
Coxnet: Regularized Cox Regression

Noah Simon
Jerome Friedman

Trevor Hastie
Rob Tibshirani

November 18, 2010

1 Introduction

We will give a short tutorial on using coxnet. Coxnet is a function which fits the
Cox Model regularized by an elastic net penalty. It is used for underdetermined
(or nearly underdetermined systems) and chooses a small number of covariates to
include in the model. Because the Cox Model is rarely used for actual prediction,
we will rather focus on finding and interpretating an appropriate model. We
give a simple example of how to format data and run the Cox Model in glmnet
with cross validation.

2 Example

We first load our data and set up the response. In this case x must be an n by p
matrix of covariate values — each row corresponds to a patient and each column
a covariate. y is an n length vector of failure/censoring times, and status is an n
length vector with each entry, a 1 or a 0, indicating whether the corresponding
entry in y is indicative of a failure time or right censoring time (1 for failure, 0
for censoring)

> library("glmnet")

Loaded glmnet 1.5.1

> library("survival")

> load("VignetteExample.rdata")

> attach(patient.data)

We then call our functions to fit with the lasso penalty (α = 1), and cross
validate. We set maxit = 1000 (increasing the maximum number of iterations
to 1000) because our data is relatively high dimensional, so more iterations
are needed for convergence. In practice, the function will spit out an error if
convergence isn’t reached by the maximum number of iterations.

> cv.fit <- cv.glmnet(x, Surv(time, status), family = "cox", maxit = 1000)

> fit <- glmnet(x, Surv(time, status), family = "cox", maxit = 1000)

1

The Surv function packages the survival data into the form expected by
glmnet. Once fit, we can view the optimal λ value and a cross validated error
plot to help evaluate our model.

> plot(cv.fit)

−5 −4 −3 −2

20
40

60
80

10
0

12
0

log(Lambda)

P
ar

tia
l L

ik
el

ih
oo

d
D

ev
ia

nc
e

●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

93 95 91 89 88 86 78 71 56 38 22 7 2 0

> cv.fit$lambda.min

[1] 0.2107387

The left vertical line in our plot shows us where the CV-error curve hits its
minimum. The right vertical line shows us the most regularized model with
CV-error within 1 standard deviation of the minimum. In this case, we see that
the minimum was achieved by a fairly regularized model, however the right line
indicates that the null model (no coefficients included) is within 1 sd of the
minimum. This might lead us to believe that in actuality the covariates are not
explaining any variability. For the time being we will concern ourselves with
the minimum CV-error model. We can check which covariates our model chose
to be active, and see the coefficients of those covariates.

> Coefficients <- coef(fit, s = cv.fit$lambda.min)

> Active.Index <- which(Coefficients != 0)

> Active.Coefficients <- Coefficients[Active.Index]

coef(fit, s = cv.fit$lambda.min) returns the p length coefficient vector
of the solution corresponding to λ =cv.fit$lambda.min.

> Active.Index

[1] 80 394

> Active.Coefficients

[1] 0.4013209 0.1139638

We see that our optimal model chose 2 active covariates (X80 and X394)
each with a small positive effect on hazard.

2

