
formatR: Format R Code Automatically

Yihui Xie∗

February 21, 2011

The package formatR (Xie, 2011) was designed to help users tidy (reformat) their source code.
Features include:

1. automatically add spaces and indent where appropriate;

2. preserve comments while tidying the code;

3. can use a GUI to format the code too;

1 The command line: tidy.source()

The main function is tidy.source(), which can take a file as input, parse it and write the formatted code
to the console or a file.

> library(formatR)

> args(tidy.source)

function (source = "clipboard", keep.comment, keep.blank.line,

keep.space, output = TRUE, text = NULL, width.cutoff = 0.75 *

getOption("width"), ...)

NULL

There are three options which can affect the final output: keep.comment, keep.blank.line and
keep.space. They are explained in the help page; see ?tidy.source. For example, if we do not want
to keep the blank lines in the code, we can first specify the option like this:

> options(keep.blank.line = FALSE)

The option width will affect the width of the output, e.g. we can specify a narrow width:

> options(width = 85)

Here are some examples taken from the help page:

> library(formatR)

> ## use the ’text’ argument

> src = c(" # a single line of comments is preserved", "1+1", "if(TRUE){",

+ "x=1 # comments begin with at least 2 spaces!", "}else{", "x=2;print(’Oh no...

ask the right bracket to go away!’)}",

+ "1*3 # this comment will be dropped!", "2+2+2 # ’short comments’",

+ " ", "lm(y~x1+x2) ### only ’single quotes’ are allowed in comments",

+ "\t\t## tabs/spaces before comments: use keep.space=TRUE to keep them",

+ "’a character string with \t in it’", "# note tabs will be converted to spaces when

∗Department of Statistics, Iowa State University. Email: xie@yihui.name

1

mailto:xie@yihui.name

keep.space=TRUE",

+ "1+1 ## comments after a long line",

+ paste("## here is a", paste(rep("long", 20), collapse = " "),

+ "comment"))

> ## source code

> cat(src, sep = "\n")

a single line of comments is preserved

1+1

if(TRUE){

x=1 # comments begin with at least 2 spaces!

}else{

x=2;print('Oh no... ask the right bracket to go away!')}
1*3 # this comment will be dropped!

2+2+2 # 'short comments'

lm(y~x1+x2) ### only 'single quotes' are allowed in comments

tabs/spaces before comments: use keep.space=TRUE to keep them

'a character string with in it'
note tabs will be converted to spaces when keep.space=TRUE

1+1 ## comments after a long line

here is a long comment

> ## the formatted version

> tidy.source(text = src)

a single line of comments is preserved

1 + 1

if (TRUE) {

x = 1 # comments begin with at least 2 spaces!

} else {

x = 2

print("Oh no... ask the right bracket to go away!")

}

1 * 3

2 + 2 + 2 # 'short comments'
lm(y ~ x1 + x2) ### only 'single quotes' are allowed in comments

tabs/spaces before comments: use keep.space=TRUE to keep

them

"a character string with \t in it"

note tabs will be converted to spaces when keep.space=TRUE

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 ## comments after a long line

here is a long long long long long long long long long long

long long long long long long long long long long comment

> ## other options: preserve leading spaces

> tidy.source(text = src, keep.space = TRUE)

a single line of comments is preserved

1 + 1

if (TRUE) {

x = 1 # comments begin with at least 2 spaces!

} else {

2

x = 2

print("Oh no... ask the right bracket to go away!")

}

1 * 3

2 + 2 + 2 # 'short comments'
lm(y ~ x1 + x2) ### only 'single quotes' are allowed in comments

tabs/spaces before comments: use keep.space=TRUE to keep them

"a character string with in it"

note tabs will be converted to spaces when keep.space=TRUE

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 ## comments after a long line

here is a long comment

> ## preserve blank lines: note the 11th line!

> tidy.source(text = src, keep.blank.line = TRUE)

a single line of comments is preserved

1 + 1

if (TRUE) {

x = 1 # comments begin with at least 2 spaces!

} else {

x = 2

print("Oh no... ask the right bracket to go away!")

}

1 * 3

2 + 2 + 2 # 'short comments'

lm(y ~ x1 + x2) ### only 'single quotes' are allowed in comments

tabs/spaces before comments: use keep.space=TRUE to keep

them

"a character string with \t in it"

note tabs will be converted to spaces when keep.space=TRUE

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 ## comments after a long line

here is a long long long long long long long long long long

long long long long long long long long long long comment

> ## discard comments!

> tidy.source(text = src, keep.comment = FALSE)

1 + 1

if (TRUE) {

x = 1

} else {

x = 2

print("Oh no... ask the right bracket to go away!")

}

1 * 3

2 + 2 + 2

lm(y ~ x1 + x2)

"a character string with \t in it"

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

3

2 The GUI: formatR()

We can either use the command line version (tidy.source()) or the GUI version to format the code:
formatR() is a function which depends the gWidgets package to create a graphical interface (see Figure
1).

3 Applications

This package has been used in a few other R packages. For example, Rd2roxygen (Wickham and Xie,
2011) uses formatR to reformat the code in the usage and examples sections in Rd files, since the code
generated by roxygen is not well-formatted; pgfSweave (Bracken and Sharpsteen, 2010) can tidy the
Sweave code chunks when the Sweave option tidy is TRUE (just like the code in this vignette).

4 Further notes

The tricks used in this packages are very dirty. There might be dangers in using the functions in
formatR. Please read the documentation carefully to know exactly what kinds of comments could be
preserved.

A known issue is that when we write comments in a string (i.e. the comments are not real com-
ments but a part of the string) which is broken into several lines, formatR might not work correctly.
For example, the code below will make formatR fail:

mod = "1+1

comments here can bring troubles

2+2"

We need to write like this:

mod = paste("1+1", "## comments here can bring troubles", "2+2",

sep = "\n")

About this vignette

You might be curious about how this vignette was generated, because it looks different from other
Sweave-based vignettes. The answer is pgfSweave (Bracken and Sharpsteen, 2010). The real vignette
is in LYX, which can be found here:

system.file("doc", "formatR.lyx", package = "formatR")

Read this blog entry for details and how to reproduce the vignette: http://yihui.name/en/?p=
602.

References

Bracken C, Sharpsteen C (2010). pgfSweave: Quality speedy graphics compilation with Sweave. R package
version 1.1.3, URL http://CRAN.R-project.org/package=pgfSweave.

Wickham H, Xie Y (2011). Rd2roxygen: Convert Rd to roxygen documentation. R package version 0.1-8,
URL https://github.com/yihui/Rd2roxygen.

Xie Y (2011). formatR: Format R Code Automatically. R package version 0.2-0, URL http://CRAN.

R-project.org/package=formatR.

4

http://yihui.name/en/?p=602
http://yihui.name/en/?p=602
http://CRAN.R-project.org/package=pgfSweave
https://github.com/yihui/Rd2roxygen
http://CRAN.R-project.org/package=formatR
http://CRAN.R-project.org/package=formatR

Figure 1: The graphical interface to format R code. Top: the original code; bottom: the formatted code
after clicking the Convert button.

5

	1 The command line: tidy.source()
	2 The GUI: formatR()
	3 Applications
	4 Further notes

