
Package ‘dplyr’
June 28, 2019

Type Package

Title A Grammar of Data Manipulation

Version 0.8.2

Description A fast, consistent tool for working with data frame like objects,
both in memory and out of memory.

License MIT + file LICENSE

URL http://dplyr.tidyverse.org, https://github.com/tidyverse/dplyr

BugReports https://github.com/tidyverse/dplyr/issues

Depends R (¿= 3.2.0)

Imports assertthat (¿= 0.2.0),
glue (¿= 1.3.0),
magrittr (¿= 1.5),
methods,
pkgconfig,
R6,
Rcpp (¿= 1.0.1),
rlang (¿= 0.3.1),
tibble (¿= 2.0.0),
tidyselect (¿= 0.2.5),
utils

Suggests bit64,
callr,
covr,
crayon (¿= 1.3.4),
DBI,
dbplyr,
dtplyr,
ggplot2,
hms,
knitr,
Lahman,
lubridate,
MASS,
mgcv,
microbenchmark,
nycflights13,
rmarkdown,

1

http://dplyr.tidyverse.org
https://github.com/tidyverse/dplyr
https://github.com/tidyverse/dplyr/issues

2 R topics documented:

RMySQL,
RPostgreSQL,
RSQLite,
testthat,
withr,
broom,
purrr,
readr

LinkingTo BH,
plogr (¿= 0.2.0),
Rcpp (¿= 1.0.1)

VignetteBuilder knitr

Encoding UTF-8

LazyData yes

Roxygen list(markdown = TRUE, roclets = c(``rd'', ``namespace'', ``collate''))

RoxygenNote 6.1.1

R topics documented:

dplyr-package . 3
all equal . 5
all vars . 6
arrange . 6
arrange all . 7
as.table.tbl cube . 8
as.tbl cube . 9
auto copy . 10
band members . 10
between . 11
bind . 11
case when . 13
coalesce . 16
combine . 17
compute . 18
copy to . 19
cumall . 19
desc . 21
distinct . 21
distinct all . 22
do . 23
dr dplyr . 25
explain . 25
filter . 26
filter all . 29
funs . 30
groups . 31
group by . 32
group by all . 33
group by drop default . 35
group cols . 35

dplyr-package 3

group keys . 36
group map . 38
group rows . 40
group trim . 41
hybrid call . 41
ident . 42
if else . 42
join . 43
lead-lag . 45
mutate . 46
mutate all . 49
n . 51
nasa . 52
na if . 53
near . 54
nest join.data.frame . 54
nth . 56
n distinct . 57
order by . 57
pull . 58
ranking . 59
recode . 60
rowwise . 62
sample . 63
scoped . 64
select . 65
select all . 68
select vars . 69
setops . 70
slice . 71
sql . 72
src dbi . 72
starwars . 74
storms . 75
summarise . 76
summarise all . 78
tally . 80
tbl . 82
tbl cube . 82
top n . 84
vars . 85

Index 87

dplyr-package dplyr: a grammar of data manipulation

Description

dplyr provides a flexible grammar of data manipulation. It’s the next iteration of plyr,
focused on tools for working with data frames (hence the d in the name).

4 dplyr-package

Details

It has three main goals:

� Identify the most important data manipulation verbs and make them easy to use from
R.

� Provide blazing fast performance for in-memory data by writing key pieces in C++
(using Rcpp)

� Use the same interface to work with data no matter where it’s stored, whether in a
data frame, a data table or database.

To learn more about dplyr, start with the vignettes: browseVignettes(package = "dplyr")

Package options

dplyr.show progress Should lengthy operations such as do() show a progress bar? Default:
TRUE

Package configurations

These can be set on a package-by-package basis, or for the global environment. See
pkgconfig::set config() for usage.

dplyr::na matches Should NA values be matched in data frame joins by default? Default:
"na" (for compatibility with dplyr v0.5.0 and earlier, subject to change), alternative
value: "never" (the default for database backends, see join.tbl df()).

Author(s)

Maintainer: Hadley Wickham <hadley@rstudio.com> (0000-0003-4757-117X)

Authors:

� Romain François (0000-0002-2444-4226)

� Lionel Henry

� Kirill Müller (0000-0002-1416-3412)

Other contributors:

� RStudio [copyright holder, funder]

See Also

Useful links:

� http://dplyr.tidyverse.org

� https://github.com/tidyverse/dplyr

� Report bugs at https://github.com/tidyverse/dplyr/issues

http://dplyr.tidyverse.org
https://github.com/tidyverse/dplyr
https://github.com/tidyverse/dplyr/issues

all equal 5

all equal Flexible equality comparison for data frames

Description

You can use all equal() with any data frame, and dplyr also provides tbl df methods for
all.equal().

Usage

all_equal(target, current, ignore_col_order = TRUE,
ignore_row_order = TRUE, convert = FALSE, ...)

S3 method for class 'tbl_df'
all.equal(target, current, ignore_col_order = TRUE,
ignore_row_order = TRUE, convert = FALSE, ...)

Arguments

target, current

Two data frames to compare.

ignore col order

Should order of columns be ignored?

ignore row order

Should order of rows be ignored?

convert Should similar classes be converted? Currently this will convert factor to
character and integer to double.

... Ignored. Needed for compatibility with all.equal().

Value

TRUE if equal, otherwise a character vector describing the reasons why they’re not equal.
Use isTRUE() if using the result in an if expression.

Examples

scramble <- function(x) x[sample(nrow(x)), sample(ncol(x))]

By default, ordering of rows and columns ignored
all_equal(mtcars, scramble(mtcars))

But those can be overriden if desired
all_equal(mtcars, scramble(mtcars), ignore_col_order = FALSE)
all_equal(mtcars, scramble(mtcars), ignore_row_order = FALSE)

By default all_equal is sensitive to variable differences
df1 <- data.frame(x = "a")
df2 <- data.frame(x = factor("a"))
all_equal(df1, df2)
But you can request dplyr convert similar types
all_equal(df1, df2, convert = TRUE)

6 arrange

all vars Apply predicate to all variables

Description

These quoting functions signal to scoped filtering verbs (e.g. filter if() or filter all())
that a predicate expression should be applied to all relevant variables. The all vars()
variant takes the intersection of the predicate expressions with & while the any vars()
variant takes the union with |.

Usage

all_vars(expr)

any_vars(expr)

Arguments

expr A predicate expression. This variable supports unquoting and will be
evaluated in the context of the data frame. It should return a logical
vector.

This argument is automatically quoted and later evaluated in the context
of the data frame. It supports unquoting. See vignette("programming")
for an introduction to these concepts.

See Also

vars() for other quoting functions that you can use with scoped verbs.

arrange Arrange rows by variables

Description

Order tbl rows by an expression involving its variables.

Usage

arrange(.data, ...)

S3 method for class 'grouped_df'
arrange(.data, ..., .by_group = FALSE)

Arguments

.data A tbl. All main verbs are S3 generics and provide methods for tbl df(),
dtplyr::tbl dt() and dbplyr::tbl dbi().

... Comma separated list of unquoted variable names, or expressions involv-
ing variable names. Use desc() to sort a variable in descending order.

.by group If TRUE, will sort first by grouping variable. Applies to grouped data
frames only.

arrange all 7

Value

An object of the same class as .data.

Locales

The sort order for character vectors will depend on the collating sequence of the locale in
use: see locales().

Missing values

Unlike base sorting with sort(), NA are:

� always sorted to the end for local data, even when wrapped with desc().

� treated differently for remote data, depending on the backend.

Tidy data

When applied to a data frame, row names are silently dropped. To preserve, convert to an
explicit variable with tibble::rownames to column().

See Also

Other single table verbs: filter, mutate, select, slice, summarise

Examples

arrange(mtcars, cyl, disp)
arrange(mtcars, desc(disp))

grouped arrange ignores groups
by_cyl <- mtcars %>% group_by(cyl)
by_cyl %>% arrange(desc(wt))
Unless you specifically ask:
by_cyl %>% arrange(desc(wt), .by_group = TRUE)

arrange all Arrange rows by a selection of variables

Description

These scoped variants of arrange() sort a data frame by a selection of variables. Like
arrange(), you can modify the variables before ordering with the .funs argument.

Usage

arrange_all(.tbl, .funs = list(), ..., .by_group = FALSE)

arrange_at(.tbl, .vars, .funs = list(), ..., .by_group = FALSE)

arrange_if(.tbl, .predicate, .funs = list(), ..., .by_group = FALSE)

8 as.table.tbl cube

Arguments

.tbl A tbl object.

.funs A function fun, a quosure style lambda ˜ fun(.) or a list of either form.

... Additional arguments for the function calls in .funs. These are evaluated
only once, with tidy dots support.

.by group If TRUE, will sort first by grouping variable. Applies to grouped data
frames only.

.vars A list of columns generated by vars(), a character vector of column
names, a numeric vector of column positions, or NULL.

.predicate A predicate function to be applied to the columns or a logical vector.
The variables for which .predicate is or returns TRUE are selected. This
argument is passed to rlang::as function() and thus supports quosure-
style lambda functions and strings representing function names.

Grouping variables

The grouping variables that are part of the selection participate in the sorting of the data
frame.

Examples

df <- as_tibble(mtcars)
df
arrange_all(df)

You can supply a function that will be applied before taking the
ordering of the variables. The variables of the sorted tibble
keep their original values.
arrange_all(df, desc)
arrange_all(df, list(˜desc(.)))

as.table.tbl cube Coerce a tbl cube to other data structures

Description

Supports conversion to tables, data frames, tibbles.

For a cube, the data frame returned by tibble::as tibble() resulting data frame contains
the dimensions as character values (and not as factors).

Usage

S3 method for class 'tbl_cube'
as.table(x, ..., measure = 1L)

S3 method for class 'tbl_cube'
as.data.frame(x, ...)

S3 method for class 'tbl_cube'
as_tibble(x, ...)

as.tbl cube 9

Arguments

x a tbl cube

... Passed on to individual methods; otherwise ignored.

measure A measure name or index, default: the first measure

as.tbl cube Coerce an existing data structure into a tbl cube

Description

Coerce an existing data structure into a tbl cube

Usage

as.tbl_cube(x, ...)

S3 method for class 'array'
as.tbl_cube(x, dim_names = names(dimnames(x)),
met_name = deparse(substitute(x)), ...)

S3 method for class 'table'
as.tbl_cube(x, dim_names = names(dimnames(x)),
met_name = "Freq", ...)

S3 method for class 'matrix'
as.tbl_cube(x, dim_names = names(dimnames(x)),
met_name = deparse(substitute(x)), ...)

S3 method for class 'data.frame'
as.tbl_cube(x, dim_names = NULL,
met_name = guess_met(x), ...)

Arguments

x an object to convert. Built in methods will convert arrays, tables and
data frames.

... Passed on to individual methods; otherwise ignored.

dim names names of the dimensions. Defaults to the names of

met name a string to use as the name for the measure the dimnames().

10 band members

auto copy Copy tables to same source, if necessary

Description

Copy tables to same source, if necessary

Usage

auto_copy(x, y, copy = FALSE, ...)

Arguments

x, y y will be copied to x, if necessary.

copy If x and y are not from the same data source, and copy is TRUE, then y
will be copied into the same src as x. This allows you to join tables across
srcs, but it is a potentially expensive operation so you must opt into it.

... Other arguments passed on to methods.

band members Band membership

Description

These data sets describe band members of the Beatles and Rolling Stones. They are toy
data sets that can be displayed in their entirety on a slide (e.g. to demonstrate a join).

Usage

band_members

band_instruments

band_instruments2

Format

Each is a tibble with two variables and three observations

Details

band instruments and band instruments2 contain the same data but use different column
names for the first column of the data set. band instruments uses name, which matches the
name of the key column of band members; band instruments2 uses artist, which does not.

Examples

band_members
band_instruments
band_instruments2

between 11

between Do values in a numeric vector fall in specified range?

Description

This is a shortcut for x >= left & x <= right, implemented efficiently in C++ for local
values, and translated to the appropriate SQL for remote tables.

Usage

between(x, left, right)

Arguments

x A numeric vector of values

left, right Boundary values

Examples

between(1:12, 7, 9)

x <- rnorm(1e2)
x[between(x, -1, 1)]

bind Efficiently bind multiple data frames by row and column

Description

This is an efficient implementation of the common pattern of do.call(rbind,dfs) or
do.call(cbind,dfs) for binding many data frames into one.

Usage

bind_rows(..., .id = NULL)

bind_cols(...)

Arguments

... Data frames to combine.

Each argument can either be a data frame, a list that could be a data
frame, or a list of data frames.

When row-binding, columns are matched by name, and any missing columns
will be filled with NA.

When column-binding, rows are matched by position, so all data frames
must have the same number of rows. To match by value, not position,
see join.

12 bind

.id Data frame identifier.

When .id is supplied, a new column of identifiers is created to link each
row to its original data frame. The labels are taken from the named
arguments to bind rows(). When a list of data frames is supplied, the
labels are taken from the names of the list. If no names are found a
numeric sequence is used instead.

Details

The output of bind rows() will contain a column if that column appears in any of the
inputs.

Value

bind rows() and bind cols() return the same type as the first input, either a data frame,
tbl df, or grouped df.

Deprecated functions

rbind list() and rbind all() have been deprecated. Instead use bind rows().

Examples

one <- mtcars[1:4,]
two <- mtcars[11:14,]

You can supply data frames as arguments:
bind_rows(one, two)

The contents of lists are spliced automatically:
bind_rows(list(one, two))
bind_rows(split(mtcars, mtcars$cyl))
bind_rows(list(one, two), list(two, one))

In addition to data frames, you can supply vectors. In the rows
direction, the vectors represent rows and should have inner
names:
bind_rows(

c(a = 1, b = 2),
c(a = 3, b = 4)

)

You can mix vectors and data frames:
bind_rows(

c(a = 1, b = 2),
tibble(a = 3:4, b = 5:6),
c(a = 7, b = 8)

)

Note that for historical reasons, lists containing vectors are
always treated as data frames. Thus their vectors are treated as
columns rather than rows, and their inner names are ignored:
ll <- list(

a = c(A = 1, B = 2),

case when 13

b = c(A = 3, B = 4)
)
bind_rows(ll)

You can circumvent that behaviour with explicit splicing:
bind_rows(!!!ll)

When you supply a column name with the `.id` argument, a new
column is created to link each row to its original data frame
bind_rows(list(one, two), .id = "id")
bind_rows(list(a = one, b = two), .id = "id")
bind_rows("group 1" = one, "group 2" = two, .id = "groups")

Columns don't need to match when row-binding
bind_rows(data.frame(x = 1:3), data.frame(y = 1:4))
Not run:
Rows do need to match when column-binding
bind_cols(data.frame(x = 1), data.frame(y = 1:2))

End(Not run)

bind_cols(one, two)
bind_cols(list(one, two))

case when A general vectorised if

Description

This function allows you to vectorise multiple if else() statements. It is an R equivalent
of the SQL CASE WHEN statement. If no cases match, NA is returned.

Usage

case_when(...)

Arguments

... A sequence of two-sided formulas. The left hand side (LHS) determines
which values match this case. The right hand side (RHS) provides the
replacement value.

The LHS must evaluate to a logical vector. The RHS does not need to be
logical, but all RHSs must evaluate to the same type of vector.

Both LHS and RHS may have the same length of either 1 or n. The value
of n must be consistent across all cases. The case of n == 0 is treated as
a variant of n != 1.

NULL inputs are ignored.

These dots support tidy dots features. In particular, if your patterns are
stored in a list, you can splice that in with !!!.

14 case when

Value

A vector of length 1 or n, matching the length of the logical input or output vectors, with
the type (and attributes) of the first RHS. Inconsistent lengths or types will generate an
error.

Examples

x <- 1:50
case_when(

x %% 35 == 0 ˜ "fizz buzz",
x %% 5 == 0 ˜ "fizz",
x %% 7 == 0 ˜ "buzz",
TRUE ˜ as.character(x)

)

Like an if statement, the arguments are evaluated in order, so you must
proceed from the most specific to the most general. This won't work:
case_when(

TRUE ˜ as.character(x),
x %% 5 == 0 ˜ "fizz",
x %% 7 == 0 ˜ "buzz",
x %% 35 == 0 ˜ "fizz buzz"

)

If none of the cases match, NA is used:
case_when(

x %% 5 == 0 ˜ "fizz",
x %% 7 == 0 ˜ "buzz",
x %% 35 == 0 ˜ "fizz buzz"

)

Note that NA values in the vector x do not get special treatment. If you want
to explicitly handle NA values you can use the `is.na` function:
x[2:4] <- NA_real_
case_when(

x %% 35 == 0 ˜ "fizz buzz",
x %% 5 == 0 ˜ "fizz",
x %% 7 == 0 ˜ "buzz",
is.na(x) ˜ "nope",
TRUE ˜ as.character(x)

)

All RHS values need to be of the same type. Inconsistent types will throw an error.
This applies also to NA values used in RHS: NA is logical, use
typed values like NA_real_, NA_complex, NA_character_, NA_integer_ as appropriate.
case_when(

x %% 35 == 0 ˜ NA_character_,
x %% 5 == 0 ˜ "fizz",
x %% 7 == 0 ˜ "buzz",
TRUE ˜ as.character(x)

)
case_when(

x %% 35 == 0 ˜ 35,
x %% 5 == 0 ˜ 5,
x %% 7 == 0 ˜ 7,
TRUE ˜ NA_real_

case when 15

)

case_when() evaluates all RHS expressions, and then constructs its
result by extracting the selected (via the LHS expressions) parts.
In particular NaN are produced in this case:
y <- seq(-2, 2, by = .5)
case_when(

y >= 0 ˜ sqrt(y),
TRUE ˜ y

)

This throws an error as NA is logical not numeric
Not run:
case_when(

x %% 35 == 0 ˜ 35,
x %% 5 == 0 ˜ 5,
x %% 7 == 0 ˜ 7,
TRUE ˜ NA

)

End(Not run)

case_when is particularly useful inside mutate when you want to
create a new variable that relies on a complex combination of existing
variables
starwars %>%

select(name:mass, gender, species) %>%
mutate(
type = case_when(

height > 200 | mass > 200 ˜ "large",
species == "Droid" ˜ "robot",
TRUE ˜ "other"

)
)

`case_when()` is not a tidy eval function. If you'd like to reuse
the same patterns, extract the `case_when()` call in a normal
function:
case_character_type <- function(height, mass, species) {

case_when(
height > 200 | mass > 200 ˜ "large",
species == "Droid" ˜ "robot",
TRUE ˜ "other"

)
}

case_character_type(150, 250, "Droid")
case_character_type(150, 150, "Droid")

Such functions can be used inside `mutate()` as well:
starwars %>%

mutate(type = case_character_type(height, mass, species)) %>%
pull(type)

`case_when()` ignores `NULL` inputs. This is useful when you'd
like to use a pattern only under certain conditions. Here we'll

16 coalesce

take advantage of the fact that `if` returns `NULL` when there is
no `else` clause:
case_character_type <- function(height, mass, species, robots = TRUE) {

case_when(
height > 200 | mass > 200 ˜ "large",
if (robots) species == "Droid" ˜ "robot",
TRUE ˜ "other"

)
}

starwars %>%
mutate(type = case_character_type(height, mass, species, robots = FALSE)) %>%
pull(type)

coalesce Find first non-missing element

Description

Given a set of vectors, coalesce() finds the first non-missing value at each position. This
is inspired by the SQL COALESCE function which does the same thing for NULLs.

Usage

coalesce(...)

Arguments

... Vectors. All inputs should either be length 1, or the same length as the
first argument.

These dots support tidy dots features.

Value

A vector the same length as the first ... argument with missing values replaced by the first
non-missing value.

See Also

na if() to replace specified values with a NA. tidyr::replace na() to replace NA with a
value

Examples

Use a single value to replace all missing values
x <- sample(c(1:5, NA, NA, NA))
coalesce(x, 0L)

Or match together a complete vector from missing pieces
y <- c(1, 2, NA, NA, 5)
z <- c(NA, NA, 3, 4, 5)
coalesce(y, z)

Supply lists by splicing them into dots:

combine 17

vecs <- list(
c(1, 2, NA, NA, 5),
c(NA, NA, 3, 4, 5)

)
coalesce(!!!vecs)

combine Combine vectors

Description

combine() acts like c() or unlist() but uses consistent dplyr coercion rules.

If combine() it is called with exactly one list argument, the list is simplified (similarly to
unlist(recursive = FALSE)). NULL arguments are ignored. If the result is empty, logical()
is returned. Use vctrs::vec c() if you never want to unlist.

Usage

combine(...)

Arguments

... Vectors to combine.

Details

Questioning

See Also

bind rows() and bind cols() in bind.

Examples

combine applies the same coercion rules as bind_rows()
f1 <- factor("a")
f2 <- factor("b")
c(f1, f2)
unlist(list(f1, f2))

combine(f1, f2)
combine(list(f1, f2))

18 compute

compute Force computation of a database query

Description

compute() stores results in a remote temporary table. collect() retrieves data into a local
tibble. collapse() is slightly different: it doesn’t force computation, but instead forces
generation of the SQL query. This is sometimes needed to work around bugs in dplyr’s
SQL generation.

Usage

compute(x, name = random_table_name(), ...)

collect(x, ...)

collapse(x, ...)

Arguments

x A tbl

name Name of temporary table on database.

... Other arguments passed on to methods

Details

All functions preserve grouping and ordering.

See Also

copy to(), the opposite of collect(): it takes a local data frame and uploads it to the
remote source.

Examples

if (require(dbplyr)) {
mtcars2 <- src_memdb() %>%
copy_to(mtcars, name = "mtcars2-cc", overwrite = TRUE)

remote <- mtcars2 %>%
filter(cyl == 8) %>%
select(mpg:drat)

Compute query and save in remote table
compute(remote)

Compute query bring back to this session
collect(remote)

Creates a fresh query based on the generated SQL
collapse(remote)

}

copy to 19

copy to Copy a local data frame to a remote src

Description

This function uploads a local data frame into a remote data source, creating the table
definition as needed. Wherever possible, the new object will be temporary, limited to the
current connection to the source.

Usage

copy_to(dest, df, name = deparse(substitute(df)), overwrite = FALSE,
...)

Arguments

dest remote data source

df local data frame

name name for new remote table.

overwrite If TRUE, will overwrite an existing table with name name. If FALSE, will
throw an error if name already exists.

... other parameters passed to methods.

Value

a tbl object in the remote source

See Also

collect() for the opposite action; downloading remote data into a local dbl.

Examples

Not run:
iris2 <- dbplyr::src_memdb() %>% copy_to(iris, overwrite = TRUE)
iris2

End(Not run)

cumall Cumulativate versions of any, all, and mean

Description

dplyr provides cumall(), cumany(), and cummean() to complete R’s set of cumulative func-
tions.

20 cumall

Usage

cumall(x)

cumany(x)

cummean(x)

Arguments

x For cumall() and cumany(), a logical vector; for cummean() an integer or
numeric vector.

Value

A vector the same length as x.

Cumulative logical functions

These are particularly useful in conjunction with filter():

� cumall(x): all cases until the first FALSE.

� cumall(!x): all cases until the first TRUE.

� cumany(x): all cases after the first TRUE.

� cumany(!x): all cases after the first FALSE.

Examples

`cummean()` returns a numeric/integer vector of the same length
as the input vector.
x <- c(1, 3, 5, 2, 2)
cummean(x)
cumsum(x) / seq_along(x)

`cumall()` and `cumany()` return logicals
cumall(x < 5)
cumany(x == 3)

`cumall()` vs. `cumany()`
df <- data.frame(

date = as.Date("2020-01-01") + 0:6,
balance = c(100, 50, 25, -25, -50, 30, 120)

)
all rows after first overdraft
df %>% filter(cumany(balance < 0))
all rows until first overdraft
df %>% filter(cumall(!(balance < 0)))

desc 21

desc Descending order

Description

Transform a vector into a format that will be sorted in descending order. This is useful
within arrange().

Usage

desc(x)

Arguments

x vector to transform

Examples

desc(1:10)
desc(factor(letters))

first_day <- seq(as.Date("1910/1/1"), as.Date("1920/1/1"), "years")
desc(first_day)

starwars %>% arrange(desc(mass))

distinct Select distinct/unique rows

Description

Retain only unique/distinct rows from an input tbl. This is similar to unique.data.frame(),
but considerably faster.

Usage

distinct(.data, ..., .keep_all = FALSE)

Arguments

.data a tbl

... Optional variables to use when determining uniqueness. If there are mul-
tiple rows for a given combination of inputs, only the first row will be
preserved. If omitted, will use all variables.

.keep all If TRUE, keep all variables in .data. If a combination of ... is not distinct,
this keeps the first row of values.

22 distinct all

Details

Comparing list columns is not fully supported. Elements in list columns are compared by
reference. A warning will be given when trying to include list columns in the computation.
This behavior is kept for compatibility reasons and may change in a future version. See
examples.

Examples

df <- tibble(
x = sample(10, 100, rep = TRUE),
y = sample(10, 100, rep = TRUE)

)
nrow(df)
nrow(distinct(df))
nrow(distinct(df, x, y))

distinct(df, x)
distinct(df, y)

Can choose to keep all other variables as well
distinct(df, x, .keep_all = TRUE)
distinct(df, y, .keep_all = TRUE)

You can also use distinct on computed variables
distinct(df, diff = abs(x - y))

The same behaviour applies for grouped data frames
except that the grouping variables are always included
df <- tibble(

g = c(1, 1, 2, 2),
x = c(1, 1, 2, 1)

) %>% group_by(g)
df %>% distinct()
df %>% distinct(x)

Values in list columns are compared by reference, this can lead to
surprising results
tibble(a = as.list(c(1, 1, 2))) %>% glimpse() %>% distinct()
tibble(a = as.list(1:2)[c(1, 1, 2)]) %>% glimpse() %>% distinct()

distinct all Select distinct rows by a selection of variables

Description

These scoped variants of distinct() extract distinct rows by a selection of variables. Like
distinct(), you can modify the variables before ordering with the .funs argument.

Usage

distinct_all(.tbl, .funs = list(), ..., .keep_all = FALSE)

distinct_at(.tbl, .vars, .funs = list(), ..., .keep_all = FALSE)

distinct_if(.tbl, .predicate, .funs = list(), ..., .keep_all = FALSE)

do 23

Arguments

.tbl A tbl object.

.funs A function fun, a quosure style lambda ˜ fun(.) or a list of either form.

... Additional arguments for the function calls in .funs. These are evaluated
only once, with tidy dots support.

.keep all If TRUE, keep all variables in .data. If a combination of ... is not distinct,
this keeps the first row of values.

.vars A list of columns generated by vars(), a character vector of column
names, a numeric vector of column positions, or NULL.

.predicate A predicate function to be applied to the columns or a logical vector.
The variables for which .predicate is or returns TRUE are selected. This
argument is passed to rlang::as function() and thus supports quosure-
style lambda functions and strings representing function names.

Grouping variables

The grouping variables that are part of the selection are taken into account to determine
distinct rows.

Examples

df <- tibble(x = rep(2:5, each = 2) / 2, y = rep(2:3, each = 4) / 2)
df
distinct_all(df)
distinct_at(df, vars(x,y))
distinct_if(df, is.numeric)

You can supply a function that will be applied before extracting the distinct values
The variables of the sorted tibble keep their original values.
distinct_all(df, round)
arrange_all(df, list(˜round(.)))

do Do anything

Description

This is a general purpose complement to the specialised manipulation functions filter(),
select(), mutate(), summarise() and arrange(). You can use do() to perform arbitrary
computation, returning either a data frame or arbitrary objects which will be stored in a
list. This is particularly useful when working with models: you can fit models per group
with do() and then flexibly extract components with either another do() or summarise().

For an empty data frame, the expressions will be evaluated once, even in the presence of a
grouping. This makes sure that the format of the resulting data frame is the same for both
empty and non-empty input.

Usage

do(.data, ...)

24 do

Arguments

.data a tbl

... Expressions to apply to each group. If named, results will be stored in
a new column. If unnamed, should return a data frame. You can use
. to refer to the current group. You can not mix named and unnamed
arguments.

Details

Questioning

Value

do() always returns a data frame. The first columns in the data frame will be the labels,
the others will be computed from Named arguments become list-columns, with one
element for each group; unnamed elements must be data frames and labels will be duplicated
accordingly.

Groups are preserved for a single unnamed input. This is different to summarise() because
do() generally does not reduce the complexity of the data, it just expresses it in a special
way. For multiple named inputs, the output is grouped by row with rowwise(). This allows
other verbs to work in an intuitive way.

Alternative

do() is marked as questioning as of dplyr 0.8.0, and may be advantageously replaced by
group map().

Connection to plyr

If you’re familiar with plyr, do() with named arguments is basically equivalent to plyr::dlply(),
and do() with a single unnamed argument is basically equivalent to plyr::ldply(). How-
ever, instead of storing labels in a separate attribute, the result is always a data frame.
This means that summarise() applied to the result of do() can act like ldply().

Examples

by_cyl <- group_by(mtcars, cyl)
do(by_cyl, head(., 2))

models <- by_cyl %>% do(mod = lm(mpg ˜ disp, data = .))
models

summarise(models, rsq = summary(mod)$r.squared)
models %>% do(data.frame(coef = coef(.$mod)))
models %>% do(data.frame(

var = names(coef(.$mod)),
coef(summary(.$mod)))

)

models <- by_cyl %>% do(
mod_linear = lm(mpg ˜ disp, data = .),
mod_quad = lm(mpg ˜ poly(disp, 2), data = .)

)
models

dr dplyr 25

compare <- models %>% do(aov = anova(.$mod_linear, .$mod_quad))
compare %>% summarise(p.value = aov$`Pr(>F)`)

if (require("nycflights13")) {
You can use it to do any arbitrary computation, like fitting a linear
model. Let's explore how carrier departure delays vary over the time
carriers <- group_by(flights, carrier)
group_size(carriers)

mods <- do(carriers, mod = lm(arr_delay ˜ dep_time, data = .))
mods %>% do(as.data.frame(coef(.$mod)))
mods %>% summarise(rsq = summary(mod)$r.squared)

Not run:
This longer example shows the progress bar in action
by_dest <- flights %>% group_by(dest) %>% filter(n() > 100)
library(mgcv)
by_dest %>% do(smooth = gam(arr_delay ˜ s(dep_time) + month, data = .))

End(Not run)
}

dr dplyr Dr Dplyr checks your installation for common problems.

Description

Only run this if you are seeing problems, like random crashes. It’s possible for dr dplyr to
return false positives, so there’s no need to run if all is ok.

Usage

dr_dplyr()

Examples

Not run:
dr_dplyr()

End(Not run)

explain Explain details of a tbl

Description

This is a generic function which gives more details about an object than print(), and is
more focused on human readable output than str().

26 filter

Usage

explain(x, ...)

show_query(x, ...)

Arguments

x An object to explain

... Other parameters possibly used by generic

Value

The first argument, invisibly.

Databases

Explaining a tbl sql will run the SQL EXPLAIN command which will describe the query
plan. This requires a little bit of knowledge about how EXPLAIN works for your database,
but is very useful for diagnosing performance problems.

Examples

if (require("dbplyr")) {

lahman_s <- lahman_sqlite()
batting <- tbl(lahman_s, "Batting")
batting %>% show_query()
batting %>% explain()

The batting database has indices on all ID variables:
SQLite automatically picks the most restrictive index
batting %>% filter(lgID == "NL" & yearID == 2000L) %>% explain()

OR's will use multiple indexes
batting %>% filter(lgID == "NL" | yearID == 2000) %>% explain()

Joins will use indexes in both tables
teams <- tbl(lahman_s, "Teams")
batting %>% left_join(teams, c("yearID", "teamID")) %>% explain()
}

filter Return rows with matching conditions

Description

Use filter() to choose rows/cases where conditions are true. Unlike base subsetting with
[, rows where the condition evaluates to NA are dropped.

Usage

filter(.data, ..., .preserve = FALSE)

filter 27

Arguments

.data A tbl. All main verbs are S3 generics and provide methods for tbl df(),
dtplyr::tbl dt() and dbplyr::tbl dbi().

... Logical predicates defined in terms of the variables in .data. Multiple
conditions are combined with &. Only rows where the condition evaluates
to TRUE are kept.

The arguments in ... are automatically quoted and evaluated in the
context of the data frame. They support unquoting and splicing. See
vignette("programming") for an introduction to these concepts.

.preserve when FALSE (the default), the grouping structure is recalculated based on
the resulting data, otherwise it is kept as is.

Details

Note that dplyr is not yet smart enough to optimise filtering optimisation on grouped
datasets that don’t need grouped calculations. For this reason, filtering is often considerably
faster on ungroup()ed data.

Value

An object of the same class as .data.

Useful filter functions

� ==, >, >= etc

� &, |, !, xor()

� is.na()

� between(), near()

Grouped tibbles

Because filtering expressions are computed within groups, they may yield different results
on grouped tibbles. This will be the case as soon as an aggregating, lagging, or ranking
function is involved. Compare this ungrouped filtering:

starwars %>% filter(mass > mean(mass, na.rm = TRUE))

With the grouped equivalent:

starwars %>% group_by(gender) %>% filter(mass > mean(mass, na.rm = TRUE))

The former keeps rows with mass greater than the global average whereas the latter keeps
rows with mass greater than the gender average.

It is valid to use grouping variables in filter expressions.

When applied on a grouped tibble, filter() automatically rearranges the tibble by groups
for performance reasons.

Tidy data

When applied to a data frame, row names are silently dropped. To preserve, convert to an
explicit variable with tibble::rownames to column().

28 filter

Scoped filtering

The three scoped variants (filter all(), filter if() and filter at()) make it easy to
apply a filtering condition to a selection of variables.

See Also

filter all(), filter if() and filter at().

Other single table verbs: arrange, mutate, select, slice, summarise

Examples

filter(starwars, species == "Human")
filter(starwars, mass > 1000)

Multiple criteria
filter(starwars, hair_color == "none" & eye_color == "black")
filter(starwars, hair_color == "none" | eye_color == "black")

Multiple arguments are equivalent to and
filter(starwars, hair_color == "none", eye_color == "black")

The filtering operation may yield different results on grouped
tibbles because the expressions are computed within groups.
#
The following filters rows where `mass` is greater than the
global average:
starwars %>% filter(mass > mean(mass, na.rm = TRUE))

Whereas this keeps rows with `mass` greater than the gender
average:
starwars %>% group_by(gender) %>% filter(mass > mean(mass, na.rm = TRUE))

Refer to column names stored as strings with the `.data` pronoun:
vars <- c("mass", "height")
cond <- c(80, 150)
starwars %>%

filter(
.data[[vars[[1]]]] > cond[[1]],
.data[[vars[[2]]]] > cond[[2]]

)

For more complex cases, knowledge of tidy evaluation and the
unquote operator `!!` is required. See https://tidyeval.tidyverse.org/
#
One useful and simple tidy eval technique is to use `!!` to bypass
the data frame and its columns. Here is how to filter the columns
`mass` and `height` relative to objects of the same names:
mass <- 80
height <- 150
filter(starwars, mass > !!mass, height > !!height)

filter all 29

filter all Filter within a selection of variables

Description

These scoped filtering verbs apply a predicate expression to a selection of variables. The
predicate expression should be quoted with all vars() or any vars() and should mention
the pronoun . to refer to variables.

Usage

filter_all(.tbl, .vars_predicate, .preserve = FALSE)

filter_if(.tbl, .predicate, .vars_predicate, .preserve = FALSE)

filter_at(.tbl, .vars, .vars_predicate, .preserve = FALSE)

Arguments

.tbl A tbl object.

.vars predicate

A quoted predicate expression as returned by all vars() or any vars().

Can also be a function or purrr-like formula. In this case, the intersection
of the results is taken by default and there’s currently no way to request
the union.

.preserve when FALSE (the default), the grouping structure is recalculated based on
the resulting data, otherwise it is kept as is.

.predicate A predicate function to be applied to the columns or a logical vector.
The variables for which .predicate is or returns TRUE are selected. This
argument is passed to rlang::as function() and thus supports quosure-
style lambda functions and strings representing function names.

.vars A list of columns generated by vars(), a character vector of column
names, a numeric vector of column positions, or NULL.

Grouping variables

The grouping variables that are part of the selection are taken into account to determine
filtered rows.

Examples

While filter() accepts expressions with specific variables, the
scoped filter verbs take an expression with the pronoun `.` and
replicate it over all variables. This expression should be quoted
with all_vars() or any_vars():
all_vars(is.na(.))
any_vars(is.na(.))

You can take the intersection of the replicated expressions:
filter_all(mtcars, all_vars(. > 150))

30 funs

Or the union:
filter_all(mtcars, any_vars(. > 150))

You can vary the selection of columns on which to apply the
predicate. filter_at() takes a vars() specification:
filter_at(mtcars, vars(starts_with("d")), any_vars((. %% 2) == 0))

And filter_if() selects variables with a predicate function:
filter_if(mtcars, ˜ all(floor(.) == .), all_vars(. != 0))

We're working on a new syntax to allow functions instead,
including purrr-like lambda functions. This is already
operational, but there's currently no way to specify the union of
the predicate results:
mtcars %>% filter_at(vars(hp, vs), ˜ . %% 2 == 0)

funs Create a list of functions calls.

Description

funs() provides a flexible way to generate a named list of functions for input to other
functions like summarise at().

Usage

funs(..., .args = list())

Arguments

... A list of functions specified by:

� Their name, "mean"

� The function itself, mean

� A call to the function with . as a dummy argument, mean(.,na.rm =
TRUE)

These arguments are automatically quoted. They support unquoting and
splicing. See vignette("programming") for an introduction to these con-
cepts.

The following notations are not supported, see examples:

� An anonymous function, function(x) mean(x,na.rm = TRUE)

� An anonymous function in purrr notation, ˜mean(.,na.rm = TRUE)

.args, args A named list of additional arguments to be added to all function calls. As
funs() is being deprecated, use other methods to supply arguments: ...
argument in scoped verbs or make own functions with purrr::partial().

Details

Soft-deprecated

groups 31

Examples

funs(mean, "mean", mean(., na.rm = TRUE))

Override default names
funs(m1 = mean, m2 = "mean", m3 = mean(., na.rm = TRUE))

If you have function names in a vector, use funs_
fs <- c("min", "max")
funs_(fs)

Not supported
Not run:
funs(function(x) mean(x, na.rm = TRUE))
funs(˜mean(x, na.rm = TRUE))
End(Not run)

groups Return grouping variables

Description

group vars() returns a character vector; groups() returns a list of symbols.

Usage

groups(x)

group_vars(x)

Arguments

x A tbl()

See Also

group cols() for matching grouping variables in selection contexts.

Other grouping functions: group by all, group by, group indices, group keys, group map,
group nest, group rows, group size, group trim

Examples

df <- tibble(x = 1, y = 2) %>% group_by(x, y)
group_vars(df)
groups(df)

32 group by

group by Group by one or more variables

Description

Most data operations are done on groups defined by variables. group by() takes an ex-
isting tbl and converts it into a grouped tbl where operations are performed ”by group”.
ungroup() removes grouping.

Usage

group_by(.data, ..., add = FALSE, .drop = group_by_drop_default(.data))

ungroup(x, ...)

Arguments

.data a tbl

... Variables to group by. All tbls accept variable names. Some tbls will
accept functions of variables. Duplicated groups will be silently dropped.

add When add = FALSE, the default, group by() will override existing groups.
To add to the existing groups, use add = TRUE.

.drop When .drop = TRUE, empty groups are dropped. See group by drop default()
for what the default value is for this argument.

x A tbl()

Value

A grouped data frame, unless the combination of ... and add yields a non empty set of
grouping columns, a regular (ungrouped) data frame otherwise.

Tbl types

group by() is an S3 generic with methods for the three built-in tbls. See the help for the
corresponding classes and their manip methods for more details:

� data.frame: grouped df

� data.table: dtplyr::grouped dt

� SQLite: src sqlite()

� PostgreSQL: src postgres()

� MySQL: src mysql()

Scoped grouping

The three scoped variants (group by all(), group by if() and group by at()) make it easy
to group a dataset by a selection of variables.

See Also

Other grouping functions: group by all, group indices, group keys, group map, group nest,
group rows, group size, group trim, groups

group by all 33

Examples

by_cyl <- mtcars %>% group_by(cyl)

grouping doesn't change how the data looks (apart from listing
how it's grouped):
by_cyl

It changes how it acts with the other dplyr verbs:
by_cyl %>% summarise(

disp = mean(disp),
hp = mean(hp)

)
by_cyl %>% filter(disp == max(disp))

Each call to summarise() removes a layer of grouping
by_vs_am <- mtcars %>% group_by(vs, am)
by_vs <- by_vs_am %>% summarise(n = n())
by_vs
by_vs %>% summarise(n = sum(n))

To removing grouping, use ungroup
by_vs %>%

ungroup() %>%
summarise(n = sum(n))

You can group by expressions: this is just short-hand for
a mutate/rename followed by a simple group_by
mtcars %>% group_by(vsam = vs + am)

By default, group_by overrides existing grouping
by_cyl %>%

group_by(vs, am) %>%
group_vars()

Use add = TRUE to instead append
by_cyl %>%

group_by(vs, am, add = TRUE) %>%
group_vars()

when factors are involved, groups can be empty
tbl <- tibble(

x = 1:10,
y = factor(rep(c("a", "c"), each = 5), levels = c("a", "b", "c"))

)
tbl %>%

group_by(y) %>%
group_rows()

group by all Group by a selection of variables

34 group by all

Description

These scoped variants of group by() group a data frame by a selection of variables. Like
group by(), they have optional mutate semantics.

Usage

group_by_all(.tbl, .funs = list(), ..., .add = FALSE,
.drop = group_by_drop_default(.tbl))

group_by_at(.tbl, .vars, .funs = list(), ..., .add = FALSE,
.drop = group_by_drop_default(.tbl))

group_by_if(.tbl, .predicate, .funs = list(), ..., .add = FALSE,
.drop = group_by_drop_default(.tbl))

Arguments

.tbl A tbl object.

.funs A function fun, a quosure style lambda ˜ fun(.) or a list of either form.

... Additional arguments for the function calls in .funs. These are evaluated
only once, with tidy dots support.

.add See group by()

.drop When .drop = TRUE, empty groups are dropped. See group by drop default()
for what the default value is for this argument.

.vars A list of columns generated by vars(), a character vector of column
names, a numeric vector of column positions, or NULL.

.predicate A predicate function to be applied to the columns or a logical vector.
The variables for which .predicate is or returns TRUE are selected. This
argument is passed to rlang::as function() and thus supports quosure-
style lambda functions and strings representing function names.

Grouping variables

Existing grouping variables are maintained, even if not included in the selection.

See Also

Other grouping functions: group by, group indices, group keys, group map, group nest,
group rows, group size, group trim, groups

Examples

Group a data frame by all variables:
group_by_all(mtcars)

Group by variables selected with a predicate:
group_by_if(iris, is.factor)

Group by variables selected by name:
group_by_at(mtcars, vars(vs, am))

Like group_by(), the scoped variants have optional mutate

group by drop default 35

semantics. This provide a shortcut for group_by() + mutate():
d <- tibble(x=c(1,1,2,2), y=c(1,2,1,2))
group_by_all(d, as.factor)
group_by_if(iris, is.factor, as.character)

group by drop default Default value for .drop argument of group by

Description

Default value for .drop argument of group by

Usage

group_by_drop_default(.tbl)

Arguments

.tbl A data frame

Value

TRUE unless .tbl is a grouped data frame that was previously obtained by group by(.drop
= FALSE)

Examples

group_by_drop_default(iris)

iris %>%
group_by(Species) %>%
group_by_drop_default()

iris %>%
group_by(Species, .drop = FALSE) %>%
group_by_drop_default()

group cols Select grouping variables

Description

This selection helpers matches grouping variables. It can be used in select() or vars()
selections.

Usage

group_cols(vars = peek_vars())

36 group keys

Arguments

vars A character vector of variable names. When called from inside selecting
functions like dplyr::select() these are automatically set to the names
of the table.

See Also

groups() and group vars() for retrieving the grouping variables outside selection contexts.

Examples

gdf <- iris %>% group_by(Species)

Select the grouping variables:
gdf %>% select(group_cols())

Remove the grouping variables from mutate selections:
gdf %>% mutate_at(vars(-group_cols()), `/`, 100)

group keys Split data frame by groups

Description

Split data frame by groups

Usage

group_keys(.tbl, ...)

group_split(.tbl, ..., keep = TRUE)

Arguments

.tbl A tbl

... Grouping specification, forwarded to group by()

keep Should the grouping columns be kept

Details

Experimental

group split() works like base::split() but

� it uses the grouping structure from group by() and therefore is subject to the data
mask

� it does not name the elements of the list based on the grouping as this typically loses
information and is confusing.

group keys() explains the grouping structure, by returning a data frame that has one row
per group and one column per grouping variable.

group keys 37

Value

� group split() returns a list of tibbles. Each tibble contains the rows of .tbl for the
associated group and all the columns, including the grouping variables.

� group keys() returns a tibble with one row per group, and one column per grouping
variable

Grouped data frames

The primary use case for group split() is with already grouped data frames, typically a
result of group by(). In this case group split() only uses the first argument, the grouped
tibble, and warns when ... is used.

Because some of these groups may be empty, it is best paried with group keys() which
identifies the representatives of each grouping variable for the group.

Ungrouped data frames

When used on ungrouped data frames, group split() and group keys() forwards the ...
to group by() before the split, therefore the ... are subject to the data mask.

Using these functions on an ungrouped data frame only makes sense if you need only one
or the other, because otherwise the grouping algorithm is performed each time.

Rowwise data frames

group split() returns a list of one-row tibbles is returned, and the ... are ignored and
warned against

See Also

Other grouping functions: group by all, group by, group indices, group map, group nest,
group rows, group size, group trim, groups

Examples

----- use case 1 : on an already grouped tibble
ir <- iris %>%

group_by(Species)

group_split(ir)
group_keys(ir)

this can be useful if the grouped data has been altered before the split
ir <- iris %>%

group_by(Species) %>%
filter(Sepal.Length > mean(Sepal.Length))

group_split(ir)
group_keys(ir)

----- use case 2: using a group_by() grouping specification

both group_split() and group_keys() have to perform the grouping
so it only makes sense to do this if you only need one or the other
iris %>%

38 group map

group_split(Species)

iris %>%
group_keys(Species)

group map Apply a function to each group

Description

group map(), group modify() and group walk() are purrr-style functions that can be used
to iterate on grouped tibbles.

Usage

group_map(.tbl, .f, ..., keep = FALSE)

group_modify(.tbl, .f, ..., keep = FALSE)

group_walk(.tbl, .f, ...)

Arguments

.tbl A grouped tibble

.f A function or formula to apply to each group. It must return a data
frame.

If a function, it is used as is. It should have at least 2 formal arguments.

If a formula, e.g. ˜ head(.x), it is converted to a function.

In the formula, you can use

� . or .x to refer to the subset of rows of .tbl for the given group

� .y to refer to the key, a one row tibble with one column per grouping
variable that identifies the group

... Additional arguments passed on to .f

keep are the grouping variables kept in .x

Details

Experimental

Use group modify() when summarize() is too limited, in terms of what you need to do and
return for each group. group modify() is good for ”data frame in, data frame out”. If that
is too limited, you need to use a nested or split workflow. group modify() is an evolution
of do(), if you have used that before.

Each conceptual group of the data frame is exposed to the function .f with two pieces of
information:

� The subset of the data for the group, exposed as .x.

� The key, a tibble with exactly one row and columns for each grouping variable, exposed
as .y.

For completeness, group modify(), group map and group walk() also work on ungrouped
data frames, in that case the function is applied to the entire data frame (exposed as .x),
and .y is a one row tibble with no column, consistently with group keys().

group map 39

Value

� group modify() returns a grouped tibble. In that case .f must return a data frame.

� group map() returns a list of results from calling .f on each group

� group walk() calls .f for side effects and returns the input .tbl, invisibly

See Also

Other grouping functions: group by all, group by, group indices, group keys, group nest,
group rows, group size, group trim, groups

Examples

return a list
mtcars %>%

group_by(cyl) %>%
group_map(˜ head(.x, 2L))

return a tibble grouped by `cyl` with 2 rows per group
the grouping data is recalculated
mtcars %>%

group_by(cyl) %>%
group_modify(˜ head(.x, 2L))

if (requireNamespace("broom", quietly = TRUE)) {
a list of tibbles
iris %>%
group_by(Species) %>%
group_map(˜ broom::tidy(lm(Petal.Length ˜ Sepal.Length, data = .x)))

a restructured grouped tibble
iris %>%

group_by(Species) %>%
group_modify(˜ broom::tidy(lm(Petal.Length ˜ Sepal.Length, data = .x)))

}

a list of vectors
iris %>%

group_by(Species) %>%
group_map(˜ quantile(.x$Petal.Length, probs = c(0.25, 0.5, 0.75)))

to use group_modify() the lambda must return a data frame
iris %>%

group_by(Species) %>%
group_modify(˜ {

quantile(.x$Petal.Length, probs = c(0.25, 0.5, 0.75)) %>%
tibble::enframe(name = "prob", value = "quantile")

})

iris %>%
group_by(Species) %>%
group_modify(˜ {
.x %>%

purrr::map_dfc(fivenum) %>%
mutate(nms = c("min", "Q1", "median", "Q3", "max"))

})

40 group rows

group_walk() is for side effects
dir.create(temp <- tempfile())
iris %>%

group_by(Species) %>%
group_walk(˜ write.csv(.x, file = file.path(temp, paste0(.y$Species, ".csv"))))

list.files(temp, pattern = "csv$")
unlink(temp, recursive = TRUE)

group_modify() and ungrouped data frames
mtcars %>%

group_modify(˜ head(.x, 2L))

group rows Grouping data

Description

Grouping data

Usage

group_rows(.data)

group_data(.data)

Arguments

.data a tibble

Value

group data() return a tibble with one row per group. The last column, always called .rows
is a list of integer vectors indicating the rows for each group. If .data is a grouped data
frame the first columns are the grouping variables. group rows() just returns the list of
indices.

See Also

Other grouping functions: group by all, group by, group indices, group keys, group map,
group nest, group size, group trim, groups

Examples

df <- tibble(x = c(1,1,2,2))

one row
group_data(df)
group_rows(df)

2 rows, one for each group
group_by(df,x) %>% group_data()
group_by(df,x) %>% group_rows()

group trim 41

group trim Trim grouping structure

Description

Drop unused levels of all factors that are used as grouping variables, then recalculates the
grouping structure.

group trim() is particularly useful after a filter() that is intended to select a subset of
groups.

Usage

group_trim(.tbl, .drop = group_by_drop_default(.tbl))

Arguments

.tbl A grouped data frame

.drop See group by()

Details

Experimental

Value

A grouped data frame

See Also

Other grouping functions: group by all, group by, group indices, group keys, group map,
group nest, group rows, group size, groups

Examples

iris %>%
group_by(Species) %>%
filter(Species == "setosa", .preserve = TRUE) %>%
group_trim()

hybrid call Inspect how dplyr evaluates an expression

Description

Inspect how dplyr evaluates an expression

Usage

hybrid_call(.data, expr)

42 if else

Arguments

.data a tibble

expr an expression

Examples

hybrid evaulation
hybrid_call(iris, n())

standard evaluation
hybrid_call(iris, n() + 1L)

ident Flag a character vector as SQL identifiers

Description

ident() takes unquoted strings and flags them as identifiers. ident q() assumes its input
has already been quoted, and ensures it does not get quoted again. This is currently used
only for for schema.table.

Usage

ident(...)

Arguments

... A character vector, or name-value pairs

Examples

Identifiers are escaped with "
if (requireNamespace("dbplyr", quietly = TRUE)) {

ident("x")
}

if else Vectorised if

Description

Compared to the base ifelse(), this function is more strict. It checks that true and false
are the same type. This strictness makes the output type more predictable, and makes it
somewhat faster.

Usage

if_else(condition, true, false, missing = NULL)

join 43

Arguments

condition Logical vector

true, false Values to use for TRUE and FALSE values of condition. They must be
either the same length as condition, or length 1. They must also be
the same type: if else() checks that they have the same type and same
class. All other attributes are taken from true.

missing If not NULL, will be used to replace missing values.

Value

Where condition is TRUE, the matching value from true, where it’s FALSE, the matching
value from false, otherwise NA.

Examples

x <- c(-5:5, NA)
if_else(x < 0, NA_integer_, x)
if_else(x < 0, "negative", "positive", "missing")

Unlike ifelse, if_else preserves types
x <- factor(sample(letters[1:5], 10, replace = TRUE))
ifelse(x %in% c("a", "b", "c"), x, factor(NA))
if_else(x %in% c("a", "b", "c"), x, factor(NA))
Attributes are taken from the `true` vector,

join Join two tbls together

Description

These are generic functions that dispatch to individual tbl methods - see the method doc-
umentation for details of individual data sources. x and y should usually be from the same
data source, but if copy is TRUE, y will automatically be copied to the same source as x.

Usage

inner_join(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"),
...)

left_join(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)

right_join(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"),
...)

full_join(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)

semi_join(x, y, by = NULL, copy = FALSE, ...)

nest_join(x, y, by = NULL, copy = FALSE, keep = FALSE, name = NULL,
...)

anti_join(x, y, by = NULL, copy = FALSE, ...)

44 join

Arguments

x, y tbls to join

by a character vector of variables to join by. If NULL, the default, * join()
will do a natural join, using all variables with common names across the
two tables. A message lists the variables so that you can check they’re
right (to suppress the message, simply explicitly list the variables that
you want to join).

To join by different variables on x and y use a named vector. For example,
by = c("a" = "b") will match x.a to y.b.

copy If x and y are not from the same data source, and copy is TRUE, then y
will be copied into the same src as x. This allows you to join tables across
srcs, but it is a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will be
added to the output to disambiguate them. Should be a character vector
of length 2.

... other parameters passed onto methods, for instance, na matches to control
how NA values are matched. See join.tbl df for more.

keep If TRUE the by columns are kept in the nesting joins.

name the name of the list column nesting joins create. If NULL the name of y is
used.

Join types

Currently dplyr supports four types of mutating joins, two types of filtering joins, and a
nesting join.

Mutating joins combine variables from the two data.frames:

inner join() return all rows from x where there are matching values in y, and all columns
from x and y. If there are multiple matches between x and y, all combination of the
matches are returned.

left join() return all rows from x, and all columns from x and y. Rows in x with no match
in y will have NA values in the new columns. If there are multiple matches between x
and y, all combinations of the matches are returned.

right join() return all rows from y, and all columns from x and y. Rows in y with no
match in x will have NA values in the new columns. If there are multiple matches
between x and y, all combinations of the matches are returned.

full join() return all rows and all columns from both x and y. Where there are not
matching values, returns NA for the one missing.

Filtering joins keep cases from the left-hand data.frame:

semi join() return all rows from x where there are matching values in y, keeping just
columns from x.

A semi join differs from an inner join because an inner join will return one row of x
for each matching row of y, where a semi join will never duplicate rows of x.

anti join() return all rows from x where there are not matching values in y, keeping just
columns from x.

Nesting joins create a list column of data.frames:

lead-lag 45

nest join() return all rows and all columns from x. Adds a list column of tibbles. Each
tibble contains all the rows from y that match that row of x. When there is no match,
the list column is a 0-row tibble with the same column names and types as y.

nest join() is the most fundamental join since you can recreate the other joins from
it. An inner join() is a nest join() plus an tidyr::unnest(), and left join() is
a nest join() plus an unnest(.drop = FALSE). A semi join() is a nest join() plus
a filter() where you check that every element of data has at least one row, and an
anti join() is a nest join() plus a filter() where you check every element has zero
rows.

Grouping

Groups are ignored for the purpose of joining, but the result preserves the grouping of x.

Examples

"Mutating" joins combine variables from the LHS and RHS
band_members %>% inner_join(band_instruments)
band_members %>% left_join(band_instruments)
band_members %>% right_join(band_instruments)
band_members %>% full_join(band_instruments)

"Filtering" joins keep cases from the LHS
band_members %>% semi_join(band_instruments)
band_members %>% anti_join(band_instruments)

"Nesting" joins keep cases from the LHS and nests the RHS
band_members %>% nest_join(band_instruments)

To suppress the message, supply by
band_members %>% inner_join(band_instruments, by = "name")
This is good practice in production code

Use a named `by` if the join variables have different names
band_members %>% full_join(band_instruments2, by = c("name" = "artist"))
Note that only the key from the LHS is kept

lead-lag Lead and lag.

Description

Find the ”next” or ”previous” values in a vector. Useful for comparing values ahead of or
behind the current values.

Usage

lead(x, n = 1L, default = NA, order_by = NULL, ...)

lag(x, n = 1L, default = NA, order_by = NULL, ...)

46 mutate

Arguments

x a vector of values

n a positive integer of length 1, giving the number of positions to lead or
lag by

default value used for non-existent rows. Defaults to NA.

order by override the default ordering to use another vector

... Needed for compatibility with lag generic.

Examples

lead(1:10, 1)
lead(1:10, 2)

lag(1:10, 1)
lead(1:10, 1)

x <- runif(5)
cbind(ahead = lead(x), x, behind = lag(x))

Use order_by if data not already ordered
df <- data.frame(year = 2000:2005, value = (0:5) ˆ 2)
scrambled <- df[sample(nrow(df)),]

wrong <- mutate(scrambled, prev = lag(value))
arrange(wrong, year)

right <- mutate(scrambled, prev = lag(value, order_by = year))
arrange(right, year)

mutate Create or transform variables

Description

mutate() adds new variables and preserves existing ones; transmute() adds new variables
and drops existing ones. Both functions preserve the number of rows of the input. New
variables overwrite existing variables of the same name.

Usage

mutate(.data, ...)

transmute(.data, ...)

Arguments

.data A tbl. All main verbs are S3 generics and provide methods for tbl df(),
dtplyr::tbl dt() and dbplyr::tbl dbi().

mutate 47

... Name-value pairs of expressions, each with length 1 or the same length
as the number of rows in the group (if using group by()) or in the entire
input (if not using groups). The name of each argument will be the name
of a new variable, and the value will be its corresponding value. Use a
NULL value in mutate to drop a variable. New variables overwrite existing
variables of the same name.

The arguments in ... are automatically quoted and evaluated in the
context of the data frame. They support unquoting and splicing. See
vignette("programming") for an introduction to these concepts.

Value

An object of the same class as .data.

Useful functions available in calculations of variables

� +, -, log(), etc., for their usual mathematical meanings

� lead(), lag()

� dense rank(), min rank(), percent rank(), row number(), cume dist(), ntile()

� cumsum(), cummean(), cummin(), cummax(), cumany(), cumall()

� na if(), coalesce()

� if else(), recode(), case when()

Grouped tibbles

Because mutating expressions are computed within groups, they may yield different results
on grouped tibbles. This will be the case as soon as an aggregating, lagging, or ranking
function is involved. Compare this ungrouped mutate:

starwars %>%
mutate(mass / mean(mass, na.rm = TRUE)) %>%
pull()

With the grouped equivalent:

starwars %>%
group_by(gender) %>%
mutate(mass / mean(mass, na.rm = TRUE)) %>%
pull()

The former normalises mass by the global average whereas the latter normalises by the
averages within gender levels.

Note that you can’t overwrite a grouping variable within mutate().

mutate() does not evaluate the expressions when the group is empty.

Scoped mutation and transmutation

The three scoped variants of mutate() (mutate all(), mutate if() and mutate at()) and
the three variants of transmute() (transmute all(), transmute if(), transmute at())
make it easy to apply a transformation to a selection of variables.

48 mutate

Tidy data

When applied to a data frame, row names are silently dropped. To preserve, convert to an
explicit variable with tibble::rownames to column().

See Also

Other single table verbs: arrange, filter, select, slice, summarise

Examples

Newly created variables are available immediately
mtcars %>% as_tibble() %>% mutate(

cyl2 = cyl * 2,
cyl4 = cyl2 * 2

)

You can also use mutate() to remove variables and
modify existing variables
mtcars %>% as_tibble() %>% mutate(

mpg = NULL,
disp = disp * 0.0163871 # convert to litres

)

window functions are useful for grouped mutates
mtcars %>%
group_by(cyl) %>%
mutate(rank = min_rank(desc(mpg)))

see `vignette("window-functions")` for more details

You can drop variables by setting them to NULL
mtcars %>% mutate(cyl = NULL)

mutate() vs transmute --------------------------
mutate() keeps all existing variables
mtcars %>%

mutate(displ_l = disp / 61.0237)

transmute keeps only the variables you create
mtcars %>%

transmute(displ_l = disp / 61.0237)

The mutate operation may yield different results on grouped
tibbles because the expressions are computed within groups.
The following normalises `mass` by the global average:
starwars %>%

mutate(mass / mean(mass, na.rm = TRUE)) %>%
pull()

Whereas this normalises `mass` by the averages within gender
levels:
starwars %>%

group_by(gender) %>%
mutate(mass / mean(mass, na.rm = TRUE)) %>%
pull()

mutate all 49

Note that you can't overwrite grouping variables:
gdf <- mtcars %>% group_by(cyl)
try(mutate(gdf, cyl = cyl * 100))

Refer to column names stored as strings with the `.data` pronoun:
vars <- c("mass", "height")
mutate(starwars, prod = .data[[vars[[1]]]] * .data[[vars[[2]]]])

For more complex cases, knowledge of tidy evaluation and the
unquote operator `!!` is required. See https://tidyeval.tidyverse.org/
#
One useful and simple tidy eval technique is to use `!!` to
bypass the data frame and its columns. Here is how to divide the
column `mass` by an object of the same name:
mass <- 100
mutate(starwars, mass = mass / !!mass)

mutate all Mutate multiple columns

Description

The scoped variants of mutate() and transmute() make it easy to apply the same trans-
formation to multiple variables. There are three variants:

� all affects every variable

� at affects variables selected with a character vector or vars()

� if affects variables selected with a predicate function:

Usage

mutate_all(.tbl, .funs, ...)

mutate_if(.tbl, .predicate, .funs, ...)

mutate_at(.tbl, .vars, .funs, ..., .cols = NULL)

transmute_all(.tbl, .funs, ...)

transmute_if(.tbl, .predicate, .funs, ...)

transmute_at(.tbl, .vars, .funs, ..., .cols = NULL)

Arguments

.tbl A tbl object.

.funs A function fun, a quosure style lambda ˜ fun(.) or a list of either form.

... Additional arguments for the function calls in .funs. These are evaluated
only once, with tidy dots support.

50 mutate all

.predicate A predicate function to be applied to the columns or a logical vector.
The variables for which .predicate is or returns TRUE are selected. This
argument is passed to rlang::as function() and thus supports quosure-
style lambda functions and strings representing function names.

.vars A list of columns generated by vars(), a character vector of column
names, a numeric vector of column positions, or NULL.

.cols This argument has been renamed to .vars to fit dplyr’s terminology and
is deprecated.

Value

A data frame. By default, the newly created columns have the shortest names needed to
uniquely identify the output. To force inclusion of a name, even when not needed, name
the input (see examples for details).

Grouping variables

If applied on a grouped tibble, these operations are not applied to the grouping variables.
The behaviour depends on whether the selection is implicit (all and if selections) or
explicit (at selections).

� Grouping variables covered by explicit selections in mutate at() and transmute at()
are always an error. Add -group cols() to the vars() selection to avoid this:

data %>% mutate_at(vars(-group_cols(), ...), myoperation)

Or remove group vars() from the character vector of column names:

nms <- setdiff(nms, group_vars(data))
data %>% mutate_at(vars, myoperation)

� Grouping variables covered by implicit selections are ignored by mutate all(), transmute all(),
mutate if(), and transmute if().

Naming

The names of the created columns is derived from the names of the input variables and the
names of the functions.

� if there is only one unnamed function, the names of the input variables are used to
name the created columns

� if there is only one unnamed variable, the names of the functions are used to name
the created columns.

� otherwise in the most general case, the created names are created by concatenating
the names of the input variables and the names of the functions.

The names of the functions here means the names of the list of functions that is supplied.
When needed and not supplied, the name of a function is the prefix ”fn” followed by the
index of this function within the unnamed functions in the list. Ultimately, names are made
unique.

See Also

The other scoped verbs, vars()

n 51

Examples

iris <- as_tibble(iris)

All variants can be passed functions and additional arguments,
purrr-style. The _at() variants directly support strings. Here
we'll scale the variables `height` and `mass`:
scale2 <- function(x, na.rm = FALSE) (x - mean(x, na.rm = na.rm)) / sd(x, na.rm)
starwars %>% mutate_at(c("height", "mass"), scale2)

You can pass additional arguments to the function:
starwars %>% mutate_at(c("height", "mass"), scale2, na.rm = TRUE)

You can also pass formulas to create functions on the spot, purrr-style:
starwars %>% mutate_at(c("height", "mass"), ˜scale2(., na.rm = TRUE))

You can also supply selection helpers to _at() functions but you have
to quote them with vars():
iris %>% mutate_at(vars(matches("Sepal")), log)

The _if() variants apply a predicate function (a function that
returns TRUE or FALSE) to determine the relevant subset of
columns. Here we divide all the numeric columns by 100:
starwars %>% mutate_if(is.numeric, scale2, na.rm = TRUE)

mutate_if() is particularly useful for transforming variables from
one type to another
iris %>% mutate_if(is.factor, as.character)
iris %>% mutate_if(is.double, as.integer)

Multiple transformations --

If you want to apply multiple transformations, pass a list of
functions. When there are multiple functions, they create new
variables instead of modifying the variables in place:
iris %>% mutate_if(is.numeric, list(scale2, log))

The list can contain purrr-style formulas:
iris %>% mutate_if(is.numeric, list(˜scale2(.), ˜log(.)))

Note how the new variables include the function name, in order to
keep things distinct. The default names are not always helpful
but you can also supply explicit names:
iris %>% mutate_if(is.numeric, list(scale = scale2, log = log))

When there's only one function in the list, it modifies existing
variables in place. Give it a name to instead create new variables:
iris %>% mutate_if(is.numeric, list(scale2))
iris %>% mutate_if(is.numeric, list(scale = scale2))

n The number of observations in the current group.

52 nasa

Description

This function is implemented specifically for each data source and can only be used from
within summarise(), mutate() and filter().

Usage

n()

Examples

if (require("nycflights13")) {
carriers <- group_by(flights, carrier)
summarise(carriers, n())
mutate(carriers, n = n())
filter(carriers, n() < 100)
}

nasa NASA spatio-temporal data

Description

This data comes from the ASA 2007 data expo, http://stat-computing.org/dataexpo/
2006/. The data are geographic and atmospheric measures on a very coarse 24 by 24 grid
covering Central America. The variables are: temperature (surface and air), ozone, air
pressure, and cloud cover (low, mid, and high). All variables are monthly averages, with
observations for Jan 1995 to Dec 2000. These data were obtained from the NASA Lan-
gley Research Center Atmospheric Sciences Data Center (with permission; see important
copyright terms below).

Usage

nasa

Format

A tbl cube with 41,472 observations.

Dimensions

� lat, long: latitude and longitude

� year, month: month and year

Measures

� cloudlow, cloudmed, cloudhigh: cloud cover at three heights

� ozone

� surftemp and temperature

� pressure

Examples

nasa

http://stat-computing.org/dataexpo/2006/
http://stat-computing.org/dataexpo/2006/

na if 53

na if Convert values to NA

Description

This is a translation of the SQL command NULL IF. It is useful if you want to convert an
annoying value to NA.

Usage

na_if(x, y)

Arguments

x Vector to modify

y Value to replace with NA

Value

A modified version of x that replaces any values that are equal to y with NA.

See Also

coalesce() to replace missing values with a specified value.

tidyr::replace na() to replace NA with a value.

recode() to more generally replace values.

Examples

na_if(1:5, 5:1)

x <- c(1, -1, 0, 10)
100 / x
100 / na_if(x, 0)

y <- c("abc", "def", "", "ghi")
na_if(y, "")

na_if is particularly useful inside mutate,
and is meant for use with vectors rather than entire data frames
starwars %>%

select(name, eye_color) %>%
mutate(eye_color = na_if(eye_color, "unknown"))

na_if can also be used with scoped variants of mutate
like mutate_if to mutate multiple columns
starwars %>%

mutate_if(is.character, list(˜na_if(., "unknown")))

54 nest join.data.frame

near Compare two numeric vectors

Description

This is a safe way of comparing if two vectors of floating point numbers are (pairwise) equal.
This is safer than using ==, because it has a built in tolerance

Usage

near(x, y, tol = .Machine$double.epsˆ0.5)

Arguments

x, y Numeric vectors to compare

tol Tolerance of comparison.

Examples

sqrt(2) ˆ 2 == 2
near(sqrt(2) ˆ 2, 2)

nest join.data.frame Join data frame tbls

Description

See join for a description of the general purpose of the functions.

Usage

S3 method for class 'data.frame'
nest_join(x, y, by = NULL, copy = FALSE,
keep = FALSE, name = NULL, ...)

S3 method for class 'tbl_df'
inner_join(x, y, by = NULL, copy = FALSE,
suffix = c(".x", ".y"), ...,
na_matches = pkgconfig::get_config("dplyr::na_matches"))

S3 method for class 'tbl_df'
nest_join(x, y, by = NULL, copy = FALSE,
keep = FALSE, name = NULL, ...)

S3 method for class 'tbl_df'
left_join(x, y, by = NULL, copy = FALSE,
suffix = c(".x", ".y"), ...,
na_matches = pkgconfig::get_config("dplyr::na_matches"))

S3 method for class 'tbl_df'

nest join.data.frame 55

right_join(x, y, by = NULL, copy = FALSE,
suffix = c(".x", ".y"), ...,
na_matches = pkgconfig::get_config("dplyr::na_matches"))

S3 method for class 'tbl_df'
full_join(x, y, by = NULL, copy = FALSE,
suffix = c(".x", ".y"), ...,
na_matches = pkgconfig::get_config("dplyr::na_matches"))

S3 method for class 'tbl_df'
semi_join(x, y, by = NULL, copy = FALSE, ...,
na_matches = pkgconfig::get_config("dplyr::na_matches"))

S3 method for class 'tbl_df'
anti_join(x, y, by = NULL, copy = FALSE, ...,
na_matches = pkgconfig::get_config("dplyr::na_matches"))

Arguments

x tbls to join

y tbls to join

by a character vector of variables to join by. If NULL, the default, * join()
will do a natural join, using all variables with common names across the
two tables. A message lists the variables so that you can check they’re
right (to suppress the message, simply explicitly list the variables that
you want to join).

To join by different variables on x and y use a named vector. For example,
by = c("a" = "b") will match x.a to y.b.

copy If x and y are not from the same data source, and copy is TRUE, then y
will be copied into the same src as x. This allows you to join tables across
srcs, but it is a potentially expensive operation so you must opt into it.

keep If TRUE the by columns are kept in the nesting joins.

name the name of the list column nesting joins create. If NULL the name of y is
used.

... included for compatibility with the generic; otherwise ignored.

suffix If there are non-joined duplicate variables in x and y, these suffixes will be
added to the output to disambiguate them. Should be a character vector
of length 2.

na matches Use "never" to always treat two NA or NaN values as different, like joins
for database sources, similarly to merge(incomparables = FALSE). The
default, "na", always treats two NA or NaN values as equal, like merge().
Users and package authors can change the default behavior by calling
pkgconfig::set config("dplyr::na matches" = "never").

Examples

if (require("Lahman")) {
batting_df <- tbl_df(Batting)
person_df <- tbl_df(Master)

uperson_df <- tbl_df(Master[!duplicated(Master$playerID),])

56 nth

Inner join: match batting and person data
inner_join(batting_df, person_df)
inner_join(batting_df, uperson_df)

Left join: match, but preserve batting data
left_join(batting_df, uperson_df)

Anti join: find batters without person data
anti_join(batting_df, person_df)
or people who didn't bat
anti_join(person_df, batting_df)
}

nth Extract the first, last or nth value from a vector

Description

These are straightforward wrappers around [[. The main advantage is that you can provide
an optional secondary vector that defines the ordering, and provide a default value to use
when the input is shorter than expected.

Usage

nth(x, n, order_by = NULL, default = default_missing(x))

first(x, order_by = NULL, default = default_missing(x))

last(x, order_by = NULL, default = default_missing(x))

Arguments

x A vector

n For nth value(), a single integer specifying the position. Negative inte-
gers index from the end (i.e. -1L will return the last value in the vector).

If a double is supplied, it will be silently truncated.

order by An optional vector used to determine the order

default A default value to use if the position does not exist in the input. This is
guessed by default for base vectors, where a missing value of the appro-
priate type is returned, and for lists, where a NULL is return.

For more complicated objects, you’ll need to supply this value. Make sure
it is the same type as x.

Value

A single value. [[is used to do the subsetting.

n distinct 57

Examples

x <- 1:10
y <- 10:1

first(x)
last(y)

nth(x, 1)
nth(x, 5)
nth(x, -2)
nth(x, 11)

last(x)
Second argument provides optional ordering
last(x, y)

These functions always return a single value
first(integer())

n distinct Efficiently count the number of unique values in a set of vector

Description

This is a faster and more concise equivalent of length(unique(x))

Usage

n_distinct(..., na.rm = FALSE)

Arguments

... vectors of values

na.rm if TRUE missing values don’t count

Examples

x <- sample(1:10, 1e5, rep = TRUE)
length(unique(x))
n_distinct(x)

order by A helper function for ordering window function output

Description

This function makes it possible to control the ordering of window functions in R that don’t
have a specific ordering parameter. When translated to SQL it will modify the order clause
of the OVER function.

58 pull

Usage

order_by(order_by, call)

Arguments

order by a vector to order by

call a function call to a window function, where the first argument is the vector
being operated on

Details

This function works by changing the call to instead call with order() with the appropriate
arguments.

Examples

order_by(10:1, cumsum(1:10))
x <- 10:1
y <- 1:10
order_by(x, cumsum(y))

df <- data.frame(year = 2000:2005, value = (0:5) ˆ 2)
scrambled <- df[sample(nrow(df)),]

wrong <- mutate(scrambled, running = cumsum(value))
arrange(wrong, year)

right <- mutate(scrambled, running = order_by(year, cumsum(value)))
arrange(right, year)

pull Pull out a single variable

Description

This works like [[for local data frames, and automatically collects before indexing for
remote data tables.

Usage

pull(.data, var = -1)

Arguments

.data A table of data

var A variable specified as:

� a literal variable name

� a positive integer, giving the position counting from the left

� a negative integer, giving the position counting from the right.

The default returns the last column (on the assumption that’s the column
you’ve created most recently).

This argument is taken by expression and supports quasiquotation (you
can unquote column names and column positions).

ranking 59

Examples

mtcars %>% pull(-1)
mtcars %>% pull(1)
mtcars %>% pull(cyl)

Also works for remote sources
if (requireNamespace("dbplyr", quietly = TRUE)) {
df <- dbplyr::memdb_frame(x = 1:10, y = 10:1, .name = "pull-ex")
df %>%

mutate(z = x * y) %>%
pull()

}

ranking Windowed rank functions.

Description

Six variations on ranking functions, mimicking the ranking functions described in SQL2003.
They are currently implemented using the built in rank function, and are provided mainly
as a convenience when converting between R and SQL. All ranking functions map smallest
inputs to smallest outputs. Use desc() to reverse the direction.

Usage

row_number(x)

ntile(x = row_number(), n)

min_rank(x)

dense_rank(x)

percent_rank(x)

cume_dist(x)

Arguments

x a vector of values to rank. Missing values are left as is. If you want to
treat them as the smallest or largest values, replace with Inf or -Inf before
ranking.

n number of groups to split up into.

Details

� row number(): equivalent to rank(ties.method = "first")

� min rank(): equivalent to rank(ties.method = "min")

� dense rank(): like min rank(), but with no gaps between ranks

� percent rank(): a number between 0 and 1 computed by rescaling min rank to [0,1]

60 recode

� cume dist(): a cumulative distribution function. Proportion of all values less than or
equal to the current rank.

� ntile(): a rough rank, which breaks the input vector into n buckets.

Examples

x <- c(5, 1, 3, 2, 2, NA)
row_number(x)
min_rank(x)
dense_rank(x)
percent_rank(x)
cume_dist(x)

ntile(x, 2)
ntile(runif(100), 10)

row_number can be used with single table verbs without specifying x
(for data frames and databases that support windowing)
mutate(mtcars, row_number() == 1L)
mtcars %>% filter(between(row_number(), 1, 10))

recode Recode values

Description

This is a vectorised version of switch(): you can replace numeric values based on their
position or their name, and character or factor values only by their name. This is an S3
generic: dplyr provides methods for numeric, character, and factors. For logical vectors,
use if else(). For more complicated criteria, use case when().

Usage

recode(.x, ..., .default = NULL, .missing = NULL)

recode_factor(.x, ..., .default = NULL, .missing = NULL,
.ordered = FALSE)

Arguments

.x A vector to modify

... Replacements. For character and factor .x, these should be named and
replacement is based only on their name. For numeric .x, these can be
named or not. If not named, the replacement is done based on position
i.e. .x represents positions to look for in replacements. See examples.

When named, the argument names should be the current values to be re-
placed, and the argument values should be the new (replacement) values.

All replacements must be the same type, and must have either length one
or the same length as .x.

These dots support tidy dots features.

recode 61

.default If supplied, all values not otherwise matched will be given this value. If
not supplied and if the replacements are the same type as the original
values in .x, unmatched values are not changed. If not supplied and if
the replacements are not compatible, unmatched values are replaced with
NA.

.default must be either length 1 or the same length as .x.

.missing If supplied, any missing values in .x will be replaced by this value. Must
be either length 1 or the same length as .x.

.ordered If TRUE, recode factor() creates an ordered factor.

Details

You can use recode() directly with factors; it will preserve the existing order of levels while
changing the values. Alternatively, you can use recode factor(), which will change the
order of levels to match the order of replacements. See the forcats package for more tools
for working with factors and their levels.

Value

A vector the same length as .x, and the same type as the first of ..., .default, or .missing.
recode factor() returns a factor whose levels are in the same order as in The levels
in .default and .missing come last.

See Also

na if() to replace specified values with a NA.

coalesce() to replace missing values with a specified value.

tidyr::replace na() to replace NA with a value.

Examples

For character values, recode values with named arguments only. Unmatched
values are unchanged.
char_vec <- sample(c("a", "b", "c"), 10, replace = TRUE)
recode(char_vec, a = "Apple")
recode(char_vec, a = "Apple", b = "Banana")

Use .default as replacement for unmatched values
recode(char_vec, a = "Apple", b = "Banana", .default = NA_character_)

Use a named character vector for unquote splicing with !!!
level_key <- c(a = "apple", b = "banana", c = "carrot")
recode(char_vec, !!!level_key)

For numeric values, named arguments can also be used
num_vec <- c(1:4, NA)
recode(num_vec, `2` = 20L, `4` = 40L)

Or if you don't name the arguments, recode() matches by position.
(Only works for numeric vector)
recode(num_vec, "a", "b", "c", "d")
.x (position given) looks in (...), then grabs (... value at position)
so if nothing at position (here 5), it uses .default or NA.
recode(c(1,5,3), "a", "b", "c", "d", .default = "nothing")

http://forcats.tidyverse.org/

62 rowwise

Note that if the replacements are not compatible with .x,
unmatched values are replaced by NA and a warning is issued.
recode(num_vec, `2` = "b", `4` = "d")
use .default to change the replacement value
recode(num_vec, "a", "b", "c", .default = "other")
use .missing to replace missing values in .x
recode(num_vec, "a", "b", "c", .default = "other", .missing = "missing")

For factor values, use only named replacements
and supply default with levels()
factor_vec <- factor(c("a", "b", "c"))
recode(factor_vec, a = "Apple", .default = levels(factor_vec))

Use recode_factor() to create factors with levels ordered as they
appear in the recode call. The levels in .default and .missing
come last.
recode_factor(num_vec, `1` = "z", `2` = "y", `3` = "x")
recode_factor(num_vec, `1` = "z", `2` = "y", `3` = "x",

.default = "D")
recode_factor(num_vec, `1` = "z", `2` = "y", `3` = "x",

.default = "D", .missing = "M")

When the input vector is a compatible vector (character vector or
factor), it is reused as default.
recode_factor(letters[1:3], b = "z", c = "y")
recode_factor(factor(letters[1:3]), b = "z", c = "y")

Use a named character vector to recode factors with unquote splicing.
level_key <- c(a = "apple", b = "banana", c = "carrot")
recode_factor(char_vec, !!!level_key)

rowwise Group input by rows

Description

Questioning

Usage

rowwise(data)

Arguments

data Input data frame.

Details

See this repository for alternative ways to perform row-wise operations

rowwise() is used for the results of do() when you create list-variables. It is also useful to
support arbitrary complex operations that need to be applied to each row.

Currently, rowwise grouping only works with data frames. Its main impact is to allow you
to work with list-variables in summarise() and mutate() without having to use [[1]]. This
makes summarise() on a rowwise tbl effectively equivalent to plyr::ldply().

https://github.com/jennybc/row-oriented-workflows

sample 63

Examples

df <- expand.grid(x = 1:3, y = 3:1)
df_done <- df %>% rowwise() %>% do(i = seq(.$x, .$y))
df_done
df_done %>% summarise(n = length(i))

sample Sample n rows from a table

Description

This is a wrapper around sample.int() to make it easy to select random rows from a table.
It currently only works for local tbls.

Usage

sample_n(tbl, size, replace = FALSE, weight = NULL, .env = NULL, ...)

sample_frac(tbl, size = 1, replace = FALSE, weight = NULL,
.env = NULL, ...)

Arguments

tbl tbl of data.

size For sample n(), the number of rows to select. For sample frac(), the
fraction of rows to select. If tbl is grouped, size applies to each group.

replace Sample with or without replacement?

weight Sampling weights. This must evaluate to a vector of non-negative numbers
the same length as the input. Weights are automatically standardised to
sum to 1.

This argument is automatically quoted and later evaluated in the context
of the data frame. It supports unquoting. See vignette("programming")
for an introduction to these concepts.

.env This variable is deprecated and no longer has any effect. To evaluate
weight in a particular context, you can now unquote a quosure.

... ignored

Examples

by_cyl <- mtcars %>% group_by(cyl)

Sample fixed number per group
sample_n(mtcars, 10)
sample_n(mtcars, 50, replace = TRUE)
sample_n(mtcars, 10, weight = mpg)

sample_n(by_cyl, 3)
sample_n(by_cyl, 10, replace = TRUE)
sample_n(by_cyl, 3, weight = mpg / mean(mpg))

Sample fixed fraction per group

64 scoped

Default is to sample all data = randomly resample rows
sample_frac(mtcars)

sample_frac(mtcars, 0.1)
sample_frac(mtcars, 1.5, replace = TRUE)
sample_frac(mtcars, 0.1, weight = 1 / mpg)

sample_frac(by_cyl, 0.2)
sample_frac(by_cyl, 1, replace = TRUE)

scoped Operate on a selection of variables

Description

The variants suffixed with if, at or all apply an expression (sometimes several) to all
variables within a specified subset. This subset can contain all variables (all variants), a
vars() selection (at variants), or variables selected with a predicate (if variants).

Arguments

.tbl A tbl object.

.funs A function fun, a quosure style lambda ˜ fun(.) or a list of either form.

.vars A list of columns generated by vars(), a character vector of column
names, a numeric vector of column positions, or NULL.

.predicate A predicate function to be applied to the columns or a logical vector.
The variables for which .predicate is or returns TRUE are selected. This
argument is passed to rlang::as function() and thus supports quosure-
style lambda functions and strings representing function names.

... Additional arguments for the function calls in .funs. These are evaluated
only once, with tidy dots support.

Details

The verbs with scoped variants are:

� mutate(), transmute() and summarise(). See summarise all().

� filter(). See filter all().

� group by(). See group by all().

� rename() and select(). See select all().

� arrange(). See arrange all()

There are three kinds of scoped variants. They differ in the scope of the variable selection
on which operations are applied:

� Verbs suffixed with all() apply an operation on all variables.

� Verbs suffixed with at() apply an operation on a subset of variables specified with the
quoting function vars(). This quoting function accepts tidyselect::vars select()
helpers like starts with(). Instead of a vars() selection, you can also supply an
integerish vector of column positions or a character vector of column names.

� Verbs suffixed with if() apply an operation on the subset of variables for which a
predicate function returns TRUE. Instead of a predicate function, you can also supply
a logical vector.

select 65

Grouping variables

Most of these operations also apply on the grouping variables when they are part of the
selection. This includes:

� arrange all(), arrange at(), and arrange if()

� distinct all(), distinct at(), and distinct if()

� filter all(), filter at(), and filter if()

� group by all(), group by at(), and group by if()

� select all(), select at(), and select if()

This is not the case for summarising and mutating variants where operations are not applied
on grouping variables. The behaviour depends on whether the selection is implicit (all and
if selections) or explicit (at selections). Grouping variables covered by explicit selections
(with summarise at(), mutate at(), and transmute at()) are always an error. For implicit
selections, the grouping variables are always ignored. In this case, the level of verbosity
depends on the kind of operation:

� Summarising operations (summarise all() and summarise if()) ignore grouping vari-
ables silently because it is obvious that operations are not applied on grouping vari-
ables.

� On the other hand it isn’t as obvious in the case of mutating operations (mutate all(),
mutate if(), transmute all(), and transmute if()). For this reason, they issue a
message indicating which grouping variables are ignored.

select Select/rename variables by name

Description

Choose or rename variables from a tbl. select() keeps only the variables you mention;
rename() keeps all variables.

Usage

select(.data, ...)

rename(.data, ...)

Arguments

.data A tbl. All main verbs are S3 generics and provide methods for tbl df(),
dtplyr::tbl dt() and dbplyr::tbl dbi().

... One or more unquoted expressions separated by commas. You can treat
variable names like they are positions, so you can use expressions like x:y
to select ranges of variables.

Positive values select variables; negative values drop variables. If the first
expression is negative, select() will automatically start with all variables.

Use named arguments, e.g. new name = old name, to rename selected vari-
ables.

66 select

The arguments in ... are automatically quoted and evaluated in a context
where column names represent column positions. They also support un-
quoting and splicing. See vignette("programming") for an introduction
to these concepts.

See select helpers for more details and examples about tidyselect helpers
such as starts with(), everything(), ...

Details

These functions work by column index, not value; thus, an expression like select(data.frame(x
= 1:5,y = 10),z = x+1) does not create a variable with values 2:6. (In the current imple-
mentation, the expression z = x+1 wouldn’t do anything useful.) To calculate using column
values, see mutate()/transmute().

Value

An object of the same class as .data.

Useful functions

As well as using existing functions like : and c(), there are a number of special functions
that only work inside select():

� starts with(), ends with(), contains()

� matches()

� num range()

� one of()

� everything()

� group cols()

To drop variables, use -.

Note that except for :, - and c(), all complex expressions are evaluated outside the data
frame context. This is to prevent accidental matching of data frame variables when you
refer to variables from the calling context.

Scoped selection and renaming

The three scoped variants of select() (select all(), select if() and select at()) and
the three variants of rename() (rename all(), rename if(), rename at()) make it easy to
apply a renaming function to a selection of variables.

Tidy data

When applied to a data frame, row names are silently dropped. To preserve, convert to an
explicit variable with tibble::rownames to column().

See Also

Other single table verbs: arrange, filter, mutate, slice, summarise

select 67

Examples

iris <- as_tibble(iris) # so it prints a little nicer
select(iris, starts_with("Petal"))
select(iris, ends_with("Width"))

Move Species variable to the front
select(iris, Species, everything())

Move Sepal.Length variable to back
first select all variables except Sepal.Length, then re select Sepal.Length
select(iris, -Sepal.Length, Sepal.Length)

df <- as.data.frame(matrix(runif(100), nrow = 10))
df <- tbl_df(df[c(3, 4, 7, 1, 9, 8, 5, 2, 6, 10)])
select(df, V4:V6)
select(df, num_range("V", 4:6))

Drop variables with -
select(iris, -starts_with("Petal"))

Select the grouping variables:
starwars %>% group_by(gender) %>% select(group_cols())

The .data pronoun is available:
select(mtcars, .data$cyl)
select(mtcars, .data$mpg : .data$disp)

However it isn't available within calls since those are evaluated
outside of the data context. This would fail if run:
select(mtcars, identical(.data$cyl))

Renaming ---
* select() keeps only the variables you specify
select(iris, petal_length = Petal.Length)

* rename() keeps all variables
rename(iris, petal_length = Petal.Length)

* select() can rename variables in a group
select(iris, obs = starts_with('S'))

Unquoting --

Like all dplyr verbs, select() supports unquoting of symbols:
vars <- list(

var1 = sym("cyl"),
var2 = sym("am")

)
select(mtcars, !!!vars)

For convenience it also supports strings and character
vectors. This is unlike other verbs where strings would be
ambiguous.
vars <- c(var1 = "cyl", var2 ="am")

68 select all

select(mtcars, !!vars)
rename(mtcars, !!vars)

select all Select and rename a selection of variables

Description

These scoped variants of select() and rename() operate on a selection of variables. The
semantics of these verbs have subtle but important differences:

� Selection drops variables that are not in the selection while renaming retains them.

� The renaming function is optional for selection but not for renaming.

The if and at variants always retain grouping variables for grouped data frames.

Usage

select_all(.tbl, .funs = list(), ...)

rename_all(.tbl, .funs = list(), ...)

select_if(.tbl, .predicate, .funs = list(), ...)

rename_if(.tbl, .predicate, .funs = list(), ...)

select_at(.tbl, .vars, .funs = list(), ...)

rename_at(.tbl, .vars, .funs = list(), ...)

Arguments

.tbl A tbl object.

.funs A function fun, a purrr style lambda ˜ fun(.) or a list of either form.

... Additional arguments for the function calls in .funs. These are evaluated
only once, with tidy dots support.

.predicate A predicate function to be applied to the columns or a logical vector.
The variables for which .predicate is or returns TRUE are selected. This
argument is passed to rlang::as function() and thus supports quosure-
style lambda functions and strings representing function names.

.vars A list of columns generated by vars(), a character vector of column
names, a numeric vector of column positions, or NULL.

Grouping variables

Existing grouping variables are always kept in the data frame, even if not included in the
selection.

select vars 69

Examples

Supply a renaming function:
select_all(mtcars, toupper)
select_all(mtcars, "toupper")
select_all(mtcars, list(˜toupper(.)))

Selection drops unselected variables:
is_whole <- function(x) all(floor(x) == x)
select_if(mtcars, is_whole, toupper)
select_at(mtcars, vars(-contains("ar"), starts_with("c")), toupper)

But renaming retains them:
rename_if(mtcars, is_whole, toupper)
rename_at(mtcars, vars(-(1:3)), toupper)
rename_all(mtcars, toupper)

The renaming function is optional for selection:
select_if(mtcars, is_whole)
select_at(mtcars, vars(-everything()))
select_all(mtcars)

select vars Select variables

Description

Retired: These functions now live in the tidyselect package as tidyselect::vars select(),
tidyselect::vars rename() and tidyselect::vars pull(). These dplyr aliases are soft-
deprecated and will be deprecated sometimes in the future.

Usage

select_vars(vars = chr(), ..., include = chr(), exclude = chr())

rename_vars(vars = chr(), ..., strict = TRUE)

select_var(vars, var = -1)

current_vars(...)

Arguments

vars A character vector of existing column names.

... Expressions to compute.

include, exclude

Character vector of column names to always include/exclude.

strict If TRUE, will throw an error if you attempt to rename a variable that
doesn’t exist.

var A variable specified as in the same argument of tidyselect::vars pull().

70 setops

Details

Deprecated

setops Set operations

Description

These functions override the set functions provided in base to make them generic so that
efficient versions for data frames and other tables can be provided. The default methods call
the base versions. Beware that intersect(), union() and setdiff() remove duplicates.

Usage

intersect(x, y, ...)

union(x, y, ...)

union_all(x, y, ...)

setdiff(x, y, ...)

setequal(x, y, ...)

Arguments

x, y objects to perform set function on (ignoring order)

... other arguments passed on to methods

Examples

mtcars$model <- rownames(mtcars)
first <- mtcars[1:20,]
second <- mtcars[10:32,]

intersect(first, second)
union(first, second)
setdiff(first, second)
setdiff(second, first)

union_all(first, second)
setequal(mtcars, mtcars[32:1,])

Handling of duplicates:
a <- data.frame(column = c(1:10, 10))
b <- data.frame(column = c(1:5, 5))

intersection is 1 to 5, duplicates removed (5)
intersect(a, b)

union is 1 to 10, duplicates removed (5 and 10)
union(a, b)

slice 71

set difference, duplicates removed (10)
setdiff(a, b)

union all does not remove duplicates
union_all(a, b)

slice Choose rows by position

Description

Choose rows by their ordinal position in the tbl. Grouped tbls use the ordinal position
within the group.

Usage

slice(.data, ..., .preserve = FALSE)

Arguments

.data A tbl.

... Integer row values. Provide either positive values to keep, or negative
values to drop. The values provided must be either all positive or all
negative. Indices beyond the number of rows in the input are silently
ignored.

The arguments in ... are automatically quoted and evaluated in the
context of the data frame. They support unquoting and splicing. See
vignette("programming") for an introduction to these concepts.

.preserve when FALSE (the default), the grouping structure is recalculated based on
the resulting data, otherwise it is kept as is.

Details

Slice does not work with relational databases because they have no intrinsic notion of row
order. If you want to perform the equivalent operation, use filter() and row number().

Tidy data

When applied to a data frame, row names are silently dropped. To preserve, convert to an
explicit variable with tibble::rownames to column().

See Also

Other single table verbs: arrange, filter, mutate, select, summarise

72 src dbi

Examples

slice(mtcars, 1L)
Similar to tail(mtcars, 1):
slice(mtcars, n())
slice(mtcars, 5:n())
Rows can be dropped with negative indices:
slice(mtcars, -5:-n())
In this case, the result will be equivalent to:
slice(mtcars, 1:4)

by_cyl <- group_by(mtcars, cyl)
slice(by_cyl, 1:2)

Equivalent code using filter that will also work with databases,
but won't be as fast for in-memory data. For many databases, you'll
need to supply an explicit variable to use to compute the row number.
filter(mtcars, row_number() == 1L)
filter(mtcars, row_number() == n())
filter(mtcars, between(row_number(), 5, n()))

sql SQL escaping.

Description

These functions are critical when writing functions that translate R functions to sql func-
tions. Typically a conversion function should escape all its inputs and return an sql object.

Usage

sql(...)

Arguments

... Character vectors that will be combined into a single SQL expression.

src dbi Source for database backends

Description

For backward compatibility dplyr provides three srcs for popular open source databases:

� src mysql() connects to a MySQL or MariaDB database using RMySQL::MySQL().

� src postgres() connects to PostgreSQL using RPostgreSQL::PostgreSQL()

� src sqlite() to connect to a SQLite database using RSQLite::SQLite().

However, modern best practice is to use tbl() directly on an DBIConnection.

src dbi 73

Usage

src_mysql(dbname, host = NULL, port = 0L, username = "root",
password = "", ...)

src_postgres(dbname = NULL, host = NULL, port = NULL, user = NULL,
password = NULL, ...)

src_sqlite(path, create = FALSE)

Arguments

dbname Database name

host, port Host name and port number of database

... for the src, other arguments passed on to the underlying database con-
nector, DBI::dbConnect(). For the tbl, included for compatibility with
the generic, but otherwise ignored.

user, username, password

User name and password.

Generally, you should avoid saving username and password in your scripts
as it is easy to accidentally expose valuable credentials. Instead, re-
trieve them from environment variables, or use database specific credential
scores. For example, with MySQL you can set up my.cnf as described in
RMySQL::MySQL().

path Path to SQLite database. You can use the special path ”:memory:” to
create a temporary in memory database.

create if FALSE, path must already exist. If TRUE, will create a new SQLite3
database at path if path does not exist and connect to the existing
database if path does exist.

Details

All data manipulation on SQL tbls are lazy: they will not actually run the query or retrieve
the data unless you ask for it: they all return a new tbl dbi object. Use compute() to run
the query and save the results in a temporary in the database, or use collect() to retrieve
the results to R. You can see the query with show query().

For best performance, the database should have an index on the variables that you are
grouping by. Use explain() to check that the database is using the indexes that you
expect.

There is one exception: do() is not lazy since it must pull the data into R.

Value

An S3 object with class src dbi, src sql, src.

Examples

Basic connection using DBI ---
if (require(dbplyr, quietly = TRUE)) {

con <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")
copy_to(con, mtcars)

74 starwars

DBI::dbListTables(con)

To retrieve a single table from a source, use `tbl()`
con %>% tbl("mtcars")

You can also use pass raw SQL if you want a more sophisticated query
con %>% tbl(sql("SELECT * FROM mtcars WHERE cyl == 8"))

To show off the full features of dplyr's database integration,
we'll use the Lahman database. lahman_sqlite() takes care of
creating the database.
lahman_p <- lahman_sqlite()
batting <- lahman_p %>% tbl("Batting")
batting

Basic data manipulation verbs work in the same way as with a tibble
batting %>% filter(yearID > 2005, G > 130)
batting %>% select(playerID:lgID)
batting %>% arrange(playerID, desc(yearID))
batting %>% summarise(G = mean(G), n = n())

There are a few exceptions. For example, databases give integer results
when dividing one integer by another. Multiply by 1 to fix the problem
batting %>%

select(playerID:lgID, AB, R, G) %>%
mutate(
R_per_game1 = R / G,
R_per_game2 = R * 1.0 / G

)

All operations are lazy: they don't do anything until you request the
data, either by `print()`ing it (which shows the first ten rows),
or by `collect()`ing the results locally.
system.time(recent <- filter(batting, yearID > 2010))
system.time(collect(recent))

You can see the query that dplyr creates with show_query()
batting %>%

filter(G > 0) %>%
group_by(playerID) %>%
summarise(n = n()) %>%
show_query()

}

starwars Starwars characters

Description

This data comes from SWAPI, the Star Wars API, http://swapi.co/

Usage

starwars

http://swapi.co/

storms 75

Format

A tibble with 87 rows and 13 variables:

name Name of the character

height Height (cm)

mass Weight (kg)

hair color,skin color,eye color Hair, skin, and eye colors

birth year Year born (BBY = Before Battle of Yavin)

gender male, female, hermaphrodite, or none.

homeworld Name of homeworld

species Name of species

films List of films the character appeared in

vehicles List of vehicles the character has piloted

starships List of starships the character has piloted

Examples

starwars

storms Storm tracks data

Description

This data is a subset of the NOAA Atlantic hurricane database best track data, http:
//www.nhc.noaa.gov/data/#hurdat. The data includes the positions and attributes of 198
tropical storms, measured every six hours during the lifetime of a storm.

Usage

storms

Format

A tibble with 10,010 observations and 13 variables:

name Storm Name

year,month,day Date of report

hour Hour of report (in UTC)

lat,long Location of storm center

status Storm classification (Tropical Depression, Tropical Storm, or Hurricane)

category Saffir-Simpson storm category (estimated from wind speed. -1 = Tropical De-
pression, 0 = Tropical Storm)

wind storm’s maximum sustained wind speed (in knots)

pressure Air pressure at the storm’s center (in millibars)

ts diameter Diameter of the area experiencing tropical storm strength winds (34 knots
or above)

hu diameter Diameter of the area experiencing hurricane strength winds (64 knots or
above)

http://www.nhc.noaa.gov/data/#hurdat
http://www.nhc.noaa.gov/data/#hurdat

76 summarise

See Also

The script to create the storms data set: https://github.com/tidyverse/dplyr/blob/
master/data-raw/storms.R

Examples

storms

summarise Reduce multiple values down to a single value

Description

Create one or more scalar variables summarizing the variables of an existing tbl. Tbls with
groups created by group by() will result in one row in the output for each group. Tbls with
no groups will result in one row.

Usage

summarise(.data, ...)

summarize(.data, ...)

Arguments

.data A tbl. All main verbs are S3 generics and provide methods for tbl df(),
dtplyr::tbl dt() and dbplyr::tbl dbi().

... Name-value pairs of summary functions. The name will be the name of
the variable in the result. The value should be an expression that returns
a single value like min(x), n(), or sum(is.na(y)).

The arguments in ... are automatically quoted and evaluated in the
context of the data frame. They support unquoting and splicing. See
vignette("programming") for an introduction to these concepts.

Details

summarise() and summarize() are synonyms.

Value

An object of the same class as .data. One grouping level will be dropped.

Useful functions

� Center: mean(), median()

� Spread: sd(), IQR(), mad()

� Range: min(), max(), quantile()

� Position: first(), last(), nth(),

� Count: n(), n distinct()

� Logical: any(), all()

https://github.com/tidyverse/dplyr/blob/master/data-raw/storms.R
https://github.com/tidyverse/dplyr/blob/master/data-raw/storms.R

summarise 77

Backend variations

The data frame backend supports creating a variable and using it in the same summary. This
means that previously created summary variables can be further transformed or combined
within the summary, as in mutate(). However, it also means that summary variables with
the same names as previous variables overwrite them, making those variables unavailable
to later summary variables.

This behaviour may not be supported in other backends. To avoid unexpected results,
consider using new names for your summary variables, especially when creating multiple
summaries.

Tidy data

When applied to a data frame, row names are silently dropped. To preserve, convert to an
explicit variable with tibble::rownames to column().

See Also

Other single table verbs: arrange, filter, mutate, select, slice

Examples

A summary applied to ungrouped tbl returns a single row
mtcars %>%

summarise(mean = mean(disp), n = n())

Usually, you'll want to group first
mtcars %>%

group_by(cyl) %>%
summarise(mean = mean(disp), n = n())

Each summary call removes one grouping level (since that group
is now just a single row)
mtcars %>%

group_by(cyl, vs) %>%
summarise(cyl_n = n()) %>%
group_vars()

Reusing variable names when summarising may lead to unexpected results
mtcars %>%

group_by(cyl) %>%
summarise(disp = mean(disp), sd = sd(disp), double_disp = disp * 2)

Refer to column names stored as strings with the `.data` pronoun:
var <- "mass"
summarise(starwars, avg = mean(.data[[var]], na.rm = TRUE))

For more complex cases, knowledge of tidy evaluation and the
unquote operator `!!` is required. See https://tidyeval.tidyverse.org/
#
One useful and simple tidy eval technique is to use `!!` to
bypass the data frame and its columns. Here is how to divide the
column `mass` by an object of the same name:
mass <- 100
summarise(starwars, avg = mean(mass / !!mass, na.rm = TRUE))

78 summarise all

summarise all Summarise multiple columns

Description

The scoped variants of summarise() make it easy to apply the same transformation to
multiple variables. There are three variants.

� summarise all() affects every variable

� summarise at() affects variables selected with a character vector or vars()

� summarise if() affects variables selected with a predicate function

Usage

summarise_all(.tbl, .funs, ...)

summarise_if(.tbl, .predicate, .funs, ...)

summarise_at(.tbl, .vars, .funs, ..., .cols = NULL)

summarize_all(.tbl, .funs, ...)

summarize_if(.tbl, .predicate, .funs, ...)

summarize_at(.tbl, .vars, .funs, ..., .cols = NULL)

Arguments

.tbl A tbl object.

.funs A function fun, a quosure style lambda ˜ fun(.) or a list of either form.

... Additional arguments for the function calls in .funs. These are evaluated
only once, with tidy dots support.

.predicate A predicate function to be applied to the columns or a logical vector.
The variables for which .predicate is or returns TRUE are selected. This
argument is passed to rlang::as function() and thus supports quosure-
style lambda functions and strings representing function names.

.vars A list of columns generated by vars(), a character vector of column
names, a numeric vector of column positions, or NULL.

.cols This argument has been renamed to .vars to fit dplyr’s terminology and
is deprecated.

Value

A data frame. By default, the newly created columns have the shortest names needed to
uniquely identify the output. To force inclusion of a name, even when not needed, name
the input (see examples for details).

summarise all 79

Grouping variables

If applied on a grouped tibble, these operations are not applied to the grouping variables.
The behaviour depends on whether the selection is implicit (all and if selections) or
explicit (at selections).

� Grouping variables covered by explicit selections in summarise at() are always an
error. Add -group cols() to the vars() selection to avoid this:

data %>%
summarise_at(vars(-group_cols(), ...), myoperation)

Or remove group vars() from the character vector of column names:

nms <- setdiff(nms, group_vars(data))
data %>% summarise_at(vars, myoperation)

� Grouping variables covered by implicit selections are silently ignored by summarise all()
and summarise if().

Naming

The names of the created columns is derived from the names of the input variables and the
names of the functions.

� if there is only one unnamed function, the names of the input variables are used to
name the created columns

� if there is only one unnamed variable, the names of the functions are used to name
the created columns.

� otherwise in the most general case, the created names are created by concatenating
the names of the input variables and the names of the functions.

The names of the functions here means the names of the list of functions that is supplied.
When needed and not supplied, the name of a function is the prefix ”fn” followed by the
index of this function within the unnamed functions in the list. Ultimately, names are made
unique.

See Also

The other scoped verbs, vars()

Examples

by_species <- iris %>%
group_by(Species)

The _at() variants directly support strings:
starwars %>%

summarise_at(c("height", "mass"), mean, na.rm = TRUE)

You can also supply selection helpers to _at() functions but you have
to quote them with vars():
starwars %>%

summarise_at(vars(height:mass), mean, na.rm = TRUE)

The _if() variants apply a predicate function (a function that
returns TRUE or FALSE) to determine the relevant subset of

80 tally

columns. Here we apply mean() to the numeric columns:
starwars %>%

summarise_if(is.numeric, mean, na.rm = TRUE)

If you want to apply multiple transformations, pass a list of
functions. When there are multiple functions, they create new
variables instead of modifying the variables in place:
by_species %>%

summarise_all(list(min, max))

Note how the new variables include the function name, in order to
keep things distinct. Passing purrr-style lambdas often creates
better default names:
by_species %>%

summarise_all(list(˜min(.), ˜max(.)))

When that's not good enough, you can also supply the names explicitly:
by_species %>%

summarise_all(list(min = min, max = max))

When there's only one function in the list, it modifies existing
variables in place. Give it a name to create new variables instead:
by_species %>% summarise_all(list(med = median))
by_species %>% summarise_all(list(Q3 = quantile), probs = 0.75)

tally Count/tally observations by group

Description

tally() is a convenient wrapper for summarise that will either call n() or sum(n) depending
on whether you’re tallying for the first time, or re-tallying. count() is similar but calls
group by() before and ungroup() after. If the data is already grouped, count() adds an
additional group that is removed afterwards.

add tally() adds a column n to a table based on the number of items within each existing
group, while add count() is a shortcut that does the grouping as well. These functions are
to tally() and count() as mutate() is to summarise(): they add an additional column
rather than collapsing each group.

Usage

tally(x, wt = NULL, sort = FALSE, name = "n")

count(x, ..., wt = NULL, sort = FALSE, name = "n",
.drop = group_by_drop_default(x))

add_tally(x, wt, sort = FALSE, name = "n")

add_count(x, ..., wt = NULL, sort = FALSE, name = "n")

tally 81

Arguments

x a tbl() to tally/count.

wt (Optional) If omitted (and no variable named n exists in the data), will
count the number of rows. If specified, will perform a ”weighted” tally
by summing the (non-missing) values of variable wt. A column named
n (but not nn or nnn) will be used as weighting variable by default in
tally(), but not in count(). This argument is automatically quoted and
later evaluated in the context of the data frame. It supports unquoting.
See vignette("programming") for an introduction to these concepts.

sort if TRUE will sort output in descending order of n

name The output column name. If omitted, it will be n.

... Variables to group by.

.drop see group by()

Value

A tbl, grouped the same way as x.

Note

The column name in the returned data is given by the name argument, set to "n" by default.

If the data already has a column by that name, the output column will be prefixed by an
extra "n" as many times as necessary.

Examples

tally() is short-hand for summarise()
mtcars %>% tally()
mtcars %>% group_by(cyl) %>% tally()
count() is a short-hand for group_by() + tally()
mtcars %>% count(cyl)
Note that if the data is already grouped, count() adds
an additional group that is removed afterwards
mtcars %>% group_by(gear) %>% count(carb)

add_tally() is short-hand for mutate()
mtcars %>% add_tally()
add_count() is a short-hand for group_by() + add_tally()
mtcars %>% add_count(cyl)

count() and tally() are designed so that you can call
them repeatedly, each time rolling up a level of detail
species <-
starwars %>%
count(species, homeworld, sort = TRUE)

species
species %>% count(species, sort = TRUE)

Change the name of the newly created column:
species <-
starwars %>%
count(species, homeworld, sort = TRUE, name = "n_species_by_homeworld")

species

82 tbl cube

species %>%
count(species, sort = TRUE, name = "n_species")

add_count() is useful for groupwise filtering
e.g.: show details for species that have a single member
starwars %>%

add_count(species) %>%
filter(n == 1)

tbl Create a table from a data source

Description

This is a generic method that dispatches based on the first argument.

Usage

tbl(src, ...)

is.tbl(x)

as.tbl(x, ...)

Arguments

src A data source

... Other arguments passed on to the individual methods

x an object to coerce to a tbl

tbl cube A data cube tbl

Description

A cube tbl stores data in a compact array format where dimension names are not needlessly
repeated. They are particularly appropriate for experimental data where all combinations
of factors are tried (e.g. complete factorial designs), or for storing the result of aggregations.
Compared to data frames, they will occupy much less memory when variables are crossed,
not nested.

Usage

tbl_cube(dimensions, measures)

tbl cube 83

Arguments

dimensions A named list of vectors. A dimension is a variable whose values are known
before the experiment is conducted; they are fixed by design (in reshape2
they are known as id variables). tbl cubes are dense which means that
almost every combination of the dimensions should have associated mea-
surements: missing values require an explicit NA, so if the variables are
nested, not crossed, the majority of the data structure will be empty.
Dimensions are typically, but not always, categorical variables.

measures A named list of arrays. A measure is something that is actually measured,
and is not known in advance. The dimension of each array should be the
same as the length of the dimensions. Measures are typically, but not
always, continuous values.

Details

tbl cube support is currently experimental and little performance optimisation has been
done, but you may find them useful if your data already comes in this form, or you struggle
with the memory overhead of the sparse/crossed of data frames. There is no support for
hierarchical indices (although I think that would be a relatively straightforward extension
to storing data frames for indices rather than vectors).

Implementation

Manipulation functions:

� select() (M)

� summarise() (M), corresponds to roll-up, but rather more limited since there are no
hierarchies.

� filter() (D), corresponds to slice/dice.

� mutate() (M) is not implemented, but should be relatively straightforward given the
implementation of summarise.

� arrange() (D?) Not implemented: not obvious how much sense it would make

Joins: not implemented. See vignettes/joins.graffle for ideas. Probably straightfor-
ward if you get the indexes right, and that’s probably some straightforward array/tensor
operation.

See Also

as.tbl cube() for ways of coercing existing data structures into a tbl cube.

Examples

The built in nasa dataset records meterological data (temperature,
cloud cover, ozone etc) for a 4d spatio-temporal dataset (lat, long,
month and year)
nasa
head(as.data.frame(nasa))

titanic <- as.tbl_cube(Titanic)
head(as.data.frame(titanic))

admit <- as.tbl_cube(UCBAdmissions)

84 top n

head(as.data.frame(admit))

as.tbl_cube(esoph, dim_names = 1:3)

Some manipulation examples with the NASA dataset --------------------------

select() operates only on measures: it doesn't affect dimensions in any way
select(nasa, cloudhigh:cloudmid)
select(nasa, matches("temp"))

filter() operates only on dimensions
filter(nasa, lat > 0, year == 2000)
Each component can only refer to one dimensions, ensuring that you always
create a rectangular subset
Not run: filter(nasa, lat > long)

Arrange is meaningless for tbl_cubes

by_loc <- group_by(nasa, lat, long)
summarise(by_loc, pressure = max(pressure), temp = mean(temperature))

top n Select top (or bottom) n rows (by value)

Description

This is a convenient wrapper that uses filter() and min rank() to select the top or bottom
entries in each group, ordered by wt.

Usage

top_n(x, n, wt)

top_frac(x, n, wt)

Arguments

x a tbl() to filter

n number of rows to return for top n(), fraction of rows to return for
top frac().

If x is grouped, this is the number (or fraction) of rows per group. Will
include more rows if there are ties.

If n is positive, selects the top rows. If negative, selects the bottom rows.

wt (Optional). The variable to use for ordering. If not specified, defaults to
the last variable in the tbl.

Details

Both n and wt are automatically quoted and later evaluated in the context of the data
frame. It supports unquoting.

vars 85

Examples

df <- data.frame(x = c(10, 4, 1, 6, 3, 1, 1))
df %>% top_n(2)

half the rows
df %>% top_n(n() * .5)
df %>% top_frac(.5)

Negative values select bottom from group. Note that we get more
than 2 values here because there's a tie: top_n() either takes
all rows with a value, or none.
df %>% top_n(-2)

if (require("Lahman")) {
Find 10 players with most games
tbl_df(Batting) %>%

group_by(playerID) %>%
tally(G) %>%
top_n(10)

Find year with most games for each player
Not run:
tbl_df(Batting) %>%

group_by(playerID) %>%
top_n(1, G)

End(Not run)
}

vars Select variables

Description

This helper is intended to provide equivalent semantics to select(). It is used for instance
in scoped summarising and mutating verbs (mutate at() and summarise at()).

Usage

vars(...)

Arguments

... Variables to include/exclude in mutate/summarise. You can use same
specifications as in select(). If missing, defaults to all non-grouping
variables.

These arguments are automatically quoted and later evaluated in the con-
text of the data frame. They support unquoting. See vignette("programming")
for an introduction to these concepts.

Details

Note that verbs accepting a vars() specification also accept a numeric vector of positions
or a character vector of column names.

86 vars

See Also

all vars() and any vars() for other quoting functions that you can use with scoped verbs.

Index

∗Topic datasets
band members, 10
starwars, 74
storms, 75

+, 47
==, 27
>, 27
>=, 27
[[, 56
&, 27

add count (tally), 80
add tally (tally), 80
all(), 76
all.equal(), 5
all.equal.tbl df (all equal), 5
all equal, 5
all vars, 6
all vars(), 29, 86
anti join (join), 43
anti join.tbl df

(nest join.data.frame), 54
any(), 76
any vars (all vars), 6
any vars(), 29, 86
arrange, 6, 28, 48, 66, 71, 77
arrange(), 7, 21, 23, 64
arrange all, 7
arrange all(), 64, 65
arrange at (arrange all), 7
arrange at(), 65
arrange if (arrange all), 7
arrange if(), 65
as.data.frame.tbl cube

(as.table.tbl cube), 8
as.table.tbl cube, 8
as.tbl (tbl), 82
as.tbl cube, 9
as.tbl cube(), 83
as tibble.tbl cube (as.table.tbl cube),

8
auto copy, 10

band instruments (band members), 10

band instruments2 (band members), 10
band members, 10
base::split(), 36
between, 11
between(), 27
bind, 11, 17
bind cols (bind), 11
bind rows (bind), 11

c(), 17
case when, 13
case when(), 47, 60
coalesce, 16
coalesce(), 47, 53, 61
collapse (compute), 18
collect (compute), 18
collect(), 19, 73
combine, 17
compute, 18
compute(), 73
contains(), 66
copy to, 19
copy to(), 18
count (tally), 80
count(), 80
cumall, 19
cumall(), 47
cumany (cumall), 19
cumany(), 47
cume dist (ranking), 59
cume dist(), 47
cummax(), 47
cummean (cumall), 19
cummean(), 47
cummin(), 47
cumsum(), 47
current vars (select vars), 69

DBI::dbConnect(), 73
dbplyr::tbl dbi(), 6, 27, 46, 65, 76
dense rank (ranking), 59
dense rank(), 47
desc, 21
desc(), 6, 59

87

88 INDEX

dimnames(), 9
distinct, 21
distinct(), 22
distinct all, 22
distinct all(), 65
distinct at (distinct all), 22
distinct at(), 65
distinct if (distinct all), 22
distinct if(), 65
do, 23
do(), 38, 62, 73
dplyr (dplyr-package), 3
dplyr-package, 3
dplyr::select(), 36
dr dplyr, 25
dtplyr::grouped dt, 32
dtplyr::tbl dt(), 6, 27, 46, 65, 76

ends with(), 66
evaluated, 6, 27, 47, 63, 66, 71, 76, 81, 84,

85
everything(), 66
explain, 25
explain(), 73

filter, 7, 26, 48, 66, 71, 77
filter(), 23, 41, 52, 64, 71, 84
filter all, 29
filter all(), 6, 28, 64, 65
filter at (filter all), 29
filter at(), 28, 65
filter if (filter all), 29
filter if(), 6, 28, 65
first (nth), 56
first(), 76
full join (join), 43
full join.tbl df

(nest join.data.frame), 54
funs, 30

group by, 31, 32, 34, 37, 39–41
group by(), 34, 36, 37, 41, 47, 64, 76, 80,

81
group by all, 31, 32, 33, 37, 39–41
group by all(), 32, 64, 65
group by at (group by all), 33
group by at(), 32, 65
group by drop default, 35
group by drop default(), 32, 34
group by if (group by all), 33
group by if(), 32, 65
group cols, 35
group cols(), 31, 66

group data (group rows), 40
group indices, 31, 32, 34, 37, 39–41
group keys, 31, 32, 34, 36, 39–41
group keys(), 36–38
group map, 31, 32, 34, 37, 38, 40, 41
group map(), 24
group modify (group map), 38
group nest, 31, 32, 34, 37, 39–41
group rows, 31, 32, 34, 37, 39, 40, 41
group size, 31, 32, 34, 37, 39–41
group split (group keys), 36
group split(), 36, 37
group trim, 31, 32, 34, 37, 39, 40, 41
group vars (groups), 31
group vars(), 36
group walk (group map), 38
grouped data frame, 32, 41
grouped df, 32
groups, 31, 32, 34, 37, 39–41
groups(), 36

hybrid call, 41

ident, 42
if else, 42
if else(), 13, 47, 60
ifelse(), 42
inner join (join), 43
inner join.tbl df

(nest join.data.frame), 54
integerish, 64
intersect (setops), 70
IQR(), 76
is.na(), 27
is.tbl (tbl), 82
isTRUE(), 5

join, 11, 43, 54
join.tbl df, 44
join.tbl df (nest join.data.frame), 54
join.tbl df(), 4

lag (lead-lag), 45
lag(), 47
last (nth), 56
last(), 76
lead (lead-lag), 45
lead(), 47
lead-lag, 45
left join (join), 43
left join.tbl df

(nest join.data.frame), 54
locales(), 7

INDEX 89

log(), 47

mad(), 76
matches(), 66
max(), 76
mean(), 76
median(), 76
merge(), 55
min(), 76
min rank (ranking), 59
min rank(), 47, 84
mutate, 7, 28, 34, 46, 66, 71, 77
mutate(), 23, 49, 52, 62, 64, 66, 77, 80
mutate all, 49
mutate all(), 47, 65
mutate at (mutate all), 49
mutate at(), 47, 65, 85
mutate if (mutate all), 49
mutate if(), 47, 65

n, 51
n(), 76, 80
n distinct, 57
n distinct(), 76
na if, 53
na if(), 16, 47, 61
nasa, 52
near, 54
near(), 27
nest join (join), 43
nest join.data.frame, 54
nest join.tbl df

(nest join.data.frame), 54
nested, 38
nth, 56
nth(), 76
ntile (ranking), 59
ntile(), 47
num range(), 66

one of(), 66
order by, 57

percent rank (ranking), 59
percent rank(), 47
pkgconfig::set config(), 4
plyr::dlply(), 24
plyr::ldply(), 24, 62
print(), 25
pull, 58
purrr::partial(), 30

quantile(), 76

quasiquotation, 58
quosure, 63
quoted, 6, 27, 30, 47, 63, 66, 71, 76, 81,

84, 85

ranking, 59
rbind all (bind), 11
rbind list (bind), 11
rearranges, 27
recode, 60
recode(), 47, 53
recode factor (recode), 60
rename (select), 65
rename(), 64, 68
rename all (select all), 68
rename all(), 66
rename at (select all), 68
rename at(), 66
rename if (select all), 68
rename if(), 66
rename vars (select vars), 69
right join (join), 43
right join.tbl df

(nest join.data.frame), 54
rlang::as function(), 8, 23, 29, 34, 50,

64, 68, 78
RMySQL::MySQL(), 72, 73
row number (ranking), 59
row number(), 47, 71
rowwise, 62
rowwise(), 24
RPostgreSQL::PostgreSQL(), 72
RSQLite::SQLite(), 72

sample, 63
sample.int(), 63
sample frac (sample), 63
sample n (sample), 63
scoped, 7, 22, 28, 29, 32, 34, 47, 49, 64,

66, 68, 78
scoped verbs, 30
sd(), 76
select, 7, 28, 48, 65, 71, 77
select helpers, 66
select(), 23, 35, 64, 68, 85
select all, 68
select all(), 64–66
select at (select all), 68
select at(), 65, 66
select if (select all), 68
select if(), 65, 66
select var (select vars), 69
select vars, 69

90 INDEX

selection contexts, 31
semi join (join), 43
semi join.tbl df

(nest join.data.frame), 54
setdiff (setops), 70
setequal (setops), 70
setops, 70
show query (explain), 25
show query(), 73
slice, 7, 28, 48, 66, 71, 77
split, 38
sql, 72
src dbi, 72
src mysql (src dbi), 72
src mysql(), 32
src postgres (src dbi), 72
src postgres(), 32
src sqlite (src dbi), 72
src sqlite(), 32
starts with(), 64, 66
starwars, 74
storms, 75
str(), 25
sum, 80
summarise, 7, 28, 48, 66, 71, 76
summarise(), 23, 24, 52, 62, 64, 78, 80
summarise all, 78
summarise all(), 64, 65
summarise at (summarise all), 78
summarise at(), 30, 65, 85
summarise if (summarise all), 78
summarise if(), 65
summarize (summarise), 76
summarize all (summarise all), 78
summarize at (summarise all), 78
summarize if (summarise all), 78
switch(), 60

tally, 80
tally(), 80
tbl, 82
tbl(), 31, 32, 72, 81, 84
tbl cube, 52, 82
tbl df(), 6, 27, 46, 65, 76
The other scoped verbs, 50, 79
tibble::as tibble(), 8
tibble::rownames to column(), 7, 27, 48,

66, 71, 77
tidy dots, 8, 13, 16, 23, 34, 49, 60, 64, 68,

78
tidyr::replace na(), 16, 53, 61
tidyr::unnest(), 45
tidyselect::vars pull(), 69

tidyselect::vars rename(), 69
tidyselect::vars select(), 64, 69
top frac (top n), 84
top n, 84
transmute (mutate), 46
transmute(), 49, 64, 66
transmute all (mutate all), 49
transmute all(), 47, 65
transmute at (mutate all), 49
transmute at(), 47, 65
transmute if (mutate all), 49
transmute if(), 47, 65

ungroup (group by), 32
ungroup(), 27, 80
union (setops), 70
union all (setops), 70
unique.data.frame(), 21
unlist(), 17
unquoting, 6, 27, 30, 47, 63, 66, 71, 76, 81,

84, 85

vars, 85
vars(), 6, 8, 23, 29, 34, 35, 50, 64, 68, 78,

79
vctrs::vec c(), 17

with order(), 58

xor(), 27

	dplyr-package
	all_equal
	all_vars
	arrange
	arrange_all
	as.table.tbl_cube
	as.tbl_cube
	auto_copy
	band_members
	between
	bind
	case_when
	coalesce
	combine
	compute
	copy_to
	cumall
	desc
	distinct
	distinct_all
	do
	dr_dplyr
	explain
	filter
	filter_all
	funs
	groups
	group_by
	group_by_all
	group_by_drop_default
	group_cols
	group_keys
	group_map
	group_rows
	group_trim
	hybrid_call
	ident
	if_else
	join
	lead-lag
	mutate
	mutate_all
	n
	nasa
	na_if
	near
	nest_join.data.frame
	nth
	n_distinct
	order_by
	pull
	ranking
	recode
	rowwise
	sample
	scoped
	select
	select_all
	select_vars
	setops
	slice
	sql
	src_dbi
	starwars
	storms
	summarise
	summarise_all
	tally
	tbl
	tbl_cube
	top_n
	vars
	Index

