
Maximum likelihood estimation and analysis with

the bbmle package

Ben Bolker

July 29, 2007

The bbmle package, designed to simplify maximum likelihood estimation and
analysis in R, extends and modifies the mle function and class in the stats4
package that comes with R by default. mle is in turn a wrapper around the
optim function in base R. The maximum-likelihood-estimation function and
class in bbmle are both called mle2, to avoid confusion and conflict with the
original functions in the stats4 package. The major differences between mle
and mle2 are:

� mle2 is slightly more robust, with additional warnings (e.g. if the Hessian
can’t be computed by finite differences, mle2 returns a fit with a missing
Hessian rather than stopping with an error)

� mle2 uses a data argument to allow different data to be passed to the
negative log-likelihood function

� mle2 has a formula interface like that of (e.g.) gls in the nlme package. For
relatively simple models the formula for the maximum likelihood can be
written in-line, rather than defining a negative log-likelihood function. The
formula interface also simplifies fitting models with categorical variables.

� bbmle defines anova, AIC, AICc, and BIC methods for mle2 objects, as
well as AICtab, BICtab, AICctab functions for producing summary tables
of information criteria for a set of models.

Other packages with similar functionality (extending GLMs in various ways)
are aod and vgam (on CRAN), gnlr and gnlr3 in Jim Lindsey’s gnlm package
(http://popgen.unimaas.nl/~jlindsey/rcode.html).

1 Example

This example will use the classic data set on Orobanche germination from [1]
(you can also use glm(...,family="quasibinomial") or the aod package to
analyze these data).

1

1.1 Test basic fit to simulated beta-binomial data

First, generate a single beta-binomially distributed set of points as a simple test.
Load the emdbook package to get functions for the beta-binomial distribution

(density and random-deviate function — these functions are also available in Jim
Lindsey’s rmutil package).

> library(emdbook)

Generate random deviates from a random beta-binomial:

> set.seed(1001)

> x1 = rbetabinom(n = 1000, prob = 0.1, size = 50, theta = 10)

Load the package:

> library(bbmle)

Construct a simple negative log-likelihood function:

> mtmp <- function(prob, size, theta) {

+ -sum(dbetabinom(x1, prob, size, theta, log = TRUE))

+ }

Fit the model — use data to pass the size parameter (since it wasn’t hard-
coded in the mtmp function):

> m0 <- mle2(mtmp, start = list(prob = 0.2, theta = 9),

+ data = list(size = 50))

> m0

Call:
mle2(minuslogl = mtmp, start = list(prob = 0.2, theta = 9), data = list(size = 50))

Coefficients:
prob theta

0.1030974 10.0758090

Log-likelihood: -2723.5

The summary method for mle2 objects shows the parameters; approximate
standard errors (based on quadratic approximation to the curvature at the maxi-
mum likelihood estimate); and a test of the parameter difference from zero based
on this standard error and on an assumption of normality.

> summary(m0)

Maximum likelihood estimation

Call:

2

mle2(minuslogl = mtmp, start = list(prob = 0.2, theta = 9), data = list(size = 50))

Coefficients:
Estimate Std. Error z value Pr(z)

prob 0.1030974 0.0031624 32.601 < 2.2e-16 ***
theta 10.0758090 0.6213189 16.217 < 2.2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

-2 log L: 5446.995

Construct the likelihood profile (you can apply confint directly to m0, but
if you’re going to work with the likelihood profile (e.g. plotting, or looking for
confidence intervals at several different α values) then it is more efficient to
compute the profile once):

> p0 <- profile(m0)

Compare the confidence interval estimates based on inverting a spline fit to
the profile (the default); based on the quadratic approximation at the maximum
likelihood estimate; and based on root-finding to find the exact point where the
profile crosses the critical level.

> confint(p0)

2.5 % 97.5 %
prob 0.09709228 0.1095103
theta 8.91708211 11.3559591

> confint(m0, method = "quad")

2.5 % 97.5 %
prob 0.09689929 0.1092955
theta 8.85804640 11.2935716

> confint(m0, method = "uniroot")

2.5 % 97.5 %
prob 0.09709185 0.1095099
theta 8.91691019 11.3559746

All three types of confidence limits are similar.
Plot the profiles:

> par(mfrow = c(1, 2))

> plot(p0, plot.confstr = TRUE)

3

0.095 0.100 0.105 0.110

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Likelihood profile: prob

prob

z

99%

95%

90%

80%

50%

8.5 9.0 9.5 10.5 11.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Likelihood profile: theta

theta

z

99%

95%

90%

80%

50%

By default, the plot method for likelihood profiles displays the square root
of the the deviance (twice the difference in negative log-likelihood), so it will
be V-shaped for cases where the quadratic approximation works well (as in this
case). (For a better visual estimate of whether the profile is quadratic, use
absVal=FALSE.)

You can also request confidence intervals calculated using uniroot, which
may be more exact when the profile is not smooth enough to be modeled ac-
curately by a spline. However, this method is also more sensitive to numeric
problems.

Instead of defining an explicit function for minuslogl, we can also use the
formula interface. The formula interface assumes that the density function given
(1) has x as its first argument (if the distribution is multivariate, then x should
be a matrix of observations) and (2) has a log argument that will return the
log-probability or log-probability density if log=TRUE.

> m0f <- mle2(x1 ~ dbetabinom(prob, size = 50, theta),

+ start = list(prob = 0.2, theta = 9))

It’s convenient to use the formula interface to try out likelihood estimation
on the transformed parameters:

> m0cf <- mle2(x1 ~ dbetabinom(prob = plogis(lprob), size = 50,

+ theta = exp(ltheta)), start = list(lprob = 0, ltheta = 2))

> confint(m0cf, method = "uniroot")

2.5 % 97.5 %
lprob -2.229963 -2.095757
ltheta 2.187950 2.429744

> confint(m0cf, method = "spline")

4

2.5 % 97.5 %
lprob -2.229963 -2.095756
ltheta 2.187948 2.429742

In this case the answers from uniroot and spline (default) methods barely
differ.

1.2 Using real data

Get data from Crowder 1978 [1], as incorporated in the aod package:

> library(aod)

Package aod, version 1.1-22

> data(orob1)

Now construct a negative log-likelihood function that differentiates among
groups:

> ML1 <- function(prob1, prob2, prob3, theta, x) {

+ prob <- c(prob1, prob2, prob3)[as.numeric(x$dilution)]

+ size <- x$n

+ -sum(dbetabinom(x$y, prob, size, theta, log = TRUE))

+ }

Results from [1]:

model prob1 prob2 prob3 theta sd.prob1 sd.prob2 sd.prob3 NLL
prop diffs 0.132 0.871 0.839 78.424 0.027 0.028 0.032 −34.991
full model −34.829
homog model −56.258

> m1 <- mle2(ML1, start = list(prob1 = 0.5, prob2 = 0.5,

+ prob3 = 0.5, theta = 1), data = list(x = orob1))

> m1

Call:
mle2(minuslogl = ML1, start = list(prob1 = 0.5, prob2 = 0.5,

prob3 = 0.5, theta = 1), data = list(x = orob1))

Coefficients:
prob1 prob2 prob3 theta

0.1318287 0.8706204 0.8382700 73.6958477

Log-likelihood: -34.99

Warning: optimization did not converge (code 1)

5

The result warns us that the optimization has not converged; we also don’t
match Crowder’s results for θ exactly. We can fix this by setting parscale
appropriately.

> m2 <- mle2(ML1, start = as.list(coef(m1)), control = list(parscale = coef(m1)),

+ data = list(x = orob1))

> m2

Call:
mle2(minuslogl = ML1, start = as.list(coef(m1)), data = list(x = orob1),

control = list(parscale = coef(m1)))

Coefficients:
prob1 prob2 prob3 theta

0.1322123 0.8708914 0.8393195 78.4227872

Log-likelihood: -34.99

Calculate likelihood profile:

> p2 <- profile(m2)

Get the curvature-based parameter standard deviations (which Crowder used
rather than computing likelihood profiles):

> round(sqrt(diag(vcov(m2))), 3)

prob1 prob2 prob3 theta
0.028 0.029 0.032 74.238

We are slightly off Crowder’s numbers — rounding error?
Crowder also defines a variance (overdispersion) parameter σ2 = 1/(1 + θ).

> sqrt(1/(1 + coef(m2)["theta"]))

theta
0.1122089

Using the delta method to get the standard deviation of σ:

> sqrt(deltavar(sqrt(1/(1 + theta)), meanval = coef(m2)["theta"],

+ vars = "theta", Sigma = vcov(m2)[4, 4]))

[1] 0.05244163

Another way to fit in terms of σ rather than θ is to compute θ = 1/σ2 − 1
on the fly in a formula:

6

> m2b <- mle2(y ~ dbetabinom(prob, size = n, theta = 1/sigma^2 -

+ 1), data = orob1, parameters = list(prob ~ dilution,

+ sigma ~ 1), start = list(prob = 0.5, sigma = 0.1))

> round(sqrt(diag(vcov(m2b))), 3)["sigma"]

sigma
0.052

> p2b <- profile(m2b)

As might be expected since the standard deviation of σ is large, the quadratic
approximation is poor:

> r1 <- rbind(confint(p2)["theta",], confint(m2, method = "quad")["theta",

+])

> rownames(r1) <- c("spline", "quad")

> r1

2.5 % 97.5 %
spline 19.81826 NA
quad -67.08021 223.9258

Plot the profile:

> plot(p2, which = "theta", plot.confstr = TRUE)

0 1000 2000 3000 4000 5000 6000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Likelihood profile: theta

theta

z

99%

95%

90%

80%

50%

What does the profile for σ look like?

7

> plot(p2b, which = "sigma", plot.confstr = TRUE, show.points = TRUE)

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Likelihood profile: sigma

sigma

z

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

99%

95%

90%

80%

50%

Now fit a homogeneous model:

> ml0 <- function(prob, theta, x) {

+ size <- x$n

+ -sum(dbetabinom(x$y, prob, size, theta, log = TRUE))

+ }

> m0 <- mle2(ml0, start = list(prob = 0.5, theta = 100),

+ data = list(x = orob1))

The log-likelihood matches Crowder’s result:

> logLik(m0)

'log Lik.' -56.25774 (df=2)

It’s easier to use the formula interface to specify all three of the models
fitted by Crowder (homogeneous, probabilities differing by group, probabilities
and overdispersion differing by group):

> m0f <- mle2(y ~ dbetabinom(prob, size = n, theta), parameters = list(prob ~

+ 1, theta ~ 1), data = orob1, start = list(prob = 0.5,

+ theta = 100))

> m2f <- mle2(y ~ dbetabinom(prob, size = n, theta), parameters = list(prob ~

8

+ dilution, theta ~ 1), data = orob1, start = list(prob = 0.5,

+ theta = 78.424))

> m3f <- mle2(y ~ dbetabinom(prob, size = n, theta), parameters = list(prob ~

+ dilution, theta ~ dilution), data = orob1, start = list(prob = 0.5,

+ theta = 78.424))

anova runs a likelihood ratio test on nested models:

> anova(m0f, m2f, m3f)

Likelihood Ratio Tests
Model 1: m0f, y~dbetabinom(prob,size=n,theta): prob~1, theta~1
Model 2: m2f, y~dbetabinom(prob,size=n,theta): prob~dilution, theta~1
Model 3: m3f, y~dbetabinom(prob,size=n,theta): prob~dilution,

theta~dilution
Tot Df Deviance Chisq Df Pr(>Chisq)

1 2 112.515
2 4 69.981 42.5341 2 5.805e-10 ***
3 6 69.981 0.0008 2 0.9996

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The various ICtab commands produce tables of information criteria, option-
ally sorted and with model weights.

> AICtab(m0f, m2f, m3f, weights = TRUE, delta = TRUE, sort = TRUE)

AIC df dAIC weight
m2f 78.0 4 0.0 0.881
m3f 82.0 6 4.0 0.119
m0f 116.5 2 38.5 <0.001

> BICtab(m0f, m2f, m3f, delta = TRUE, nobs = nrow(orob1),

+ sort = TRUE, weights = TRUE)

BIC df dBIC weight
m2f 81.1 4 0.0 0.941
m3f 86.6 6 5.5 0.059
m0f 118.1 2 37.0 <0.001

> AICctab(m0f, m2f, m3f, delta = TRUE, nobs = nrow(orob1),

+ sort = TRUE, weights = TRUE)

AICc df dAICc weight
m2f 81.6 4 0.0 0.992
m3f 91.3 6 9.7 0.008
m0f 117.4 2 35.8 <0.001

9

Additions/enhancements/differences from stats4::mle

� anova method

� warnings on convergence failure

� more robust to non-positive-definite Hessian; can also specify skip.hessian
to skip Hessian computation when it is problematic

� when profiling fails because better value is found, report new values

� can take named vectors as well as lists as starting parameter vectors

� added AICc, BIC definitions, ICtab functions

� added "uniroot" and "quad" options to confint

� more options for colors and line types etc etc. The old arguments are:

> function(x, levels, conf = c(99, 95, 90, 80, 50)/100,

+ nseg = 50, absVal = TRUE, ...) {

+ }

The new one is:

> function(x, levels, which = 1:p, conf = c(99, 95, 90,

+ 80, 50)/100, nseg = 50, plot.confstr = FALSE, confstr = NULL,

+ absVal = TRUE, add = FALSE, col.minval = "green",

+ lty.minval = 2, col.conf = "magenta", lty.conf = 2,

+ col.prof = "blue", lty.prof = 1, xlabs = nm, ylab = "score",

+ show.points = FALSE, main, xlim, ylim, ...) {

+ }

which selects (by character vector or numbers) which parameters to plot:
nseg does nothing (even in the old version); plot.confstr turns on the
labels for the confidence levels; confstr gives the labels; add specifies
whether to add the profile to an existing plot; col and lty options specify
the colors and line types for horizontal and vertical lines marking the
minimum and confidence vals and the profile curve; xlabs gives a vector
of x labels; ylab gives the y label; show.points specifies whether to show
the raw points computed.

� mle.options()

� data argument

� handling of names in argument lists

� can use alternative optimizers (nlminb, constrOptim)

10

Bugs, wishes, to do

� BUG: mle2 fits that are obtained within a function can’t be used for
subsequent profiles etc. (environment issue)

� WISH: subset and predict

� minor WISH: better methods for extracting nobs information when pos-
sible (e.g. with formula interface)

� WISH: better documentation, especially for S4 methods

� WISH: variable-length chunks in argument list

� WISH: limited automatic differentiation (add capability for common dis-
tributions)

References

[1] Martin J. Crowder. Beta-binomial Anova for proportions. Applied Statistics,
27(1):34–37, 1978.

11

