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Summary: In this paper we consider the relationship of covariates to the

time to caries of permanent first molars. This involves an analysis of multi-

variate doubly-interval-censored data. To describe this relationship we sug-

gest an accelerated failure time model with random effects taking into account

that the observations are clustered. Indeed, up to four permanent molars per

child enter into the analysis implying up to four caries times for each child.

Each distributional part of the model is specified in a flexible way as a penal-

ized normal mixture with an overspecified number of mixture components.

A Bayesian approach with the MCMC methodology is used to estimate the

model parameters and a software package in the R language has been written.
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1 Introduction

In standard survival methods it is assumed that the time to the event is either exactly

known or right-censored. However, in some areas of medical research (dentistry, HIV

studies), the event can only be recorded at regular intervals (visits to the physician,

dentist) which gives rise to interval-censored data. Moreover, often not only the fail-

ure time but also the onset time is recorded in an interval-censored manner resulting

in doubly-interval-censored data. A typical example is the time to caries development on

a tooth which is equal to the time from tooth emergence to onset of caries. When several

teeth are examined jointly, one needs to take into account that there is clustering, i.e.

that teeth from the same mouth are related. In this paper we aim to analyze the effect

of brushing, plaque accumulation, presence of sealants and the status of the adjacent

deciduous molars on the caries time of the four permanent first molars using the data

from the Signal Tandmobielr study.

De Gruttola and Lagakos (1989) suggested a non-parametric estimate of the survivor

function for doubly-interval-censored data. Alternative methods were subsequently given

by Bacchetti and Jewell (1991); Gómez and Lagakos (1994); Sun (1995); Gómez and

Calle (1999). Further, Kim, De Gruttola, and Lagakos (1993) generalized the one-

sample estimation procedure of De Gruttola and Lagakos (1989) to a Cox PH model.

However, their method needs to discretize the data. Cox regression with the onset time

interval-censored and the event time right-censored has been considered by Goggins,

Finkelstein, and Zaslavsky (1999); Sun, Liao, and Pagano (1999); Pan (2001). To our

best knowledge, regression with multivariate doubly-interval-censored survival data has

not been discussed in the literature yet. In this paper, we propose a Bayesian method

based on the accelerated failure time model. At the same time, our method aims to

avoid strong parametric assumptions concerning the baseline survival time.
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The following notation will be used throughout the paper. Let
∑N

i=1 ni observational

units be divided into N clusters, the ith one of size ni. Let Ui,l and Vi,l, i = 1, . . . , N,

l = 1, . . . , ni denote the true chronological onset and event times, respectively and Ti,l =

Vi,l − Ui,l the true time-to-event. Let zi,l be a vector of covariates which can possibly

influence the onset time Ui,l of the(i, l)th unit and let xi,l be a covariate vector having

possibly an impact on the time-to-event Ti,l.

In our context, it is only known that Ui,l occurred within an interval of time [uL
i,l, uU

i,l],

where uL
i,l ≤ Ui,l ≤ uU

i,l. Similarly, the event time Vi,l is only known to lie in an interval

[vL
i,l, vU

i,l], with vL
i,l ≤ Vi,l ≤ vU

i,l, i = 1, . . . , N, l = 1, . . . , ni, see also Figure 1. Note

that exactly observed, right- and left-censored data are special cases of interval-censored

data. It is assumed that the observed intervals result from an independent noninformative

censoring process (e.g. pre-scheduled visits). Further, we assume that the true time-to-

event Ti,l is independent of the true onset time Ui,l for all i and l, this issue will be

discussed further in Section 3.1.

< Figure 1 about here >

In Section 2, we describe the data and the research question which motivated the

development of our approach. Section 3 describes the assumed model. The prior dis-

tributions are described in Section 4. The resulting posterior distributions are given in

Section 5. The suggested approach is validated using a simulation study in Section 6

and in Section 7 it is shown how it tackled our research question. The paper ends with

a discussion.

2 Data and Research Question

The Signal Tandmobielr study is a longitudinal prospective (1996–2001) oral health

screening project performed in Flanders, Belgium. The children (2 315 boys and 2 153
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girls) born in 1989 were examined on a yearly basis by one of 16 trained dentist-examiners.

Additional data on oral hygiene and dietary habits were obtained through structured

questionnaires, completed by the parents. The details of the study design and research

methods can be found in Vanobbergen et al. (2000).

The primary interest of the present analysis is to address the influence of sound versus

affected (decayed/filled/missing due to caries) deciduous second molars (teeth 55, 65, 75,

85, respectively in European dental notation) on the caries susceptibility of the adjacent

permanent first molars (teeth 16, 26, 36, 46, respectively). Note that for about five years

the deciduous second molars are in the mouth together with the permanent first molars.

It is possible that the caries processes on the primary and the permanent molar occur

simultaneously. In this case it is difficult to know whether caries on the deciduous molar

caused caries on the permanent molar or vice versa. For this reason, the permanent first

molar was excluded from the analysis if caries was present when emergence was recorded.

In total, 3 520 children were included in the analysis of which 187 contributed 1 tooth,

317 2 teeth, 400 3 teeth and 2 616 all 4 teeth.

Additionally, we considered the impact of gender (boy/girl), presence of sealants in

pits and fissures of the permanent first molar (none/present), occlusal plaque accumu-

lation on the permanent first molar (none/in pits and fissures/on total surface), and

reported oral brushing habits (not daily/daily). Note that pits and fissures sealing is

a preventive action which is expected to protect the tooth against caries development.

The presence of plaque on the occlusal surfaces of the permanent first molars was assessed

using a simplified version of the index described by Carvalho et al. (1989). All explana-

tory variables were obtained at the examination where the presence of the permanent

first molar was first recorded.

The choice of explanatory variables is motivated by the results of Leroy et al. (2005)

where a GEE multivariate log-logistic survival model was used for the caries times com-
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bined with multiple imputation to correct for the interval-censored emergence times.

Additionally, they included also the status of the deciduous first molars (teeth 54, 64,

74, 84, respectively) as a covariate in the model. We will not use this factor as an ex-

planatory variable due to its high dependence with the status of the deciduous second

molar (in all quadrants of the mouth, the χ2 test statistics with 9 degrees of freedom

exceeded 1 100).

The onset time Ui,l, l = 1, . . . , 4 is the age (in years) of the ith child (ith cluster) at

which the lth permanent first molar emerged. The failure time, Vi,l, indicates the onset

of caries of the lth permanent first molar. The time from tooth emergence to the onset

of caries, Ti,l, is doubly-interval-censored. Here, both the time of tooth emergence and

the onset of caries experience are only known to lie in an interval of about 1 year.

Further, in our example about 85% of the permanent first molars had emerged at the

first examination giving rise to a huge amount of left-censored onset times. However, at

each examination the permanent teeth were scored according to their clinical eruption

stage using a grading that starts at P0 (tooth not visible in the mouth) and ends with

P4 (fully erupted tooth with full occlusion). Based on the clinical eruption stage at the

moment of the first examination, all left-censored emergence times were transformed into

interval-censored ones with the lower limit of the observed interval equal to the age at

examination minus 0.25 year, 0.5 year and 1 year, respectively for the teeth with the

eruption stage P1, P2 and P3, respectively and with the lower limit equal to 5 years for

the teeth with the eruption stage P4. We refer to Leroy et al. (2005) for details and

motivation.
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3 Model

We allow both the true onset time Ui,l and the true time-to-event Ti,l to depend on

covariates via the accelerated failure time (AFT). The AFT model is a valuable alter-

native to the Cox PH model (see, e.g., Reid, 1994; Keiding, Andersen, and Klein, 1997;

Hougaard, 1999; Lambert et al., 2004) although far less used. To account for possible

dependencies among teeth of the same child we use an AFT model with a random inter-

cept included in the model and refer to it as the cluster-specific AFT model. Further,

we have opted for a flexible expression for all distributional parts of the model implying

a smoothly estimated survival and hazard curve with the shape driven by the data. To

this end, we propose a penalized normal mixture with an overspecified number of mixture

components.

3.1 Cluster-specific AFT model

Cluster-specific random effects di and bi, i = 1, . . . , N are introduced to account for

possible dependencies of different teeth within an individual. Namely, the following

model is assumed

log(Ui,l) = di + δ′zi,l + ζi,l, i = 1, . . . , N, l = 1, . . . , ni, (1)

log(Vi,l − Ui,l) = log(Ti,l) = bi + β′xi,l + εi,l, i = 1, . . . , N, l = 1, . . . , ni, (2)

where δ and β are unknown regression parameter vectors, ζi,l, i = 1, . . . , N, l = 1, . . . , ni

are i.i.d. random variables with some density gζ(ζ). Analogously, the error terms εi,l,

i = 1, . . . , N, l = 1, . . . , ni are i.i.d. random variables with density gε(ε). The random

effects di, i = 1, . . . , N and bi, i = 1, . . . , N , respectively are assumed to be i.i.d. with

a density gd(d) and gb(b), respectively. Furthermore we assume that εi,l, ζi,l, bi and di

are independent for all i and l.

Assumptions outlined above imply that Ui,l and Ti,l are independent for each i and
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l. Specifically, here we assume that the caries process on a specific tooth only depends

on the time when that tooth is at risk for caries and not on the chronological time when

the tooth entered the risk group for caries. This assumption seems to be reasonable for

the Signal Tandmobielr data taking into account the results of Leroy et al. (2005) who

evaluated also the effect of the emergence time on the time-to-caries and found it highly

non-significant (p = 0.78). The above assumptions also imply that (a) whether a child is

an early or late emerger is independent of whether a child is more or less sensitive against

caries (independence of bi and di) and (b) whether a specific tooth emerges early or late is

independent of whether that tooth is more or less sensitive against caries (independence

of εi,l and ζi,l).

3.2 Flexible distributional assumptions

To finalize the specification of our measurement model we have to specify the densities

gζ, gε of the random errors and the densities gd, gb of the random effects.

A generic density g(y) of a random variable Y is modelled as a location-and-scale

transformed weighted sum of normal densities over a fixed fine grid of knots µ =

(µ−K, . . . , µK)′ centered around µ0 = 0. The means of the normal components are

equal to the knots and their variances are all equal and fixed to σ2, i.e.

Y = α + τ Y ∗, Y ∗ ∼
K

∑

j=−K

wj N
(

µj, σ2
)

(3)

where the intercept term α and the scale parameter τ have to be estimated as well as

the vector w = (w−K, . . . , wK)′ of weights that satisfy wj > 0 for all j and
∑

j wj = 1.

Additionally, each element of w is expressed as a function of the elements of the vector

a = (a−K , . . . , aK)′ as follows

wj =
exp(aj)

∑K

k=−K exp(ak)
, j = −K, . . . , K (4)

which allows for unconstrained estimation.
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Our model can be considered as a limiting case of the B-spline smoothing (Eilers and

Marx, 1996) of unknown functions. Instead of the B-splines as basis functions, the normal

densities are used which are the limits of the B-splines as their degree tends to infinity

(Unser, Aldroubi, and Eden, 1992). A similar approach was used by Ghidey, Lesaffre,

and Eilers (2004) who used the expression similar to (3) to model the distribution of the

random effects in a linear mixed model (with uncensored data). Komárek, Lesaffre, and

Hilton (2005) employed this technique for the error distribution in an AFT model with

univariate censored data.

The choice of the grid points µj and the basis standard deviation σ can be made

independent of the location and the range of the true distribution of Y . In our anal-

ysis (Section 7), the same grid of equidistant knots of length 31 (K = 15) defined on

[−4.5, 4.5] is used with the basis standard deviation σ = 2 (µj − µj−1)/3 = 0.2; see

Komárek et al. (2005) for a motivation.

3.3 Likelihood

Denoting p a generic density, the likelihood contribution of the ith cluster is given by

Li =

∫

∞

−∞

∫

∞

−∞

{ ni
∏

l=1

∫ uU
i,l

uL
i,l

∫ vU
i,l
−ui,l

vL
i,l
−ui,l

p(ti,l, bi, ui,l, di) dti,l dui,l

}

dbi ddi (5)

=

∫

∞

−∞

∫

∞

−∞

{ ni
∏

l=1

∫ uU
i,l

uL
i,l

∫ vU
i,l
−ui,l

vL
i,l
−ui,l

p(ti,l | bi, ui,l, di) p(bi | ui,l, di) p(ui,l | di) p(di) dti,l dui,l

}

dbi ddi

=

∫

∞

−∞

∫

∞

−∞

[

ni
∏

l=1

∫ uU
i,l

uL
i,l

{
∫ vU

i,l
−ui,l

vL
i,l
−ui,l

p(ti,l | bi) dti,l

}

p(ui,l | di) dui,l

]

p(bi) p(di) dbi ddi,

where p(ti,l | bi) = t−1
i,l gε

{

log(ti,l)−bi−β′xi,l

}

combines the AFT model (2) with the model

of the type (3) for gε(εi,l) and similarly p(ui,l | di) = u−1
i,l gζ

{

log(ui,l)−di−δ′zi,l

}

combines

the AFT model (1) with the model of the type (3) for gζ(ζi,l). Further, p(bi) = gb(bi) and

p(di) = gd(di) are given by the model (3). Since it is not possible to identify between

the intercept terms of the random effect and the error term, we fix the intercepts of the
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random effects, i.e. the terms αb and αd to zero.

Ghidey et al. (2004) and Komárek et al. (2005) used penalized maximum-likelihood

estimation of the unknown parameters. However, this method is rather cumbersome and

computationally intractable for likelihood (5). Instead, a Bayesian approach together

with the MCMC methodology (see, e.g., Besag et al., 1995) will be used here to avoid

explicit integration and optimization.

4 Prior distributions

To specify the model from the Bayesian point of view, prior distributions for all unknown

parameters, denoted by θ, have to be given. For our model we assume a hierarchical

structure given by a directed acyclic graph (DAG) in Figure 2 with the usual conven-

tion that square boxes represent fixed or observed quantities, circles unknown parame-

ters, solid arrows stochastic dependencies and dashed arrows deterministic dependencies.

We use p(· | ·) to denote a generic conditional distribution and p(·) to denote a generic

marginal distribution. The joint prior distribution of the whole model is given by the

product of the conditional distributions of the nodes pertaining to unobserved quantities

given their parents, namely

p(θ) ∝
N
∏

i=1

[

ni
∏

l=1

{

p
(

vi,l

∣

∣ ui,l, ti,l
)

× p
(

ti,l
∣

∣ β, bi, εi,l

)

× p
(

ui,l

∣

∣ δ, di, ζi,l

)

×

p
(

εi,l

∣

∣ Gε, rε
i,l

)

× p
(

ζi,l

∣

∣ Gζ , rζ
i,l

)

}

× p
(

bi

∣

∣ Gb, rb
i

)

× p
(

di

∣

∣ Gd, rd
i

)

]

×

p
(

Gε

)

× p
(

Gζ

)

× p
(

Gb

)

× p
(

Gd

)

× p
(

δ
)

× p
(

β
)

.

The node Gε refers to the set {σε, µε, αε, τ ε, wε, aε, λε} which contains the

parameters of formulas (3) and (4) and a smoothing parameter λε which will be further

discussed in Section 4.2. The sets Gζ , Gb, Gd are defined in an analogous manner. Further,

let G be a generic symbol for its subscriped counterpart (i.e. for Gε, Gζ , Gb, Gd) and let
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y be a generic symbol for εi,l, ζi,l, bi, or di, i = 1, . . . , N, l = 1, . . . , ni, respectively. The

sub-DAG for the generic y random variable is shown in Figure 3 and the corresponding

DAG conditional distributions are discussed in Sections 4.1 and 4.2.

< Figure 2 about here >

< Figure 3 about here >

4.1 DAG conditional distributions for the generic node y

To specify the generic DAG conditional distribution of y we introduce a latent allocation

variable r taking values in {−K, . . . , K}. Actually, data augmentation (Tanner and

Wong, 1987) is introduced which simplifies the MCMC procedure. The DAG conditional

distribution p(y | G, r) is simply a normal distribution:

p(y | G, r) = p(y | σ, µ, α, τ, r) = N
(

α + τ µr, (τ σ)2
)

.

Further, p(r | G) = p(r |w) is given by Pr
(

r = j
∣

∣ w
)

= wj, j ∈ {−K, . . . , K} and the

conditional distribution p(y | G) = p(y | σ, µ, α, τ, w) is a normal mixture given by the

formulas (3) and (4).

4.2 DAG conditional distributions for G

The prior distribution of a generic node G whose structure is given in Figure 3 equals

p(G) ∝ p(a |λ) p(λ) p(α) p(τ). Although often the grid length (2 K + 1) is of moderate

size it results in a rather large number of unknown a parameters. To avoid overfitting of

the data and even identifiability problems, a restriction on the a parameters is needed.

Komárek et al. (2005) used a penalty term for the transformed weights added to the

log-likelihood for this purpose, which can be interpreted as an informative log-prior

distribution (e.g., Silverman, 1985, Section 6). Therefore the prior distribution p(a |λ)
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is defined as the exponential of the penalty term of Komárek et al. (2005), i.e.

p(a | λ) ∝ exp
{

−λ

2

K
∑

j=−K+m

(

∆m aj

)2
}

= exp
{

−λ

2
a′

D
′
D a

}

, (6)

where ∆m denotes a difference operator of order m (e.g., ∆3 aj = aj−3 aj−1+3 aj−2−aj−3

is used in the analysis in Section 7) and D the corresponding difference operator matrix.

The hyperparameter λ controls the smoothness of the resulting density g(y).

Expression (6) is that of a multivariate normal density with zero mean and covariance

matrix λ−1
(

D
′
D

)

−

, where
(

D
′
D

)

−

denotes a generalized inverse of the matrix D
′
D. This

distribution is known as a Gaussian Markov random field (GMRF) extensively used

in spatial statistics. Although the distribution (6) is improper (the matrix D
′
D has

a deficiency of m in its rank) the resulting posterior distribution is proper as soon as

there is some informative data available, see Besag et al. (1995).

Prior distribution (6) is concentrated in areas where the coefficients of a that corre-

spond to the mixture components with closer means do not substantially differ. Con-

sequently, prior distribution (6) favours smooth estimates of the estimated densities

(gε, gζ , gb or gd). Due to the correspondence of the prior (6) with the penalty term in

the penalized maximum-likelihood approach we will call the mixture model (3) with this

prior a penalized Gaussian mixture.

The smoothing hyperparameter λ can be interpreted as the component of prior pre-

cision of the transformed weights a. In penalized maximum-likelihood estimation, the

optimal value for λ is determined by cross-validation or Akaike’s information criterion

(see Ghidey et al., 2004; Komárek et al., 2005). Another way is to optimize the penalized

likelihood also with respect to λ (see Kauermann, 2005). For our full Bayesian inference,

the unknown smoothing parameter λ is considered stochastic and analogously to Kauer-

mann (2005) is estimated simultaneously with all the remaining parameters of the model.
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Therefore, here a hyperprior has been assigned to λ, i.e. a highly dispersed but proper

Gamma prior, e.g., p(λ) = Gamma(1, 0.005) is used in the analysis in Section 7.

Finally, in the case when the intercept term α is not fixed to zero (intercept of error

distributions), a highly dispersed normal distribution has been taken for p(α). For the

precision τ−2 we have taken a highly dispersed Gamma distribution. In the analysis

in Section 7, p(α) = N (0, 100), p(τ−2) = Gamma(1, 0.005). Alternatively a uniform

distribution on τ which is sometimes preferred for hierarchical models (Gelman et al.,

2004, pp. 136, 390) could be taken.

4.3 DAG conditional distributions for the time variables and

regression parameters

The DAG conditional distributions for the time variables are determined by the AFT ex-

pressions from Section 3.1. Namely, p
(

ui,l

∣

∣δ, di, ζi,l

)

, p
(

ti,l
∣

∣β, bi, εi,l

)

, and p
(

vi,l

∣

∣ui,l, ti,l
)

are Dirac densities with p
(

ui,l

∣

∣δ, di, ζi,l

)

= I
[

ui,l = exp(di+δ′zi,l+ζi,l)
]

, p
(

ti,l
∣

∣β, bi, εi,l

)

=

I
[

ti,l = exp(bi + β′xi,l + εi,l)
]

, and p
(

vi,l

∣

∣ ui,l, ti,l
)

= I[vi,l = ui,l + ti,l], respectively.

The conditional distributions p
(

uL
i,l, uU

i,l

∣

∣ui,l, censoringi,l

)

and p
(

vL
i,l, vU

i,l

∣

∣vi,l, censoringi,l

)

are, under the assumption of independent noninformative censoring, the Dirac densities

as well. For example with interval censoring resulting from checking the survivor sta-

tus at (random) times C i,l = {ci,l,0, . . . , ci,l,S+1}, where ci,l,0 = 0, ci,l,S+1 = ∞ we have

p
(

uL
i,l = ci,l,s, uU

i,l = ci,l,s+1

∣

∣ ui,l, Ci,l

)

= I[ci,l,s ≤ ui,l ≤ ci,l,s+1], s = 0, . . . , S. With stan-

dard right-censoring driven by the (random) censoring time Ci,l we have p
(

uL
i,l = uU

i,l =

ui,l

∣

∣ui,l, Ci,l = ci,l

)

= I[ui,l ≤ ci,l] and p
(

uL
i,l = ci,l, uU

i,l = ∞
∣

∣ui,l, Ci,l = ci,l

)

= I[ui,l > ci,l].

Note however that, as soon as the censoring mechanism is independent and noninforma-

tive, we do not have to specify its model since it only acts as a multiplicative constant

in the posterior.
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Finally, the prior distributions of the regression parameters, p(β) and p(δ), are taken

to be products of independent highly dispersed normal distributions (N (0, 100) was used

in the analysis in Section 7).

5 Posterior distribution

The joint posterior distribution, p(θ | data), is proportional to the product of all DAG

conditional distributions, i.e.

p(θ | data) ∝ p(θ) ×
N
∏

i=1

ni
∏

l=1

{

p
(

uL
i,l, uU

i,l

∣

∣ui,l, censoringi,l

)

× p
(

vL
i,l, vU

i,l

∣

∣vi,l, censoringi,l

)

}

.

Inference will be based on a sample from the posterior distribution obtained using the

MCMC methodology. We derived full conditional distributions for all model parameters

and use the Gibbs algorithm (Geman and Geman, 1984) to perform one iteration of the

MCMC.

A software package, called bayesSurv, was written combining the R language (R

Development Core Team, 2005) with programs in C++, and is available from the Com-

prehensive R Archive Network on http://www.R-project.org. Specifically, MCMC

sampling is performed by the function bayessurvreg3, the estimates of the densities

gζ, gε, gd, g(b) are obtained using the function bayesGspline and predictive survivor or

hazard functions for specified combinations of covariates are computed using the function

predictive2.

5.1 Full conditionals for parameters defining the penalized Gaus-

sian mixture

The full conditionals for the mixture intercept α is a normal distribution and for the

smoothing parameter λ a gamma distribution is obtained. However, the full condition-

13



als for the precision τ−2 and the elements of a do not belong to any of the standard

distributions.

The full conditional of each element of a is given by

p(aj | · · · ) ∝
exp(Nj aj)

{ K
∑

k=−K

exp(ak)
}n

× exp

[

−

{

aj − E
(

aj |a−(j), λ
)

}2

2 var
(

aj |a−(j), λ
)

]

, (7)

where (a) in case the a coefficients determine the distribution of the error terms ζi,l or εi,l,

respectively, n is equal to
∑N

i=1 ni, the total sample size and Nj is the number of residuals

ζi,l or εi,l, respectively for which the latent allocation variable rζ
i,l or rε

i,l, respectively is

equal to j; (b) in case the a coefficients determine the distribution of the random effects

di or bi, respectively, n is equal to N , the number of clusters and Nj is the number of

random effects di or bi, respectively for which the latent allocation variable rd
i or rb

i ,

respectively is equal to j. Finaly, E
(

aj |a−(j), λ
)

and var
(

aj |a−(j), λ
)

are the mean and

the variance resulting from the GMRF prior (6). Distribution (7) is log-concave so we

experimented both with the slice sampler of Neal (2003) as well as with the adaptive

rejection sampling (ARS) method of Gilks and Wild (1992) to update the elements of

a. However, in our applications no method was found to be superior with respect to the

performance of the MCMC. The results presented in Section 7 were obtained using slice

sampling.

Suppose the prior of τ−2 is Gamma(ξ∗1 , ξ∗2), then the full conditional distribution of

τ−2 has the form

p(τ−2 | · · · ) ∝ (τ−2)ξ1−1 exp
(

ξ3

√
τ−2 − ξ2τ

−2
)

, (8)

with

ξ1 = ξ∗1 + 0.5 n, ξ2 = ξ∗2 + 0.5 σ−2

n
∑

i∗=1

(yi∗ − α)2, ξ3 = σ−2

n
∑

i∗=1

µri∗
(yi∗ − α),

where i∗ goes either from 1 to N or from (1, 1) to (N, nN ). Distribution (8) is generally
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not log-concave though it can easily be shown that it is always unimodal. For this reason

we used slice sampling to update this parameter in an MCMC run.

5.2 Full conditionals for the remaining parameters

The full conditional distribution for the latent allocation variables rζ
i,l, rε

i,l, rd
i and rb

i ,

respectively, i = 1, . . . , N, l = 1, . . . , ni is multinomial and thus is easily sampled from.

Also the regression parameters β, δ and the random effects bi and di can easily be

updated since their full conditional is normal. The true onset times ui,l, event times vi,l

and times-to-event ti,l are all non-stochastically determined by the remaining variables

when conditioned on them. Finally, the full conditional distributions for the residuals εi,l

and ζi,l are simply truncated normals. Namely, p(εi,l | · · · ) is N
(

αε + τ ε µε
rε
i,l

, (τ ε σε)2
)

truncated on the interval [log(vU
i,l−ui,l)−bi−β′xi,l, log(vL

i,l−ui,l)−bi−β′xi,l], i = 1, . . . , N,

l = 1, . . . , ni and analogously p(ζi,l | · · · ).

5.3 Posterior predictive distribution

Closely related to the posterior distribution is the posterior predictive distribution of

the onset time or time-to-event for a new subject with covariate values zpred and xpred.

The posterior predictive survivor or hazard function can be computed easily from the

MCMC output. For instance, the posterior predictive survivor function for the time-to-

event equals

S(t | data, xpred) =

∫

S(t | θ, data, xpred) p(θ | data) dθ.

Further,

S(t | θ, data, xpred) = S(t | θ, xpred) =
K

∑

j=−K

wε
j

[

1−Φ
{ log(t) − αε − b − β′xpred − τ εµε

j

τ εσε

}

]

,
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where Φ is a cumulative distribution function of N (0, 1). Using the MCMC, this quantity

is estimated by

Ŝ(t | data, xpred) = M−1
M

∑

m=1

S(t | θ(m), xpred),

where θ(m) states for the values of unknown parameters sampled at the mth iteration of

the MCMC consisting of a total of M iterations. All values of θ(m) are directly available,

except b(m) which must be additionally sampled from the normal mixture given by G(m)
b .

Analogously, the posterior predictive survivor function for the onset time or posterior

predictive hazard functions are computed.

6 Simulation study

To validate our approach we conducted a simulation study which mimics to a certain ex-

tent the Signal Tandmobielr data. From each of 150 clusters we simulated 4 observations.

The onset time Ui,l and the time-to-event Ti,l, i = 1, . . . , 150, l = 1, . . . , 4 were generated

according to the AFT models (1) and (2) with zi,l = (zi,l,1, zi,l,2)
′, δ = (0.20, −0.10)′

and xi,l = (xi,l,1, xi,l,2)
′, β = (0.30, −0.15)′. The covariates zi,l,1 and xi,l,1 are continuous

and generated independently from a uniform distribution on (0, 1), the covariates zi,l,2

and xi,l,2 are binary with the equal probabilities for zeros and ones.

The error terms ζi,l and εi,l are obtained from ζi,l = αζ + τ ζ ζ∗

i,l (αζ = 1.75, ζ∗

i,l ∼ g∗

ζ )

and εi,l = αε + τ ε ε∗i,l (αε = 2.00, ε∗i,l ∼ g∗

ε), respectively. Further, the random effects di

and bi are obtained from di = τ d d∗

i (d∗

i ∼ g∗

d) and bi = τ b b∗i (b∗i ∼ g∗

b ), respectively. The

scale parameters were chosen such that (τ d)2 + (τ ζ)2 = τ 2
onset = 0.1 and (τ b)2 + (τ ε)2 =

τ 2
event = 1.0, see below for the individual values. The choice of τ 2

onset and τ 2
event was

motivated by the results of the analysis in Section 7.

Two scenarios for the distributional parts of the model were considered. In scenario

I, both densities g∗

ζ and g∗

ε (of the error terms) are a mixture of normals, i.e. equal to
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0.4N (−2.000, 0.25) + 0.6N (1.333, 0.36) standardized to have unit variance. For the

densities gd∗ and g∗

b (of the standardized random effects) the density of a standardized

extreme value of minimum distribution was taken. In scenario II, we reversed the setting,

i.e. we have taken an extreme value distribution for the error terms and a normal mixture

for the random effects. Additionally, within each scenario, the variances τ 2
onset and τ 2

event

were decomposed such that the ratios τ d/τ ζ = τ b/τ ε were equal to 5, 3, 2, 1, 1/2, 1/3,

and 1/5, respectively.

The true onset and event times were interval-censored by simulating the ‘visit’ times

for each subject in the data set. The first visit was drawn from N (1, 0.22). Each of the

distances between the consecutive visits was drawn from N (0.5, 0.052).

Table 1 gives the results for the regression parameters and shows that they are es-

timated practically unbiasedly and with a reasonable precision. It is further seen that

the precision of the estimation decreases when the within-cluster variability (variance of

the error terms) increases compared to the between-cluster variability (variance of the

random effects). In practice however, the between-cluster variability is often much higher

than the within-cluster variability. Furthermore, the shape of the survivor curves is cor-

rectly estimated as is illustrated in Figure 4 which shows results for the fitted survivor

functions of the time-to-event Ti,l and selected simulation patterns and combinations

of covariates (results for the other simulation patterns or for the onset time Ui,l were

similar).

< Table 1 about here >

< Figure 4 about here >
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7 Analysis of the Signal Tandmobielr data

The analysis starts with the Basic Model where we allowed for a different effect of the

covariates on both emergence and caries experience for the four permanent first molars.

Namely, the Basic Model was based on the AFT models (1) and (2) with the covariate

vector zi,l for emergence composed of gender, three dummies for tooth and interaction

terms between gender and tooth. The covariate vector xi,l for the caries part of the model

was equal to the covariate vector zi,l extended by three dummy variables expressing the

status of the adjacent deciduous second molar: decayed, filled, missing due to caries with

sound being the baseline, by two binary covariates brushing (1 = daily, 0 = not daily) and

sealants (1 = present, 0 = not present) and by two dummy variables: pits and fissures,

total surface for plaque with no plaque as the baseline. Additionally, two-way interaction

terms between tooth and all remaining factors included in the model were involved. For

a better fit we subtracted 5 years (which is clinically minimal emergence time for the

permanent first molars, see, e.g. Ekstrand, Christiansen, and Christiansen, 2003) from all

observed times, i.e. log(Ui,l − 5) was used in the left-hand side of the model formula (1).

The Basic Model corresponds, for comparison purposes, as closely as possible to the

model used by Leroy et al. (2005). The differences were outlined in Section 2. The most

important one is the use here of the flexible and cluster-specific (conditional) model fitted

in the Bayesian way, whereas in Leroy et al. (2005) a parametric and population-averaged

(marginal) model fitted using a frequentist method.

Based on the results for the Basic Model (see below) we fitted the Final Model

where we omitted all two-way interactions with the covariate tooth and additionally, we

binarized the covariates status and plaque. More specifically, for the covariate status we

put together the groups of decayed, filled and missing (dmf ) deciduous molars, and for

the covariate plaque we joined the groups with the plaque present in pits and fissures
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and on total surface.

7.1 Results

For each considered model we ran 500 000 iterations with 1:3 thinning which took about

44 hours on a 3 GHz Pentium IV PC with 1 GB RAM. We kept last 100 000 iterations

for the inference.

In the Basic Model, we found out that all interaction terms with tooth are redundant

implying that the effect of all considered covariates is the same for all four permanent

first molars. To evaluate this we used simultaneous Bayesian p-values computed using

the method of Held (2004). For emergence, the p-value for tooth:gender interaction was

higher than 0.5. For the caries part of the model the p-values were higher than 0.5 for

the interactions of tooth with gender and plaque and higher than 0.1 for the interactions

with brushing, sealants and status. It seemed that also the effect of the covariate tooth

itself is not significant however we kept it in the model as the question was also whether

the emergence and caries timing are the same for the four permanent first molars.

Further, for none of the four permanent first molars a significant difference was found

between the status groups decayed, filled or missing, and between the plaque groups

present in pits and fissures or present on total surface. This finding, together with

the fact that the group with extracted deciduous molar and the group with the plaque

present on total surface had very low prevalence (1.45% and 3.13%, respectively) led to

the simplification of these two covariates in the Final Model.

Table 2 shows posterior means, 95% equal-tail credibility intervals and Bayesian two-

sided p-values for the regression parameters in the Final Model. It is seen that neither

for the emergence and nor for the caries process there is a significant difference between

the four permanent first molars. However, the molars of girls emerge significantly earlier

than those of boys. With respect to caries experience, the difference between boys and
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girls is not significant at 5%, however all remaining covariates have a significant impact

on the caries process. Namely, daily brushing increases the time to caries with a factor

of exp(0.337) = 1.40 compared to less frequent brushing. Presence of sealants increases

the time to caries with a factor of exp(0.118) = 1.13. On the other hand, the presence

of the plaque decreases the time to caries with a factor of exp(−0.115) = 0.89 and the

fact that the neighboring deciduous second molar is either decayed or filled or extracted

due to caries decreases the time time to caries with a factor of exp(−0.140) = 0.87.

The results for the regression parameters of the caries part of the model correspond

quite closely to the earlier findings of Leroy et al. (2005) where, however, no attempts were

done to simplify the model and where a marginal (population-averaged) specification of

the model was used. Nevertheless, our results largely confirmed their findings. Namely,

they found the overall effect (on all four teeth) of all factors except gender to be significant

with p-value < 0.001. For the effect of gender they observed a p-value of 0.060 compared

to 0.085 found by us.

< Table 2 about here >

Figure 5 shows posterior predictive survivor and hazard functions for the time-to-

caries on the upper right permanent first molar of boys and ‘the best’, ‘the worst’ and

two intermediate combinations of covariates (the curves for the remaining teeth and girls

are similar). It is seen that when the teeth are daily brushed, plaque-free and sealed the

hazard for caries starts to increase approximately 1 year after emergence however then

remains almost constant. Whereas, when the teeth are not brushed daily and are exposed

to other risk factors the hazard starts to increase already approximately 6 months after

emergence. After a period of constant risk then the hazard starts to increase again.

The peak in the hazard for caries approximately 1 year after emergence was observed

also by Leroy et al. (2005) and can be explained by the fact that teeth are most vulnerable
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for caries soon after the emergence when the enamel is not yet fully developed. This peak

is also present, although with a different size and with a slight shift, for all covariate

combinations. On the other hand, for covariate combinations reflecting good oral health

and hygiene habits, the hazard remains almost constant after the initial period of highly

increasing risk whereas for combinations of covariates reflecting bad oral conditions the

hazard starts to increase again approximately 3 years after emergence. This shows clearly

the relationship between caries experience and oral health and hygiene habits. Due to

the fact that Leroy et al. (2005) used a parametric log-logistic AFT model, they could

not reveal the second period of increased hazard found here.

< Figure 5 about here >

Description of the performed analyses using the R package bayesSurv can be found

in the documentation of the package.

8 Discussion

A semiparametric method to perform a regression analysis with clustered doubly-interval-

censored data was suggested in this paper. We opted for a fully Bayesian approach and

MCMC methodology. Note however, that the Bayesian approach is used only for techni-

cal convenience to avoid difficult optimization unavoidable with more classical maximum-

likelihood based estimation. Remember that we use a penalty-like prior distribution for

the transformed mixture weights a and vague priors for all remaining parameters. We

did not make any attempt to use any prior information although it could have been uti-

lized. Taking into account the above reasoning, we conclude that similar results would

have been obtained if the penalized maximum-likelihood estimation had been used.

Owing to flexible distributional assumptions it was not here necessary to perform

the classical checks for correct distributional specification. Clearly, this step cannot
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be avoided when using fully parametric methods. However, for censored, or let alone

doubly-interval-censored data, this is far from trivial. As was illustrated in Section 7

new important findings concerning the distribution of the event time, derived e.g. from

the shape of the hazard function, can be discovered when leaving conventional parametric

assumptions.

Finally, we have to admit that some covariates used in our dental application should

actually be treated as time-dependent. Unfortunately, with our and any other method

where the distribution of the event time is specified using a density and not using an in-

stantaneous quantity like the hazard function, inclusion of time-dependent covariates is

difficult.
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τ d/τ ζ = τ b/τ ε δ1 = 0.20 δ2 = −0.10 β1 = 0.30 β2 = −0.15

Scenario I

5 0.1995 (0.56) −0.1008 (0.17) 0.3020 (2.12) −0.1493 (0.64)

3 0.2001 (0.56) −0.0998 (0.27) 0.3138 (12.51) −0.1491 (3.20)

2 0.1976 (1.30) −0.1000 (0.37) 0.2982 (30.55) −0.1504 (11.75)

1 0.1988 (1.84) −0.0998 (0.76) 0.3043 (29.04) −0.1478 (7.55)

1/2 0.1996 (3.14) −0.1000 (0.92) 0.3015 (18.07) −0.1475 (9.66)

1/3 0.2010 (3.74) −0.1006 (1.02) 0.3111 (34.67) −0.1498 (11.88)

1/5 0.1997 (3.35) −0.1017 (1.14) 0.3036 (33.00) −0.1493 (9.03)

Scenario II

5 0.1996 (0.93) −0.1005 (0.30) 0.2983 (9.40) −0.1477 (2.74)

3 0.2008 (2.10) −0.1013 (0.76) 0.2950 (22.85) −0.1526 (7.55)

2 0.2003 (3.44) −0.0990 (1.27) 0.3060 (42.02) −0.1458 (13.01)

1 0.1963 (8.73) −0.0991 (3.45) 0.2988 (105.54) −0.1487 (32.60)

1/2 0.1945 (14.46) −0.0973 (6.30) 0.3035 (144.59) −0.1507 (48.40)

1/3 0.2010 (16.73) −0.0986 (5.90) 0.2963 (157.36) −0.1456 (50.06)

1/5 0.2029 (18.12) −0.1001 (4.12) 0.3082 (125.51) −0.1421 (42.10)

Table 1: Simulation study. Results for the regression parameters. Mean of the estimates

over the simulations and MSE (×10−4).

Emergence Caries

Parameter Poster. mean 95% CR Poster. mean 95% CR

Tooth p > 0.5 p > 0.5

tooth 26 −0.003 (−0.013, 0.007) −0.006 (−0.045, 0.031)

tooth 36 0.001 (−0.008, 0.011) −0.009 (−0.051, 0.034)

tooth 46 0.002 (−0.008, 0.012) −0.016 (−0.059, 0.026)

Gender p = 0.008 p = 0.085

girl −0.023 (−0.039, −0.007) −0.071 (−0.155, 0.009)

Brushing p < 0.001

daily 0.337 (0.233, 0.436)

Sealants p < 0.001

present 0.118 (0.060, 0.178)

Plaque p < 0.001

present −0.115 (−0.171, −0.067)

Status p < 0.001

dmf −0.140 (−0.193, −0.091)

Table 2: Signal Tandmobielr data. Posterior means, 95% equal-tail credible regions

(CR) and Bayesian two-sided p-values. For the covariate tooth both the CR and the

p-value are simultaneous.
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Figure 1: Scheme of doubly interval censoring.
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Figure 2: Directed acyclic graph for the cluster-specific AFT model.
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Figure 3: Directed acyclic graph for the penalized Gaussian mixture.
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Figure 4: Simulation study. Results for the survivor functions of the time-to-event part of

the model for the combination of covariates xi,l = (0.5, 1)′. Solid line: pointwise average

over the predictive survivor functions at each simulation, dashed line: true survivor

function (often superimposed by the solid line), grey lines: simulation based pointwise

equal-tail 95% confidence interval. Scenario I is found in the left part, scenario II in the

right part of the figure.
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Figure 5: Signal Tandmobielr data. Posterior predictive caries free (survivor) and caries

hazard curves for tooth 16 of boys and the following combinations of covariates: solid

and dashed lines for no plaque, present sealing, daily brushing and sound primary second

molar (solid line) or dmf primary second molar (dashed line), dotted and dotted-dashed

lines for present plaque, no sealing, not daily brushing and sound primary second molar

(dotted line) or dmf primary second molar (dotted-dashed line).
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