to draw into a window, then the window is
resized, the base and grid settings will almost certainly no longer match
and the graph will become a complete mess. This also applies to copying
output between devices of different sizes.

� It is not possible to embed base graphics output within a grid viewport
that is rotated.

� There are certain base graphics functions which modify settings like par(omi)
and par(fig) themselves (e.g., coplot()). Output from these functions
may not embed properly within grid viewports.

� grid output cannot be saved and restored so any attempts to save a
mixture of grid and base output are likely to end in disappointment.

Summary

The functions in the gridBase package provide a simple mechanism for combin-
ing base graphics output with grid graphics output for static, fixed-size plots.
This is not a full integration of the two graphics systems, but it does provide
a useful bridge between the existing large body of base graphics functions and
the powerful new features of grid.

Availability

The grid package is now part of the base distribution of R (from R version 1.8.0).
Additional information on grid is available from:
http://www.stat.auckland.ac.nz/ paul/grid/grid.html.
The gridBase package is available from CRAN (e.g., http://cran.us.r-project.org).

References

[1] Paul Murrell. The grid graphics package. R News, 2(2):14–19, June 2002.

[2] Deepayan Sarkar. Lattice. R News, 2(2):19–23, June 2002.

10

