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Abstract

Recent advances in computer recording and storing technology have markedly increased the
presence of functional data, whose graphical representation can be infinite-dimensional curve,
image or shape. When a function-valued predictor and a scalar-valued response variable is ob-
served, the functional kernel regression provides a flexible way to estimate its possible non-linear
relationship. However, as with any type of kernel regression, it requires an optimal selection of
smoothing parameter, called bandwidth and an optimal selection of semi-metric. In the literature
of nonparametric functional regression, bandwidth parameter is often selected by a functional
cross validation. In this article, we introduce a Bayesian bandwidth estimation method that
uses the information about error density to help with the optimal selections of bandwidth and
semi-metric in the regression function. We first describe the proposed Bayesian method and
its implementations for estimating bandwidth parameters and selecting the optimal semi-metric
based on marginal likelihood in a functional nonparametric regression and a semi-functional par-
tial linear regression, using a readily-available R add-on package. Then, the proposed method is
demonstrated using a series of simulation studies, as well as a spectroscopy data set in the food
quality control.

Keywords: bandwidth selection, Bayesian model selection, functional Nadaraya-Watson estimator,
kernel error density, marginal likelihood, random-walk Metropolis, simulation inefficiency factor.

The aim of this article is to describe the R functions that are readily-available in the bbefkr package,
for estimating bandwidth parameters in a functional nonparametric regression and a semi-functional
partial linear regression. This article was motivated by the recent developments in nonparametric
functional regression estimators for analysing the relationship between a function-valued predictor
and a real-valued scalar response. Some commonly used nonparametric functional estimators
include: functional Nadayara-Watson (NW) estimator (Ferraty and Vieu 2006), functional local
linear estimator (Barrientos-Marin, Ferraty, and Vieu 2010), functional k-nearest neighbour estimator
(Burba, Ferraty, and Vieu 2009), and distance-based local linear estimator (Boj, Delicado, and
Fortiana 2010).

In all of the aforementioned functional estimators, the estimation accuracy of the conditional mean,
conditional median or conditional mode depends crucially on the optimal selections of the bandwidth
parameter and semi-metric. Commonly, the optimal bandwidth is selected by the functional cross
validation (CV), which is designed to assess the predictive performance of a model by an average of
certain measures for the ability of predicting a subset of functions by a model fit, after deleting these
functions from the data set only (Rachdi and Vieu 2007). Functional CV has the appealing feature
that no estimation of the error variance is required. However, since residuals affect the estimation
accuracy of regression function, functional CV may select a sub-optimal bandwidth. This in turn
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leads to inferior estimation accuracy of regression functions (see for example, Shang 2013a,b). As
an alternative, we present a Bayesian bandwidth estimation method that simultaneously estimates
the bandwidths in the regression function and kernel-form error density (see Shang 2013a, for the
importance of error density estimation). As a by-product of the Bayesian method, we can also select
the optimal semi-metric based on the notion of marginal likelihood.

Before introducing the bandwidth estimation method, we first define the problem more precisely.
Let y = (y1, y2, . . . , yn)> be a vector of scalar responses, T = (T1, T2, . . . , Tn)> be realisations of a
functional predictor and X = (Xi1, . . . , Xip)i=1,...,n be p-dimensional real-valued predictors, where >

represents matrix transpose. We consider two regression models, namely a nonparametric functional
regression and a semi-functional partial linear regression, where the latter is a generalisation of the
former. The semi-functional partial linear regression can be defined as

yi = Xiβ +m(Ti) + εi, i = 1, 2, . . . , n, (1)

where β = (β1, . . . , βp)
> is a vector of unknown real-valued regression coefficients in the parametric

counterpart, m is an unknown smooth function that performs the mapping from function space to
real space, and (ε1, . . . , εn) are independent and identically distributed (iid) random errors with
an unknown error density, denoted as f(ε). We assume that there is no correlation between the
covariates in the regression function and errors, that is

E(εi|Xi, Ti) = 0.

The functional nonparametric regression model has the only nonparametric part of the equation (1).
In both regression models, we are interested in accurately estimating the regression function m and
f(ε), which is mainly determined by the optimal selection of bandwidth parameters and semi-metric.

This article proceeds as follows. The Bayesian bandwidth estimation method is first described and
its estimation accuracy is then compared based on marginal likelihood or Bayes factor. Through
a series of simulation studies, the sampling algorithm is implemented using the bbefkr package.
Conclusions will then be presented.

1. Bayesian bandwidth estimation

The proposed bandwidth estimation methods aims to accurately estimate the regression function
approximated by the functional NW estimator of conditional mean and unknown error density
approximated by a kernel density of residuals.

1.1. Estimation of error density

The unknown error density f(ε) can be approximated by a location-mixture of Gaussian densities
(see also Roeder and Wasserman 1997), given by

f(ε; b) =
1

n

n∑
j=1

1

b
φ(
ε− εj
b

),

where φ(·) is the probability density function of the standard Gaussian distribution, and the
component Gaussian densities have means at εj , for j = 1, 2, . . . , n, and a common standard
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deviation b. Although error εj is unknown, it can be estimated by the functional NW estimator.

Thus, the density of yi is approximated by the estimated error density f̂(ε; b), expressed as

f̂(ε; b) =
1

n

n∑
j=1

1

b
φ(
ε− ε̂j
b

),

where b represents the estimate of residual bandwidth. In order to avoid the possible selection of
b = 0, a leave-one-out version is used given by

f̂(ε̂i; b) =
1

n− 1

n∑
j=1
j 6=i

1

b
φ(
ε̂i − ε̂j
b

),

where ε̂i = yi − m̂(Ti;h) is the ith residual for i = 1, 2, . . . , n, in the functional nonparametric
regression. In the semi-functional partial linear regression, ε̂i = yi −Xiβ̂ − m̂(Ti;h), where the
estimation of β̂ can be obtained by the ordinary least squares (Shang 2013b, Section 2). Given (h, b)
and iid assumption of the errors, the kernel likelihood of y = (y1, y2, . . . , yn)> can be approximated
by

L̂(y|h, b) =
n∏
i=1

[ 1

n− 1

n∑
j=1
j 6=i

1

b
φ(
ε̂i − ε̂j
b

)
]
.

1.2. Prior density

We now discuss the issue of prior density for the bandwidths. Let π(h2) and π(b2) be the independent
prior of squared bandwidths h and b. Since h2 and b2 play the role of variance parameters in the
Gaussian densities, we assume that the priors of h2 and b2 are inverse Gamma density, denoted by
IG(αh, βh) and IG(αb, βb), respectively. Thus, the prior densities of h2 and b2 are given by

π(h2) =
(βh)αh

Γ(αh)
(

1

h2
)αh+1 exp(−βh

h2
),

π(b2) =
(βb)

αb

Γ(αb)
(

1

b2
)αb+1 exp(−βb

b2
),

where αh = αb = 1.0 and βh = βb = 0.05 as hyper-parameters. Sensitivity results studied in Shang
(2013a,b) show that the choice of hyper-parameters does not influence the estimation of posterior
density.

1.3. Posterior density

According to the Bayes theorem, the posterior of h2 and b2 is written by

π(h2, b2|y) =
L̂(y|h2, b2)π(h2)π(b2)

L(y)
, (2)
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where L̂(y|h2, b2) is the approximated likelihood function with squared bandwidths, and L(y) is the
marginal likelihood. In practice, the posterior in (2) can be approximated by (up to a normalising
constant):

π(h2, b2|y) ∝ L̂(y|h2, b2)π(h2)π(b2),

We use the adaptive random-walk Metropolis algorithm to sample (h2, b2) (see Shang 2013a, for
details). In order to assess the convergence of the Markov chain Monte Carlo (MCMC) algorithm,
we use the notion of simulation inefficiency factor (Meyer and Yu 2000). This is a measure of
autocorrelation among iterations, and provides an indication of how many iterations are required
to have the iid draws from the posterior distributions. It is noteworthy that the diagnostic tools
in the coda package (Plummer, Best, Cowles, and Vines 2006) can also be applied to check the
convergence of MCMC.

1.4. Adaptive estimation of error density

In kernel density estimation, it has been noted that the leave-one-out estimator may be heavily
affected by extreme observations in the sample (see for example, Bowman 1984). Because of the
use of a global bandwidth, the leave-one-out kernel error density estimator is likely to overestimate
the tails of the density. To overcome this deficiency, it is possible to use localised bandwidths by
assigning small bandwidths to the residuals in the high density region, and large bandwidths to the
residuals in the low density region. The localised error density estimator can be given by

f̂(ε̂; b, τε) =
1

n− 1

n∑
j=1
j 6=i

1

b(1 + τε|ε̂j |)
φ
( ε̂i − ε̂j
b(1 + τε|ε̂j |)

)
, (3)

where b(1 + τε|ε̂j |) is the bandwidth assigned to residual ε̂j , for j = 1, 2, . . . , n, and the vector of
parameters is now (h, b, τε). Again, the random-walk Metropolis algorithm can be used to sample
these parameters.

2. Bayesian model selection

In Bayesian inference, model selection or averaging is often conducted through the Bayes factor of
the model of interest against a competing model. The Bayes factor reflects a summary of evidence
provided by the data supporting the model as opposed to its competing model. The Bayes factor
can be defined as the ratio of the marginal likelihoods under different models.

The marginal likelihood is defined as the expectation of likelihood with respect to the prior of
parameters. It is seldom computed as the integral of the product of the likelihood and prior of
parameters, but instead, is often computed numerically (Gelfand and Dey 1994; Newton and Raftery
1994; Chib 1995; Kass and Raftery 1995; Geweke 1999, among others). We utilised the method
proposed by Chib (1995) to compute the marginal likelihood.

Let θ = (h, b) be the parameter vector and y = (y1, . . . , yn) be the data. Chib (1995) showed that
the marginal likelihood under model A is expressed as

PA(y) =
lA(y|θ)πA(θ)

πA(θ|y)
,
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where lA(y|θ), πA(θ) and πA(θ|y) denote the likelihood, prior and posterior under model A,
respectively. PA(Y ) is often computed at the posterior estimate of θ. The numerator has a closed
form and can be computed analytically. For relatively small number of parameters, the denominator
can be estimated by its kernel density estimator based on the simulated chain of θ through a
posterior sampler.

The Bayes factor of model A against model B is defined as PA(y)/PB(y). Based on the Bayes factor,
we can determine which model is more superior than a competing model with different levels of
evidence (see Kass and Raftery 1995, for more details).

Here, we use the marginal likelihood to select the optimal semi-metric. The choice of semi-metric is
important to obtain good statistical properties of the nonparametric method in the function space.
As pointed out by Ferraty and Vieu (2009), the choice of semi-metric has effects on the size and the
form of neighborhoods and can thus control the concentration properties of functional data. From a
practical viewpoint, a semi-metric based on derivative should be used for a set of smooth functional
data; a semi-metric based on dimension reduction technique, such as functional principal component
analysis, should be used for a set of rough functional data (Ferraty and Vieu 2006, Chapters 3 and
13). Although Ferraty and Vieu (2006, p.193) remarked that the selection of semi-metric remains
an open question, there is no method to quantify which semi-metric is more adequate, or how to
select the optimal one.

3. Simulation studies

We describe the construction of the simulated data. First of all, a set of discretised data points of a
functional curve is simulated:

Ti(tj) = ai cos(2tj) + bi sin(4tj) + ci(t
2
j − πtj +

2

9
π2), i = 1, 2, . . . , n, (4)

where 0 ≤ t1 ≤ t2 ≤ · · · ≤ t100 ≤ π are equispaced points, ai, bi and ci are independently drawn from
a uniform distribution on [0, 1], and n represents the sample size. The functional form in (4) was
taken from Ferraty, Van Keilegom, and Vieu (2010), and has also been studied by Shang (2013a,b).
Figure 1 presents 20 simulated smooth curves as an example.

Once the curves are defined, one simulates a functional regression model to compute the scalar
responses, given below:

1) construct a nonparametric component m(Ti) = 10× (a2i − b2i ), which performs the mapping
from function-valued space to real-valued space.

2) in the nonparametric functional regression, the regression function consists of only a nonpara-
metric component. Thus, we have τi = m(Ti). In the semi-functional partial linear regression,
we also have a parametric component. In this case, let Xi1 and Xi2 be independently drawn
from a uniform distribution U(0, 1) for i = 1, 2, . . . , n. The true values of regression coefficients
are set to be β = (−1, 2). The regression function is constructed as

τi = m(Ti) +Xiβ, for i = 1, 2, . . . , n.

3) generate ε1, ε2, . . . , εn from a standard normal distribution.
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Figure 1: 20 simulated smooth curves

4) compute the corresponding response:

yi = τi + εi.

Smooth curves

First, we consider a set of smoothed curves as realisations of a functional predictor, and choose a
semi-metric based on the 2nd derivative to measure the distances among curves. The relationship
between a functional predictor and a scalar response can be modelled by a functional nonparametric
regression or a semi-functional partial linear regression. In the case of a nonparametric functional
regression, the estimated bandwidths can be obtained as follows:

# error density is approximated by a kernel density of residuals with a global bandwidth

# q=2 represents the semi-metric based on the 2nd derivative, since functions can be

# estimated by a basis representation, a B-spline basis representation is used with 20 knots

R> np_global <- bayMCMC_np_global(data_x=simcurve_smooth_normerr, data_y=simresp_np_normerr,

data_xnew=simcurve_smooth_normerr, warm=1000, M=1000, range.grid=c(0,pi), q=2, nknot=20)

# estimated bandwidth parameters (h,b)

R> np_global$xpfinalres

# estimated values for the regression function

R> np_global$mhat

# simulation inefficiency factor to evaluate the convergence of MCMC
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R> np_global$sif_value

# log marginal likelihood computed by Chib (1995)'s method

R> np_global$mlikeres

# acceptance rates of the random-walk Metropolis sampling algorithm with target of 0.44

# for the bandwidths in the regression function and kernal-form error density

R> c(np_global$acceptnwMCMC, np_global$accepterroMCMC)

# estimated error density (probability density function)

R> np_global$fore.den.mkr

# estimated error density (cumulative probability density function)

R> np_global$fore.cdf.mkr

By using localised bandwidths, the estimation of error density can generally be more accurate than
a global bandwidth because large residuals in magnitude are assigned relatively large bandwidths,
while small residuals in magnitude are assigned relatively small bandwidths. An example is provided
below:

# error density is approximated by a kernel density of residuals with localised bandwidths

R> np_local <- bayMCMC_np_local(data_x=simcurve_smooth_normerr, data_y=simresp_np_normerr,

data_xnew=simcurve_smooth_normerr, warm=1000, M=1000, range.grid=c(0,pi), q=2, nknot=20)

# estimated bandwidth parameters (h, b, badj)

R> np_local$xpfinalres

# estimated values for the regression function

R> np_local$mhat

# simulation inefficiency factor to evaluate the convergence of MCMC

R> np_local$sif_value

# log marginal likelihood computed by Chib (1995)'s method

R> np_local$mlikeres

# acceptance rates of the random-walk Metropolis algorithm for the bandwidths

R> c(np_local$acceptnwMCMC, np_local$accepterroMCMC, np_local$acceptepsilonMCMC)

# estimated error density (probability density function)

R> np_local$fore.den.mkr

# estimated error density (cumulative probability density function)

R> np_local$fore.cdf.mkr

Based on the log marginal likelihood (LML), the kernel-form error density with localised bandwidths
is preferred to a global bandwidth. The Bayes factor can be derived from the difference in LML:

exp(LMLG − LMLL),

where G and L represent the kernel density estimators of error density, with a global bandwidth or
localised bandwidths.



8 The bbefkr Package

In a semi-functional partial linear regression, the algorithm is similar to a nonparametric functional
regression. Thus, we only highlight the additional output produced, such as the estimation of
regression coefficients in the parametric part of the regression function. This is described as follows:

# error density is approximated by a kernel density of residuals with a global bandwidth

# Xvar is a n by 2 matrix, where each column variable is simulated from U(0,1)

R> semi_global <- bayMCMC_semi_global(data_x=simcurve_smooth_normerr,

data_y=simresp_semi_normerr, data_xnew=simcurve_smooth_normerr, Xvar=Xvar, warm=1000,

M=1000, range.grid=c(0,pi), q=2, nknot=20)

# estimated regression coefficients

R> semi_global$betahat

# log marginal likelihood computed by Chib (1995)'s method

R> semi_global$mlikeres

# error density is approximated by a kernel density of residuals with localised bandwidths

R> semi_local <- bayMCMC_semi_local(data_x=simcurve_smooth_normerr,

data_y=simresp_semi_normerr, data_xnew=simcurve_smooth_normerr, Xvar=Xvar, warm=1000,

M=1000, range.grid=c(0,pi), q=2, nknot=20)

# estimated regression coefficients

R> semi_local$betahat

# log marginal likelihood computed by Chib (1995)'s method

R> semi_local$mlikeres

Rough curves

We also consider a set of rough curves as realisations of a functional predictor. The same functional

form is used as given in (4), but one extra variable dj
iid∼ U(−0.1, 0.1) is included. Figure 2 presents

20 simulated rough curves as an example.

For modelling a set of rough curves, the semi-metric based on functional principal components
should be used (Ferraty and Vieu 2006). From one to five functional principal components, Shang
(2013b) found that retaining three functional principal components produces the smallest estimation
error in this data set. Therefore, we compare the log marginal likelihoods between the semi-metric
based on the 2nd derivative and the semi-metric based on three functional principal components

# error density is approximated by a kernel density of residuals with a global bandwidth

# using the semi-metric based on the 2nd derivative

R> rough_np_global_deriv <- bayMCMC_np_global(data_x=simcurve_rough_normerr,

data_y=simresp_np_normerr, data_xnew=simcurve_rough_normerr, warm=1000, M=1000,

range.grid=c(0,pi), q=2, nknot=20)

# a global bandwidth using the semi-metric based on three functional principal components

R> rough_np_global_pca = bayMCMC_np_global(data_x=simcurve_rough_normerr,

data_y=simresp_np_normerr, data_xnew=simcurve_rough_normerr, warm=1000, M=1000,

semimetric="pca", q=3)
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Figure 2: 20 simulated rough curves

# comparing two semi-metrics based on their log marginal likelihoods

R> c(rough_np_global_deriv$mlikeres, rough_np_global_pca$mlikeres)

Similar findings also held for the nonparametric functional regression model with localised bandwidths.
These can be implemented as follows:

# error density is approximated by a kernel density of residuals with localised bandwidths

# using the semi-metric based on the 2nd derivative

R> rough_np_local_deriv <- bayMCMC_np_local(data_x=simcurve_rough_normerr,

data_y=simresp_np_normerr, data_xnew=simcurve_rough_normerr, warm=1000, M=1000,

range.grid=c(0,pi), q=2, nknot=20)

# localised bandwidths using the semi-metric based on three functional principal components

R> rough_np_local_pca <- bayMCMC_np_local(data_x=simcurve_rough_normerr,

data_y=simresp_np_normerr, data_xnew=simcurve_rough_normerr, warm=1000, M=1000,

semimetric="pca", q=3)

# comparing two semi-metrics based on their log marginal likelihoods

R> c(rough_np_local_deriv$mlikeres, rough_np_local_pca$mlikeres)

Thus, for a set of rough curves, the semi-metric based on functional principal components is more
suitable than the semi-metric based on the 2nd derivative. However, for a set of smooth curves, it is
advantageous to use the semi-metric based on the 2nd derivative, as described below:

# error density is approximated by a kernel density of residuals with a global bandwidth

# using the semi-metric based on the 2nd derivative
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R> smooth_np_global_deriv <- bayMCMC_np_global(data_x=simcurve_smooth_normerr,

data_y=simresp_np_normerr, data_xnew=simcurve_smooth_normerr, warm=1000, M=1000,

range.grid=c(0,pi), q=2, nknot=20)

# a global bandwidth using the semi-metric based on functional principal components

R> smooth_np_global_pca <- bayMCMC_np_global(data_x=simcurve_smooth_normerr,

data_y=simresp_np_normerr, data_xnew=simcurve_smooth_normerr, warm=1000, M=1000,

semimetric="pca", q=3)

# comparing two semi-metrics based on their log marginal likelihoods

R> c(smooth_np_global_deriv$mlikeres, smooth_np_global_pca$mlikeres)

# localised bandwidths using the semi-metric based on the 2nd derivative

R> smooth_np_local_deriv <- bayMCMC_np_local(data_x=simcurve_smooth_normerr,

data_y=simresp_np_normerr, data_xnew=simcurve_smooth_normerr, warm=1000, M=1000,

range.grid=c(0,pi), q=2, nknot=20)

# localised bandwidths using the semi-metric based on functional principal components

R> smooth_np_local_pca <- bayMCMC_np_local(data_x=simcurve_smooth_normerr,

data_y=simresp_np_normerr, data_xnew=simcurve_smooth_normerr, warm=1000, M=1000,

semimetric="pca", q=3)

# comparing two semi-metrics based on their log marginal likelihoods

R> c(smooth_np_local_deriv$mlikeres, smooth_np_local_pca$mlikeres)

Among a set of possible semi-metrics, the marginal likelihood allows us to select the optimal one.

Spectroscopy application

Let us consider a food quality control application, previously studied by Ferraty and Vieu (2006);
Aneiros-Pérez and Vieu (2006) and Shang (2013a,b). The data set was obtained from http:

//lib.stat.cmu.edu/datasets/tecator. Each food sample contains finely chopped pure meat
with different percentages of the fat, protein and moisture contents. For each unit i (among 215
pieces of finely chopped meat), we observe one spectrometric curve, denoted by Ti, which corresponds
to the absorbance measured at a grid of 100 wavelengths, from 852nm to 1050nm in the step of
2nm. Given a new spectrometric curve Tnew, we aim to predict its corresponding fat content. A
graphical display of spectrometric curves is shown in Figure 3.

To predict the fat content, we consider a functional nonparametric regression and a semi-functional
partial linear regression. As shown in Shang (2013b), the semi-functional partial linear regression
gives more accurate forecasts than the functional nonparametric regression, since it uses additional
information about protein and moisture contents. The forecasts can be obtained as follows:

# We use the first 44 pairs of data to estimate the relationship. Based on a new curve,

# we can then predict its response using a nonparametric functional regression

R> fat_np_global <- bayMCMC_np_global(specurves[1:44,], fat[1:44], specurves[45,],

range.grid=c(0,pi), q=2, nknot=20)

# Point forecast

http://lib.stat.cmu.edu/datasets/tecator
http://lib.stat.cmu.edu/datasets/tecator
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Figure 3: The first 45 spectrometric curves. Among these curves, the first 44 curves are used for the
estimation of bandwidths, while the 45th curve is used for the prediction of fat content

R> fat_np_global$pointforecast

# 95% prediction interval

R> fat_np_global$PI

# Using a nonparametric functional regression with localised bandwidths

R> fat_np_local <- bayMCMC_np_local(specurves[1:44,], fat[1:44], specurves[45,],

range.grid=c(0,pi), q=2, nknot=20)

# Point forecast

R> fat_np_local$pointforecast

# 95% prediction interval

R> fat_np_local$PI

# Using a semi-functional partial linear regression with a global bandwidth

R> fat_semi_global <- bayMCMC_semi_global(data_x = specurves[1:44,], data_y = fat[1:44],

data_xnew = specurves[45,], Xvar = cbind(protein[1:44], moisture[1:44]),

Xvarpred = matrix(c(protein[45], moisture[45]), nrow=1), range.grid=c(0,pi), q=2, nknot=20)

# Point forecast

R> fat_semi_global$pointforecast

# 95% prediction interval

R> fat_semi_global$PI
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# Using a semi-functional partial linear regression with localised bandwidths

R> fat_semi_local <- bayMCMC_semi_local(data_x = specurves[1:44,], data_y = fat[1:44],

data_xnew = specurves[45,], Xvar = cbind(protein[1:44], moisture[1:44]),

Xvarpred = matrix(c(protein[45], moisture[45]), nrow=1), range.grid=c(0,pi), q=2, nknot=20)

# Point forecast

R> fat_semi_local$pointforecast

# 95% prediction interval

R> fat_semi_local$PI

Among the semi-metrics based on first derivative, second derivative, functional principal component
analysis with one, two and three retained components, we found that the semi-metric based on the
second derivative has the largest marginal likelihood and smallest prediction error.

Conclusion

This article describes the Bayesian bandwidth estimation method and its implementations in a
functional nonparametric regression and a semi-functional partial linear regression, using the bbefkr
package. The method is proposed to simultaneously estimate bandwidths in the regression function
approximated by the functional NW estimator and kernel-form error density. Illustrated by a
series of simulation studies, we found that the use of localised bandwidths is preferable to a global
bandwidth based on marginal likelihood or Bayes factor. For modelling a set of smooth curves, it is
advantageous to use a semi-metric based on derivative, whereas a semi-metric based on functional
principal components should be used for a set of rough curves. From the spectroscopy data set,
we demonstrate that the proposed Bayesian method is able to simultaneously produce point and
interval forecasts.

In future research, the method described may be extended to other nonparametric functional
estimators, such as functional local linear estimator (Báıllo and Grané 2009). Furthermore, it may
also be extended to other scalar-on-function regression models, such as functional partial linear
regression (Lian 2011).
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