
Introduction to the data.table package in R

Matthew Dowle

Revised: November 28, 2011
(A later revision may be available on the homepage)

Introduction

This vignette is aimed at those who are already familiar with R—in particular, creating and using
objects of class data.frame. We aim for this quick introduction to be readable in 10 minutes,
covering the main features in brief, namely: 1. Keys; 2. Fast Grouping; and 3. Fast time series join.
For the context in which this document sits, please briefly check the last section, Further Resources.

data.table is not automatically better or faster. The user has to climb a short learning curve,
experiment, and then use its features well. For example, this document explains the difference
between a vector scan and a binary search. Although both extraction methods are available in
data.table, if a user continues to use vector scans (as in a data.frame), it will ‘work’, but one
will miss out on the benefits that data.table provides.

Creation

Recall that we create a data.frame using the function data.frame():

> DF = data.frame(x=c("b","b","b","a","a"),v=rnorm(5))

> DF

x v

1 b -0.9758453

2 b -1.1533299

3 b 0.4917858

4 a -0.9893336

5 a 1.2407636

A data.table is created in exactly the same way:

> DT = data.table(x=c("b","b","b","a","a"),v=rnorm(5))

> DT

x v

[1,] b -1.4054144

[2,] b 1.0516545

[3,] b -0.4755223

[4,] a 0.7802402

[5,] a 0.5115916

Observe that a data.table prints the row numbers slightly differently. There is nothing significant
about that. We can easily convert existing data.frame objects to data.table.

> CARS = data.table(cars)

> head(CARS)

1

http://datatable.r-forge.r-project.org/

speed dist

[1,] 4 2

[2,] 4 10

[3,] 7 4

[4,] 7 22

[5,] 8 16

[6,] 9 10

We have just created two data.tables: DT and CARS. It is often useful to see a list of all
data.tables in memory:

> tables()

NAME NROW MB COLS KEY

[1,] CARS 50 1 speed,dist

[2,] DT 5 1 x,v

Total: 2MB

The MB column is useful to quickly assess memory use and to spot if any redundant tables can
be removed to free up memory. Just like data.frames, data.tables must fit inside RAM.

Some users regularly work with 20 or more tables in memory, rather like a database. The result
of tables() is itself a data.table, returned silently, so that tables() can be used in programs.
tables() is unrelated to the base function table().

Also note that data.table() automatically converts character vectors to factors.

> sapply(DT,class)

x v

"factor" "numeric"

Users should rarely need to know this has occurred. See ?factor if you are unfamiliar with
factors. Factors will appear to you as though they are character columns. You can refer to them
just as though they are character.

You may have noticed the empty column KEY in the result of tables() above. This is the
subject of the next section, the first of the 3 main features of the package.

1. Keys

Let’s start by considering data.frame, specifically rownames (or in English, row names). That is,
the multiple names belonging to a single row. The multiple names belonging to the single row?
That is not what we are used to in a data.frame. We know that each row has at most one name.
A person has at least two names, a first name and a second name. That is useful to organise a
telephone directory, for example, which is sorted by surname, then first name. However, each row
in a data.frame can only have one name.

A key consists of one or more columns of rownames, which may be integer, factor or some other
class, not simply character. Furthermore, the rows are sorted by the key. Therefore, a data.table

can have at most one key, because it cannot be sorted in more than one way.
Uniqueness is not enforced, i.e., duplicate key values are allowed. Since the rows are sorted by

the key, any duplicates in the key will appear consecutively.
Let’s remind ourselves of our tables:

> tables()

NAME NROW MB COLS KEY

[1,] CARS 50 1 speed,dist

[2,] DT 5 1 x,v

Total: 2MB

2

> DT

x v

[1,] b -1.4054144

[2,] b 1.0516545

[3,] b -0.4755223

[4,] a 0.7802402

[5,] a 0.5115916

No keys have been set yet. We can use data.frame syntax in a data.table, too.

> DT[2,]

x v

[1,] b 1.051654

> DT[DT$x=="b",]

x v

[1,] b -1.4054144

[2,] b 1.0516545

[3,] b -0.4755223

But since there are no rownames, the following does not work:

> cat(try(DT["b",],silent=TRUE))

Error in `[.data.table`(DT, "b",) :

The data.table has no key but i is character. Call setkey first, see ?setkey.

The error message tells us we need to use setkey():

> setkey(DT,x) # or key(DT)="x" if you prefer

> DT

x v

[1,] a 0.7802402

[2,] a 0.5115916

[3,] b -1.4054144

[4,] b 1.0516545

[5,] b -0.4755223

Notice that the rows in DT have been re-ordered according to the values of x. The two "a" rows
have moved to the top. We can confirm that DT does indeed have a key using haskey(), key(),
attributes(), or just running tables().

> tables()

NAME NROW MB COLS KEY

[1,] CARS 50 1 speed,dist

[2,] DT 5 1 x,v x

Total: 2MB

Now that we are sure DT has a key, let’s try again:

> DT["b",]

x v

[1,] b -1.4054144

[2,] b 1.0516545

[3,] b -0.4755223

3

By default all the rows in the group are returned1. The mult argument (short for multiple)
allows the first or last row of the group to be returned instead.

> DT["b",mult="first"]

x v

[1,] b -1.405414

> DT["b",mult="last"]

x v

[1,] b -0.4755223

The comma is optional.

> DT["b"]

x v

[1,] b -1.4054144

[2,] b 1.0516545

[3,] b -0.4755223

Lets now create a new data.frame. We will make it large enough to demonstrate the difference
between a vector scan and a binary search.

> grpsize = ceiling(1e7/26^2) # 10 million rows, 676 groups

[1] 14793

> tt=system.time(DF <- data.frame(

+ x=rep(factor(LETTERS),each=26*grpsize),

+ y=rep(factor(letters),each=grpsize),

+ v=runif(grpsize*26^2))

+)

user system elapsed

7.736 2.000 9.776

> head(DF,3)

x y v

1 A a 0.9098665

2 A a 0.0317930

3 A a 0.8150235

> tail(DF,3)

x y v

10000066 Z z 0.9580232

10000067 Z z 0.6487560

10000068 Z z 0.5395803

> dim(DF)

[1] 10000068 3

We might say that R has created a 3 column table and inserted 10,000,068 rows. It took 9.776
secs, so it inserted 1,022,920 rows per second. This is normal in base R.

Let’s extract an arbitrary group from DF:

1In contrast to a data.frame where only the first rowname is returned when the rownames contain duplicates.

4

> tt=system.time(ans1 <- DF[DF$x=="R" & DF$y=="h",]) # 'vector scan'

user system elapsed

12.577 0.892 13.505

> head(ans1,3)

x y v

6642058 R h 0.5487513

6642059 R h 0.5043774

6642060 R h 0.9355937

> dim(ans1)

[1] 14793 3

Now convert to a data.table and extract the same group:

> DT = data.table(DF)

> setkey(DT,x,y)

> ss=system.time(ans2 <- DT[J("R","h")]) # binary search

user system elapsed

0.028 0.004 0.031

> head(ans2,3)

x y v

[1,] R h 0.5487513

[2,] R h 0.5043774

[3,] R h 0.9355937

> dim(ans2)

[1] 14793 3

> identical(ans1$v, ans2$v)

[1] TRUE

At 0.031 seconds, this was 435 times faster than 13.505 seconds, and produced precisely the
same result. If you are thinking that a few seconds is not much to save, it’s the relative speedup
that’s important. The vector scan is linear, but the binary search is O(log n). It scales. If a task
taking 10 hours is sped up by 100 times to 6 minutes, that is significant2.

We can do vector scans in data.table, too. In other words we can use data.table badly.

> system.time(ans1 <- DT[x=="R" & y=="h",]) # works but is using data.table badly

user system elapsed

12.601 1.024 13.661

> system.time(ans2 <- DF[DF$x=="R" & DF$y=="h",]) # the data.frame way

user system elapsed

12.497 1.020 13.552

> mapply(identical,ans1,ans2)

2We wonder how many people are deploying parallel techniques to code that is vector scanning

5

x y v

TRUE TRUE TRUE

If the phone book analogy helped, the 435 times speedup should not be surprising. We use
the key to take advantage of the fact that the table is sorted and use binary search to find the
matching rows. We didn’t vector scan; we didn’t use ==.

When we used DT$x=="R" we scanned the entire column x, testing each and every value to see
if it equalled ”R”. We did it again in the y column, testing for ”h”. Then & combined the two logical
results to create a single logical vector which was passed to the [method, which in turn searched
it for TRUE and returned those rows. These were vectorized operations. They occurred internally
in R and were very fast, but they were scans. We did those scans because we wrote that R code.

When i is itself a data.table, we say that we are joining the two data.tables. In this case,
we are joining DT to the 1 row, 2 column table returned by data.table("R","h"). Since we do
this a lot, there is an alias for data.tables called J(), short for join.

> identical(DT[J("R","h"),],

+ DT[data.table("R","h"),])

[1] TRUE

Both vector scanning and binary search are available in data.table, but one way of using
data.table is much better than the other.

The join syntax is a short, fast to write and easy to maintain. Passing a data.table into a
data.table subset is analogous to A[B] syntax in base R where A is a matrix and B is a 2-column
matrix3. In fact, the A[B] syntax in base R inspired the data.table package. There are other
types of join and further arguments which are beyond the scope of this quick introduction.

The merge method of data.table is very similar to X[Y], but there are some differences. See
FAQ 1.12.

This first section has been about the first argument to [, namely i. The next section has to do
with the 2nd argument j.

2. Fast grouping

The second argument to [is j, which may consist of one or more expressions whose arguments are
(unquoted) column names, as if the column names were variables.

> DT[,sum(v)]

[1] 5000453

When we supply a j expression and a ’by’ list of expressions, the j expression is repeated for
each ’by’ group:

> DT[,sum(v),by=x]

x V1

A 192307.2

B 192531.3

C 192329.2

D 192310.7

E 192227.2

F 192348.4

G 192318.6

H 192151.0

I 192531.9

3Subsetting a keyed data.table by a n-column data.table is consistent with subsetting a n-dimension array by
a n-column matrix in base R

6

J 192555.5

K 191975.2

L 192376.7

M 192603.8

N 192291.4

O 192370.0

P 192255.1

Q 192217.4

R 191981.0

S 192206.9

T 192346.1

U 192426.0

V 192441.3

W 192199.1

X 192506.7

Y 192514.9

Z 192130.4

cn x V1

The by in data.table is fast. Let’s compare it to tapply.

> ttt=system.time(tt <- tapply(DTv,DTx,sum)); ttt

user system elapsed

16.705 0.952 17.690

> sss=system.time(ss <- DT[,sum(v),by=x]); sss

user system elapsed

0.460 0.168 0.631

> head(tt)

A B C D E F

192307.2 192531.3 192329.2 192310.7 192227.2 192348.4

> head(ss)

x V1

[1,] A 192307.2

[2,] B 192531.3

[3,] C 192329.2

[4,] D 192310.7

[5,] E 192227.2

[6,] F 192348.4

> identical(as.vector(tt), ss$V1)

[1] TRUE

At 0.631 sec, this was 28 times faster than 17.690 sec, and produced precisely the same result.
Next, let’s group by two columns:

> ttt=system.time(tt <- tapply(DT$v,list(DT$x,DT$y),sum)); ttt

user system elapsed

18.425 1.208 19.675

> sss=system.time(ss <- DT[,sum(v),by="x,y"]); sss

7

user system elapsed

0.628 0.336 0.971

> tt[1:5,1:5]

a b c d e

A 7364.835 7427.853 7406.970 7424.085 7378.534

B 7420.017 7419.416 7414.242 7415.886 7425.465

C 7440.231 7429.803 7393.840 7398.774 7376.933

D 7386.731 7336.158 7310.266 7363.903 7466.787

E 7383.761 7342.979 7340.557 7404.791 7335.072

> head(ss)

x y V1

[1,] A a 7364.835

[2,] A b 7427.853

[3,] A c 7406.970

[4,] A d 7424.085

[5,] A e 7378.534

[6,] A f 7409.213

> identical(as.vector(t(tt)), ss$V1)

[1] TRUE

This was 20 times faster, and the syntax is a little simpler and easier to read.

The following features are mentioned only briefly here; further examples are in ?data.table and
the FAQ vignette.

� To return several expressions, pass a list() to j.

� Each item of the list is recycled to match the length of the longest item.

� You can pass a list() of expressions of column names to by e.g.
DT[,sum(v),by=list(month(dateCol),region)]

where calling month() on dateCol is what we mean by expressions of column names.

� Any R functions from any package can be used in j and by.

3. Fast time series join

This is also known as last observation carried forward (LOCF) or a rolling join.
Recall that x[i] is a join between data.table x and data.table i. If i has 2 columns, the first

column is matched to the first column of the key of x, and the 2nd column to the 2nd. An equi-join
is performed, meaning that the values must be equal.

The syntax for fast rolling join is
x[i,roll=TRUE]

As before the first column of i is matched to x where the values are equal. The last column
of i though, the 2nd one in this example, is treated specially. If no match is found, then the row
before is returned, provided the first column still matches.

For examples see example("[.data.table")

8

http://datatable.r-forge.r-project.org/datatable-faq.pdf

Other resources

This was a quick start guide. Further resources include :

� The help page describes each and every argument: ?data.table

� The FAQs deal with distinct topics: vignette("datatable-faq")

� The performance tests contain more examples: vignette("datatable-timings")

� test.data.table() contains over 250 low level tests of the features

� Website: http://datatable.r-forge.r-project.org/

� Presentations:

– http://files.meetup.com/1406240/Data%20munging%20with%20SQL%20and%20R.pdf

– http://www.londonr.org/LondonR-20090331/data.table.LondonR.pdf

� YouTube Demo: http://www.youtube.com/watch?v=rvT8XThGA8o

� R-Forge commit logs: http://lists.r-forge.r-project.org/pipermail/datatable-commits/

� Mailing list : datatable-help@lists.r-forge.r-project.org

� User reviews : http://crantastic.org/packages/data-table

9

http://datatable.r-forge.r-project.org/
http://files.meetup.com/1406240/Data%20munging%20with%20SQL%20and%20R.pdf
http://www.londonr.org/LondonR-20090331/data.table.LondonR.pdf
http://www.youtube.com/watch?v=rvT8XThGA8o
http://lists.r-forge.r-project.org/pipermail/datatable-commits/
mailto:datatable-help@lists.r-forge.r-project.org
http://crantastic.org/packages/data-table

