
WORKING WITH UNKNOWN VALUES

Working with Unknown Values
The gdata package

by Gregor Gorjanc

This vignette has been published as Gorjanc (2007).

Introduction

Unknown or missing values can be represented in
various ways. For example SAS uses . (dot), while
R uses NA, which we can read as Not Available.
When we import data into R, say via read.table
or its derivatives, conversion of blank fields to NA
(according to read.table help) is done for logical,
integer, numeric and complex classes. Addition-
ally, the na.strings argument can be used to spec-
ify values that should also be converted to NA. In-
versely, there is an argument na in write.table and
its derivatives to define value that will replace NA
in exported data. There are also other ways to im-
port/export data into R as described in the R Data
Import/Export manual (R Development Core Team,
2006). However, all approaches lack the possibility
to define unknown value(s) for some particular col-
umn. It is possible that an unknown value in one
column is a valid value in another column. For ex-
ample, I have seen many datasets where values such
as 0, -9, 999 and specific dates are used as column
specific unknown values.

This note describes a set of functions in package
gdata1 (Warnes , 2006): isUnknown, unknownToNA and
NAToUnknown, which can help with testing for un-
known values and conversions between unknown
values and NA. All three functions are generic (S3)
and were tested (at the time of writing) to work
with: integer, numeric, character, factor, Date,
POSIXct, POSIXlt, list, data.frame and matrix
classes.

Description with examples

The following examples show simple usage of these
functions on numeric and factor classes, where
value 0 (beside NA) should be treated as an unknown
value:

> library("gdata")

> xNum <- c(0, 6, 0, 7, 8, 9, NA)

> isUnknown(x=xNum)

[1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE

The default unknown value in isUnknown is NA,
which means that output is the same as is.na — at

least for atomic classes. However, we can pass the
argument unknown to define which values should be
treated as unknown:

> isUnknown(x=xNum, unknown=0)

[1] TRUE FALSE TRUE FALSE FALSE FALSE FALSE

This skipped NA, but we can get the expected an-
swer after appropriately adding NA into the argu-
ment unknown:

> isUnknown(x=xNum, unknown=c(0, NA))

[1] TRUE FALSE TRUE FALSE FALSE FALSE TRUE

Now, we can change all unknown values to NA
with unknownToNA. There is clearly no need to add
NA here. This step is very handy after importing
data from an external source, where many differ-
ent unknown values might be used. Argument
warning=TRUE can be used, if there is a need to be
warned about “original” NAs:

> (xNum2 <- unknownToNA(x=xNum, unknown=0))

[1] NA 6 NA 7 8 9 NA

Prior to export from R, we might want to change
unknown values (NA in R) to some other value. Func-
tion NAToUnknown can be used for this:

> NAToUnknown(x=xNum2, unknown=999)

[1] 999 6 999 7 8 9 999

Converting NA to a value that already exists in x
issues an error, but force=TRUE can be used to over-
come this if needed. But be warned that there is no
way back from this step:

> NAToUnknown(x=xNum2, unknown=7, force=TRUE)

[1] 7 6 7 7 8 9 7

Examples below show all peculiarities with class
factor. unknownToNA removes unknown value from
levels and inversely NAToUnknown adds it with a
warning. Additionally, "NA" is properly distin-
guished from NA. It can also be seen that the
argument unknown in functions isUnknown and
unknownToNA need not match the class of x (other-
wise factor should be used) as the test is internally
done with %in%, which nicely resolves coercing is-
sues.

> (xFac <- factor(c(0, "BA", "RA", "BA", NA, "NA")))

[1] 0 BA RA BA <NA> NA
Levels: 0 BA NA RA

1 package version 2.3.1

1

DESCRIPTION WITH EXAMPLES WORKING WITH UNKNOWN VALUES

> isUnknown(x=xFac)

[1] FALSE FALSE FALSE FALSE TRUE FALSE

> isUnknown(x=xFac, unknown=0)

[1] TRUE FALSE FALSE FALSE FALSE FALSE

> isUnknown(x=xFac, unknown=c(0, NA))

[1] TRUE FALSE FALSE FALSE TRUE FALSE

> isUnknown(x=xFac, unknown=c(0, "NA"))

[1] TRUE FALSE FALSE FALSE FALSE TRUE

> isUnknown(x=xFac, unknown=c(0, "NA", NA))

[1] TRUE FALSE FALSE FALSE TRUE TRUE

> (xFac <- unknownToNA(x=xFac, unknown=0))

[1] <NA> BA RA BA <NA> NA
Levels: BA NA RA

> (xFac <- NAToUnknown(x=xFac, unknown=0))

[1] 0 BA RA BA 0 NA
Levels: 0 BA NA RA

These two examples with classes numeric and
factor are fairly simple and we could get the same
results with one or two lines of R code. The real ben-
efit of the set of functions presented here is in list
and data.frame methods, where data.frame meth-
ods are merely wrappers for list methods.

We need additional flexibility for list/data.frame
methods, due to possibly having multiple unknown
values that can be different among list components
or data.frame columns. For these two methods, the
argument unknown can be either a vector or list,
both possibly named. Of course, greater flexibil-
ity (defining multiple unknown values per compo-
nent/column) can be achieved with a list.

When a vector/list object passed to the
argument unknown is not named, the first
value/component of a vector/listmatches the first
component/column of a list/data.frame. This
can be quite error prone, especially with vectors.
Therefore, I encourage the use of a list. In case
vector/list passed to argument unknown is named,
names are matched to names of list or data.frame.
If lengths of unknown and list or data.frame do not
match, recycling occurs.

The example below illustrates the application of
the described functions to a list which is composed
of previously defined and modified numeric (xNum)
and factor (xFac) classes. First, function isUnknown
is used with 0 as an unknown value. Note that we
get FALSE for NAs as has been the case in the first ex-
ample.

> (xList <- list(a=xNum, b=xFac))

$a
[1] 0 6 0 7 8 9 NA
$b
[1] 0 BA RA BA 0 NA
Levels: 0 BA NA RA

> isUnknown(x=xList, unknown=0)

$a
[1] TRUE FALSE TRUE FALSE FALSE FALSE FALSE
$b
[1] TRUE FALSE FALSE FALSE TRUE FALSE

We need to add NA as an unknown value. How-
ever, we do not get the expected result this way!

> isUnknown(x=xList, unknown=c(0, NA))

$a
[1] TRUE FALSE TRUE FALSE FALSE FALSE FALSE
$b
[1] FALSE FALSE FALSE FALSE FALSE FALSE

This is due to matching of values in the argument
unknown and components in a list; i.e., 0 is used for
component a and NA for component b. Therefore, it
is less error prone and more flexible to pass a list
(preferably a named list) to the argument unknown,
as shown below.

> (xList1 <- unknownToNA(x=xList,

+ unknown=list(b=c(0, "NA"),

+ a=0)))

$a
[1] NA 6 NA 7 8 9 NA
$b
[1] <NA> BA RA BA <NA> <NA>
Levels: BA RA

Changing NAs to some other value (only one per
component/column) can be accomplished as fol-
lows:

> NAToUnknown(x=xList1,

+ unknown=list(b="no", a=0))

$a
[1] 0 6 0 7 8 9 0
$b
[1] no BA RA BA no no
Levels: BA no RA

A named component .default of a list passed
to argument unknown has a special meaning as it will
match a component/column with that name and any
other not defined in unknown. As such it is very use-
ful if the number of components/columns with the
same unknown value(s) is large. Consider a wide
data.frame named df. Now .default can be used
to define unknown value for several columns:

2

SUMMARY BIBLIOGRAPHY

> tmp <- list(.default=0,

+ col1=999,

+ col2="unknown")

> (df2 <- unknownToNA(x=df,

+ unknown=tmp))

col1 col2 col3 col4
1 0 a NA NA
2 1 b 1 1
3 NA c 2 2
4 2 <NA> 3 2

If there is a need to work only on some com-
ponents/columns you can of course “skip” columns
with standard R mechanisms, i.e., by subsetting list
or data.frame objects:

> df2 <- df

> cols <- c("col1", "col2")

> tmp <- list(col1=999,

+ col2="unknown")

> df2[, cols] <- unknownToNA(x=df[, cols],

+ unknown=tmp)

> df2

col1 col2 col3 col4
1 0 a 0 0
2 1 b 1 1
3 NA c 2 2
4 2 <NA> 3 2

Summary

Functions isUnknown, unknownToNA and NAToUnknown
provide a useful interface to work with various rep-
resentations of unknown/missing values. Their use
is meant primarily for shaping the data after import-
ing to or before exporting from R. I welcome any
comments or suggestions.

Bibliography

G. Gorjanc. Working with unknown values: the
gdata package. R News, 7(1):24–26, 2007. URL
http://CRAN.R-project.org/doc/Rnews/Rnews_
2007-1.pdf.

R Development Core Team. R Data Import/Export,
2006. URL http://cran.r-project.org/
manuals.html. ISBN 3-900051-10-0.

G. R. Warnes. gdata: Various R program-
ming tools for data manipulation, 2006. URL
http://cran.r-project.org/src/contrib/
Descriptions/gdata.html. R package version
2.3.1. Includes R source code and/or documenta-
tion contributed by Ben Bolker, Gregor Gorjanc
and Thomas Lumley.

Gregor Gorjanc
University of Ljubljana, Slovenia
gregor.gorjanc@bfro.uni-lj.si

3

http://CRAN.R-project.org/doc/Rnews/Rnews_2007-1.pdf
http://CRAN.R-project.org/doc/Rnews/Rnews_2007-1.pdf
http://cran.r-project.org/manuals.html
http://cran.r-project.org/manuals.html
http://cran.r-project.org/src/contrib/Descriptions/gdata.html
http://cran.r-project.org/src/contrib/Descriptions/gdata.html
mailto:gregor.gorjanc@bfro.uni-lj.si

	Working with Unknown Values
	Introduction
	Description with examples
	Summary

