
Assessment Ratio Analysis using the “aratio”

Package in R

Daniel P. McMillen

September 10, 2010

1 Introduction

The aratio package is designed to help perform analyses of the accuracy of prop-
erty assessments. It includes commands that produce tables of the statistics
commonly used in assessment ratio studies, including the mean, median, coeffi-
cient of dispersion, and price–related differential. It also includes more advanced
commands that are designed to help with analyses of assessment regressivity. A
nonparametric regression estimator, locally weighted regression, can be used to
estimate nonlinear regressions of assessment ratios on sales prices. In addition,
aratio includes two series–expansion approaches for estimating nonlinear regres-
sions cubic splines functions and fourier expansions. The package also includes
procedures designed to analyze the full distribution of assessment ratios and its
relationship to sales price. These procedures include a nonparametric quantile
estimator, implemented with the command qreglwr, and an estimator for con-
ditional density estimation, condens. The commands are designed to produce a
rich set of results with the default specifications.

This document illustrates the use of the aratio for a representative data set
which is included in the package. The dupage99 data set has 2000 observations
for two variables, the assessment value (av) and the sales price (price). The data
set is a random draw of 2000 combinations of assessments and sales prices from
DuPage County, IL in 1999. Sales took place in 1999; the assessments were in
place in 1998. Statutory assessment rates in DuPage County were 0.33.

2 Data

The simplest way to read data into R is to work directly from data sets stored
by standard statistical programs such as Stata, SPSS, and SAS. To do so, the
package “foreign” must be installed from one of the cran mirrors (http://www.r-
project.org/). For example, suppose the Stata data set mydata.dta is stored
in a directly called c:\assessments. It can be read into R using library(foreign)
combined with one of the specialized “read” commands:

1



> library(foreign)

> mydata <- read.dta("/assessments/mydata.dta") # Stata

The read command only has to be altered slightly to read data files from
other common software packages:

> mydata <- read.dbf("/assessments/mydata.dbf") # dBASE

> mydata <- read.spss("/assessments/mydata.sav",to.data.frame=T) # SPSS

> mydata <- read.xport("/assessments/mydata.tpt") # SAS export file

> mydata <- read.systat("/assessments/mydata.syd") # SYSTAT

Note that R uses the assignment operator “<-” rather than an equal sign.
The equal sign works for scalars but not for data frames, variables, or other
multi-dimensional items. Also, note that R uses the forward slash “/” for file
locations rather than the conventional backward slash “\”.

The data set can also be read in to the workspace directly as an excel file
that has been stored in a text format using either the “txt” or “csv” extensions:

> mydata <- read.table("/assessments/mydata.txt",header=T)

> mydata <- read.csv("/assessments/mydata.csv",header=T)

R is different from many programs in that the data are read into specific
objects, in this case a data frame, rather than into the workspace. This means
that commands like

> ratio <- av/price

> summary(ratio)

will not work. Instead, the commands must acknowledge that the variables
are part of a particular data frame. The following command adds the variable
“ratio” to the mydata data frame:

> mydata$ratio <- mydata$av/mydata $price

Alternatively, the data can be placed in the workspace using the “attach”
command:

> attach(mydata)

> ratio <- av/price

It is important to note that the workspace and date frame versions of the
data set are completely separate. A transformation such as price <- price/1000
will alter the version of price that is stored in the workspace without affecting
the version stored in mydata. Similarly, mydata$price <- mydata$price/1000
alters the version stored in mydata without altering the version stored in the
workspace.

It also is important to note that variable names are case sensitive. PRICE
is not the same as price or Price.

2



3 Outlier Trimming

After reading the data into the program, the first step in any data analysis is
to calculate some simple summary statistics. R’s summary command produces
basic summary statistics for the aratio data frame, dupage99:

> library(aratio)

locfit 1.5-6 2010-01-20

> data(dupage99)

> dupage99$ratio <- dupage99$av/dupage99$price

The “library” command loads the aratio data set, which first should be installed
from one of the cran mirrors. The “data” command loads the dupage99 data
frame that is included in the aratio package. The “summary” command then
produces the following results:

> summary(dupage99)

av price ratio

Min. : 1380 Min. : 4500 Min. :0.1533

1st Qu.: 39075 1st Qu.: 129000 1st Qu.:0.2785

Median : 49905 Median : 166600 Median :0.2993

Mean : 58099 Mean : 198991 Mean :0.2986

3rd Qu.: 67870 3rd Qu.: 234000 3rd Qu.:0.3188

Max. :426760 Max. :1900000 Max. :0.6126

Summary statistics can also be obtained for each variable individually as
follows:

> summary(dupage99$av)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1380 39080 49900 58100 67870 426800

> summary(dupage99$price)

Min. 1st Qu. Median Mean 3rd Qu. Max.

4500 129000 166600 199000 234000 1900000

> summary(dupage99$ratio)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.1533 0.2785 0.2993 0.2986 0.3188 0.6126

The function nptrim obs trims outliers from the data set using a nonpara-
metric trimming procedure recommended by the IAAO. Letting q25 represent
the 25th percentile assessment ratio and letting q75 represent the 75th per-
centile, the lower bound for trimming is lo = q25 k*(q75-q25) and the upper

3



bound is hi = q75 + k*(q75-q25). The parameter k can be set by the user. Typ-
ical values for k are 1.5 and 3.0; the default is 3.0. The output of the function is
a dummy variable whose values equal one if the observation is identified as an
outlier. If print = T, the function also produces useful summary information:

> dropobs <- nptrim_obs(dupage99$ratio, k = 3)

Total number of observations 2000.0000000

Number of missing observations 0.0000000

Number of non-missing observations 2000.0000000

Number of non-missing observatons trimmed 8.0000000

Total number of observations dropped 8.0000000

Number of non-missing observations after trimming 1992.0000000

minimum 0.1533382

25th percentile 0.2785128

75th percentile 0.3188254

maximum 0.6126000

lower bound for trimming 0.1575750

upper bound for trimming 0.4397633

The results show that 8 of the original observations were identified as outliers
when k=3. The lower bound for trimming, 0.1576, is slightly higher than the
minimum assessment ratio value that appears in this data set. The upper bound
of 0.4397 is well below the maximum value of 0.6126.

The following command then produces a new version of dupage99 that is
trimmed of the 8 outlier observations:

> dupage99 <- dupage99[dropobs == 0, ]

This command could also be written:

> dupage99 <- dupage99[dropobs==F,]

because R interprets 0 and F (or 1 and T) as equivalent in logical expressions.
Some explanation is needed for these expressions. R treats data frames as

though they are matrices. Thus, dupage99 is actually a 2000x3 matrix once the
ratio variable is added to it. Individual elements for the matrix can be identified
by the row and column number, e.g., for the matrix amat, amat[1,3] is the entry
in the first row and third column. Empty entries can be used to return the full
set of rows and columns, e.g., amat[1,] and acol3[,3] return the first row and
third column of amat, respective. Logical operators can be used to return ob-
servations that meet certain conditions. Thus, dupage99[dropobs==0,] returns
all columns of dupage99 (i.e., all variables) and all rows (i.e., observations) for
which dropobs==0.

Note that this command works even though dropobs is not one of the vari-
ables in dupage99. The variable dropobs is stored in the workspace rather
than in dupage99. It could have been added to dupage99 by writing du-
page99$dropobs <- dropobs. The data frame dupage99 then could be trimmed

4



of outliers by issuing the command dupage99<- dupage99[dupage99$dropbs==0,].
This version of dupage has 4 variables –av, price, ratio, and dropobs –rather than
only three.

The document “An Introduction to R” provides much useful information on
data handling and other topics. It is available in the “manuals” section of the
help facility of the R program.

4 Traditional Assessment Ratio Analysis

Once the data set is trimmed of outliers it is ready for traditional assessment
ratio analysis. The assessment ratio for observation i is defined as ratioi = Ai

Pi
,

where A represents the assessed value and P represents price. The corresponding
variables in the dupage99 data frame are av and price.

The main statistics used to evaluate assessment performance are the follow-
ing:

1. Mean

2. Median

3. Value-weighted mean:
∑

i
(Pi∗ratioi)∑

i(Pi)
= mean(A)

mean(P )

4. Coefficient of dispersion: 100 ∗
∑

i
|ratioi−median(ratio)|

n∗median(ratio)

5. Value-weighed coefficient of dispersion: 100 ∗
∑

i
Pi∗|ratioi−median(ratio)|

median(ratio)∗
∑

i Pi

6. Price-related differential: mean/(value weighted mean)

These statistics can be calculated in aratio using the ratio stats command.
The following commands produce a simple table of statistics:

> rvect <- ratio_stats(dupage99$av, dupage99$price)

mean median wgt mean cod wgt cod prd

0.2979827 0.2992920 0.2915292 8.8375620 9.7734204 1.0221365

The output for this application of the ratio stats command is stored in the
vector rvect. The full vector can be written by simply typing rvect; individual
entries are rvect[1]=0.297983, rvect[2]=0.299292, etc.

Although it is easy to calculate standard errors and confidence intervals for
the mean, simple analytical results are not available for more complicated statis-
tics such as the cod or prd. A bootstrap procedure can be used to construct stan-
dard error estimates and confidence intervals in this situation. The ratio stats
command uses the package boot to calculate standard errors for all six statistics.
The procedure involves drawing with replacement nboot new samples of size n
from the original set of (av, price) pairs and re-calculating the statistics for each
of the nboot samples. The standard error is then simply the standard deviation

5



of the nboot values of the statistic in question, and the bootstrap 95% confidence
interval is the original sample statistic plus/minus 1.96 times the standard er-
ror. These values appear under the headings “normal-lo” and “normal-hi” in
the ratio stats command when the option nboot is specified. This confidence
interval is most appropriate if the statistic follows a normal distribution. If the
statistic does not follow a symmetric distribution, the “percentile method” will
produce a more accurate confidence interval. Let B denote the vector containing
the nboot re-calculations of the test statistics; the percentile method 95% lower
bound is simply quantile(b, .025) and the upper bound is quantile(b, .975), i.e.,
the 2.5 percentile and 97.5 percentile of the bootstrap values of the statistics.
These values are labeled “percentile-lo” and “percentile-hi” by ratio stats.

Since the boostrap procedure requires draws from random number genera-
tors, the results will vary slightly each time the program is run even though the
data set does not change. The “seed” of the random number generator can be
set with the “set.seed” command to ensure that the same set of random numbers
is drawn each time the program is run. The argument in the set.seed command
can be any odd-valued integer. The option nboot controls the number of boot-
strap repetitions. For most applications, a value of 100 is probably sufficient.
There will be less variation in the values for the standard errors and confidence
intervals as nboot increases, although there is unlikely to be any reason to set
nboot higher than 1000 or so. The following series of commands produces a full
set of results for ratio stats:

> set.seed(5849301)

> rvect <- ratio_stats(dupage99$av, dupage99$price, nboot = 1000)

observed Std Err Normal-lo Normal-hi Percentile-lo

mean 0.2979827 0.0007735260 0.2964665 0.2994988 0.2965488

median 0.2992920 0.0006972902 0.2979254 0.3006587 0.2978864

wgt mean 0.2915292 0.0011657453 0.2892443 0.2938141 0.2892219

cod 8.8375620 0.1713530128 8.5017101 9.1734139 8.5187898

wgt cod 9.7734204 0.2821079250 9.2204889 10.3263520 9.2208660

prd 1.0221365 0.0027577930 1.0167313 1.0275418 1.0170238

Percentile-hi

mean 0.2995592

median 0.3007101

wgt mean 0.2938701

cod 9.1820094

wgt cod 10.3469003

prd 1.0280090

The results indicate reasonably good assessment performance in DuPage
County in 1999. Mean and median assessments are fairly close to the statutory
rate of .33, although they both differ significant from .33 at a 95% confidence
level. The COD of 8.84 is well below and statistically different from the IAAO
upper limit guideline of 15, indicating that assessment ratios do not exhibit
an excessive degree of variability. The weighted mean and weighted COD are

6



Figure 1: Demonstration of “agraph”

Assessment Ratios

Assessment Ratio

P
er

ce
nt

0.20 0.25 0.30 0.35 0.40

0
1.

4
2.

8
4.

1
5.

5
6.

9

close to the unweighted values, suggesting that there is no systematic difference
across sales prices in mean assessment ratios or their degree of variability. The
PRD is close to 1 and well below the IAAO recommended upper limit of 1.06,
indicating that there is only a small tendency toward lower assessments ratios
for higher-priced properties.

For this example, the results of the ratio stats command are stored in the
6x6 matrix rvect. Individual results are accessible by specifying the appropriate
entry of rvect. For example, rvect[2,3]=0.297925 and rvect[6,4]=1.027542.

The command agraph provides a convenient interface to some relevant graph-
ing facilities in R. Simply typing

> agraph(dupage99$av, dupage99$price)

produces the histogram in Figure 1.
The agraph command includes several options to control the appearance

of the graph. For example, the title can be changed using the “title” option,
the width of the bars (and therefore the number of bins) can be changed us-
ing the “width” option, and the y-axis can be expressed in frequencies rather
than percentages by specifying freq=T. In addition, a normal distribution can

7



be superimposed on the graph using the normdens=T option, and a nonpara-
metric kernel density function is included by specifying kdens=T. One vertical
line can be added to the graph at an arbitrary value using the “statute” op-
tion. The “statute” option is meant to show the statutory assessment rate; the
statutory rate in DuPage County is .33 so it may be desirable to add the option
statute=.33. Vertical bars can also be added for two other points using the
“cfint” option. The “cfint” option is meant for showing confidence intervals on
the graph. Two values are required for cfint, e.g, cfint=c(.25,.35) or some other
combination of values. (The term c(.25, .35) is an array with two elements; see
the “Introduction to R” documentation file for a discussion of how arrays are
handled in R.) The option “legloc” adds a legend for these options. The location
of the legend can be varied using standard R options, including “bottomright”,
“bottom”, “bottomleft”, “left”, “topleft”, “top”, “topright”, “right”, and “center.”

The following example shows how agraph can be combined with the ra-
tio stats command to produce a histogram with normal density and kernel den-
sity functions, the statutory .33 rate, and the 95% confidence interval for the
median all shown on the diagram in Figure 2.

> set.seed(5849301)

> rstat <- ratio_stats(dupage99$av, dupage99$price, nboot = 1000)

observed Std Err Normal-lo Normal-hi Percentile-lo

mean 0.2979827 0.0007735260 0.2964665 0.2994988 0.2965488

median 0.2992920 0.0006972902 0.2979254 0.3006587 0.2978864

wgt mean 0.2915292 0.0011657453 0.2892443 0.2938141 0.2892219

cod 8.8375620 0.1713530128 8.5017101 9.1734139 8.5187898

wgt cod 9.7734204 0.2821079250 9.2204889 10.3263520 9.2208660

prd 1.0221365 0.0027577930 1.0167313 1.0275418 1.0170238

Percentile-hi

mean 0.2995592

median 0.3007101

wgt mean 0.2938701

cod 9.1820094

wgt cod 10.3469003

prd 1.0280090

> lo = rstat[2, 5]

> hi = rstat[2, 6]

> agraph(dupage99$av, dupage99$price, normdens = T, kdens = T,

+ legloc = "topleft", cfint = c(lo, hi), title = "Histogram of Assessment Ratios",

+ statute = 0.33)

8



Figure 2: “agraph” with confidence intervals, statutory rate, and median

observed Std Err Normal-lo Normal-hi Percentile-lo

mean 0.2979827 0.0007735260 0.2964665 0.2994988 0.2965488

median 0.2992920 0.0006972902 0.2979254 0.3006587 0.2978864

wgt mean 0.2915292 0.0011657453 0.2892443 0.2938141 0.2892219

cod 8.8375620 0.1713530128 8.5017101 9.1734139 8.5187898

wgt cod 9.7734204 0.2821079250 9.2204889 10.3263520 9.2208660

prd 1.0221365 0.0027577930 1.0167313 1.0275418 1.0170238

Percentile-hi

mean 0.2995592

median 0.3007101

wgt mean 0.2938701

cod 9.1820094

wgt cod 10.3469003

prd 1.0280090

Histogram of Assessment Ratios

Assessment Ratio

P
er

ce
nt

0.20 0.25 0.30 0.35 0.40

0
1.

4
2.

8
4.

1
5.

5
6.

9

Normal Density
Kernel Density
95% CI
Statutory Rate

9



5 Regression Analysis of Assessment Regressiv-
ity

The PRD of 1.022 suggests that assessments in DuPage County were somewhat
regressive in 1999, meaning that higher priced properties were assessed at some-
what lower rates on average than lower priced properties. Regression procedures
can also be used to analyze this relationship. The most direct way to determine
whether assessment ratios decline with sales price is to estimate a regression of
the form ; a negative value for ndicates that assessment ratios decline with sales
price.

The following commands produce a scatterplot of the raw data for the Du-
Page County data set:

> dupage99$price <- dupage99$price/1000

> plot(dupage99$price, dupage99$ratio, xlab = "Sales Price (1000s)",

+ ylab = "Assessment Ratio")

The relatively small number of homes with very high sales prices suggests
that it may be preferable to limit the sample to lower-priced homes for which
a linear relationship between sales price and the assessment ratio may provide
a good fit. Thus, we might limit the sample to observations with sales prices
below the 99th percentile. In general, it is preferable to trim observations sym-
metrically at both the lower and upper ends of the distributions. The following
commands limit the sample to sales prices between the 1st and 99th percentiles
for price, plot the results, and add the fitted regression line:

> keepobs <- dupage99$price > quantile(dupage99$price, 0.01) &

+ dupage99$price < quantile(dupage99$price, 0.99)

> dupage99 <- dupage99[keepobs == T, ]

> o <- order(dupage99$price)

> dupage99 <- dupage99[o, ]

> fit <- lm(ratio ~ price, data = dupage99)

Together, the commands o <- order(dupage99$price) and dupage99 <- du-
page99[o,] sort the data by sales price. Sorting makes it possible to add lines to
the scatterplot; these two operations are done with the “plot” and “lines” com-
mands. The command “lm” (which stands for “linear model”) is the R command
for a regression. The results are stored in the object “fit”. The regression output
is not automatically printed by R; the “summary” command prints the following
regression results:

> summary(fit)

Call:

lm(formula = ratio ~ price, data = dupage99)

Residuals:

10



Min 1Q Median 3Q Max

-0.1236397 -0.0181863 -0.0003016 0.0184428 0.1278409

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.184e-01 1.695e-03 187.81 <2e-16 ***

price -1.042e-04 7.890e-06 -13.20 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.0331 on 1950 degrees of freedom

Multiple R-squared: 0.08205, Adjusted R-squared: 0.08158

F-statistic: 174.3 on 1 and 1950 DF, p-value: < 2.2e-16

The scatterplot of the raw data and the estimated regression looks as follows:

> plot(dupage99$price, dupage99$ratio, xlab = "Sales Price (1000s)",

+ ylab = "Assessment Ratio")

> lines(dupage99$price, fitted(fit), col = "red")

Overall, the results indicate some regressivity: each additional $1,000 in
sales price is associated with a decline of 0.0001042 in the assessment ratio, or
a decline of 0.1042 percentage points for each $10,000 increase in sales price.

6 Non-linear Regression

There is no particular reason why we should expect the relationship between
sales prices and assessment ratios to be linear. The aratio package includes three
commands to simplify the estimation of nonlinear relationships “cubespline” for
smooth cubic splines, “fourier” for fourier expansions, and “lwr1” for a locally
weighted regression.

The cubic spline function is written as follows:

y = cons+ λ1(x− x0) + λ2(x− x0)2 + λ3(x− x0)3 +

K∑
k=1

γk(x− xk)3Dk + u

where y is the dependent variable, x is the single explanatory variable, x0 =
min(x). The function divides the range of x into knots+1 equal intervals. The
knots are x1xK and the Dk are dummy variables that equal one if . Estimation
can be carried out for a fixed value of K or for a range of K. In the latter
case, the function indicates the value of K that produces the lowest value of
one of the following criteria: the AIC (or “Akaike Information Criterion”), the
Schwarz information criterion, or the gcv (or “generalized cross-validation”),
each of which is a commonly used information criterion that is used to choose
the optimal number of explanatory variable in a regression.

Estimation can be carried out for a fixed number of knots by specifying the
“knots” options. For example, a cubic spline with two knots is written:

11



> fit <- cubespline(ratio ~ price, knots = 2, data = dupage99)

Reminder: first explanatory variable is used for spline

Call:

lm(formula = newform)

Residuals:

Min 1Q Median 3Q Max

-0.1195049 -0.0180819 -0.0002521 0.0186051 0.1274393

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Intercept 3.071e-01 1.243e-02 24.714 <2e-16 ***

price 2.171e-04 2.152e-04 1.009 0.3130

square -2.251e-06 1.151e-06 -1.956 0.0506 .

cube 4.291e-09 1.903e-09 2.255 0.0242 *

kvar1 -8.097e-09 3.243e-09 -2.497 0.0126 *

kvar2 1.114e-08 7.374e-09 1.511 0.1311

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.033 on 1946 degrees of freedom

Multiple R-squared: 0.08943, Adjusted R-squared: 0.08709

F-statistic: 38.22 on 5 and 1946 DF, p-value: < 2.2e-16

If the “knots” option is not specified, cubespline fits a cubic spline with a
single knot. It is also possible to use cubespline to search for the optimal number
of knots, i.e., the number that minimizes the value of the criterion function. The
search is conducted by specifying the mink and maxk options rather than the
knots options, e.g.,

> fit <- cubespline(ratio ~ price, mink = 1, maxk = 5, data = dupage99)

Reminder: first explanatory variable is used for spline

Information Criterion, Linear: 0.001093946

Information Criterion, k = 1 : 0.001094147

Information Criterion, k = 2 : 0.001092562

Information Criterion, k = 3 : 0.001093360

Information Criterion, k = 4 : 0.001094006

Information Criterion, k = 5 : 0.001094454

Information Criterion minimizing k = 2

Call:

lm(formula = newform)

Residuals:

12



Min 1Q Median 3Q Max

-0.1195049 -0.0180819 -0.0002521 0.0186051 0.1274393

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Intercept 3.071e-01 1.243e-02 24.714 <2e-16 ***

price 2.171e-04 2.152e-04 1.009 0.3130

square -2.251e-06 1.151e-06 -1.956 0.0506 .

cube 4.291e-09 1.903e-09 2.255 0.0242 *

kvar1 -8.097e-09 3.243e-09 -2.497 0.0126 *

kvar2 1.114e-08 7.374e-09 1.511 0.1311

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.033 on 1946 degrees of freedom

Multiple R-squared: 0.08943, Adjusted R-squared: 0.08709

F-statistic: 38.22 on 5 and 1946 DF, p-value: < 2.2e-16

As it turns out, the optimal number of knots is K = 2 according to the
default criterion function, the gcv.

The use of the fourier command is similar. Again the general form of the
model is y = f(x), using a fourier expansion for x, but the fourier model uses
sine and cosine terms to expand the model. The variable x is first transformed
to form z <- 2*pi*(x-min(x))/(max(x)-min(x)). The fourier model is y = α1z+

α2z
2 +

∑Q
q=1(λqsin(qz) + δqcos(qz)). Estimation can be carried out for a fixed

value of Q or for a range of Q. These options are controlled with the options “q”
or “minq” combined with “maxq”. For example,

> fit <- fourier(dupage99$ratio ~ dupage99$price, minq = 1, maxq = 5)

Reminder: first explanatory variable is used for fourier expansion

Information Criterion, Linear: 0.001094011

Information Criterion, q = 1 : 0.001092920

Information Criterion, q = 2 : 0.00109387

Information Criterion, q = 3 : 0.001095529

Information Criterion, q = 4 : 0.001096658

Information Criterion, q = 5 : 0.001095338

Information Criterion minimizing q = 1

Call:

lm(formula = newform)

Residuals:

Min 1Q Median 3Q Max

-0.1203103 -0.0181056 -0.0003924 0.0185667 0.1279510

Coefficients:

13



Estimate Std. Error t value Pr(>|t|)

Intercept 0.3078984 0.0083341 36.944 <2e-16 ***

z 0.0002245 0.0094015 0.024 0.9809

square -0.0018828 0.0016826 -1.119 0.2633

sin(1z) -0.0092653 0.0038085 -2.433 0.0151 *

cos(1z) 0.0076087 0.0056814 1.339 0.1807

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.03302 on 1947 degrees of freedom

Multiple R-squared: 0.08819, Adjusted R-squared: 0.08632

F-statistic: 47.08 on 4 and 1947 DF, p-value: < 2.2e-16

The initial series of values for “Information Criterion” indicates the optimal
expansion length is Q = 1, which implies a model with z, z2, sin(z), and cos(z)
as the explanatory variables. The same model could have been obtained using
the following command:

> fit <- fourier(ratio ~ price, q = 1, data = dupage99)

Reminder: first explanatory variable is used for fourier expansion

Call:

lm(formula = newform)

Residuals:

Min 1Q Median 3Q Max

-0.1203103 -0.0181056 -0.0003924 0.0185667 0.1279510

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Intercept 0.3078984 0.0083341 36.944 <2e-16 ***

z 0.0002245 0.0094015 0.024 0.9809

square -0.0018828 0.0016826 -1.119 0.2633

sin(1z) -0.0092653 0.0038085 -2.433 0.0151 *

cos(1z) 0.0076087 0.0056814 1.339 0.1807

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.03302 on 1947 degrees of freedom

Multiple R-squared: 0.08819, Adjusted R-squared: 0.08632

F-statistic: 47.08 on 4 and 1947 DF, p-value: < 2.2e-16

or, since q=1 is the default value of q, by:

> fit <- fourier(ratio ~ price, data = dupage99)

14



Reminder: first explanatory variable is used for fourier expansion

Call:

lm(formula = newform)

Residuals:

Min 1Q Median 3Q Max

-0.1203103 -0.0181056 -0.0003924 0.0185667 0.1279510

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Intercept 0.3078984 0.0083341 36.944 <2e-16 ***

z 0.0002245 0.0094015 0.024 0.9809

square -0.0018828 0.0016826 -1.119 0.2633

sin(1z) -0.0092653 0.0038085 -2.433 0.0151 *

cos(1z) 0.0076087 0.0056814 1.339 0.1807

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.03302 on 1947 degrees of freedom

Multiple R-squared: 0.08819, Adjusted R-squared: 0.08632

F-statistic: 47.08 on 4 and 1947 DF, p-value: < 2.2e-16

Additional explanatory variables can be added to the cubespline and fourier
models by altering the initial form, e.g., fit <- cubespline(y x+z). The spline
or fourier expansion is then applied to the first variable, x, and the remaining
variable or variables in z are added as written.

The predicted values from the cubespline and fourier estimates are stored in
a variable called“yhat”. Since the models are simple linear regressions, the mean
value of yhat will be equal to the mean of the dependent variable. In addition,
the nonlinear part of the model is stored as “splinehat” for the cubic spline and
“fourierhat” for the fourier expansion. If the model has only a single explanatory
variable x so that y = f(x), there is no difference between the cubic spline “yhat”
and “splinehat” or the fourier “yhat” and “fourierhat”. However, the terms are
different when additional explanatory variables, z, are added to the regressions.
The “yhat” predictions include the effect of z; the “splinehat” and “fourierhat”
values include the effects of x alone. Both “splinehat” and “fourierhat” are re-
scaled to have the same mean as the dependent variable. Thus, mean(y) =
mean(yhat) = mean(splinehat) = mean(fourierhat).

The predictions are returned as output from the cubespline and fourier
commands. For example, if the cubepline model is estimated using the com-
mand fit <- cubespline(yx); yhat and splinehat are accessible as fit$yhat and
fit$splinehat.

The following series of commands compares the predictions for a standard
linear regression model, the cubic spline with knots = 2, and the fourier model
with q = 1, and produces a graph of the three:

15



> fit1 <- lm(ratio ~ price, data = dupage99)

> yhat1 <- fitted(fit1)

> fit2 <- cubespline(ratio ~ price, knots = 2, data = dupage99)

Reminder: first explanatory variable is used for spline

Call:

lm(formula = newform)

Residuals:

Min 1Q Median 3Q Max

-0.1195049 -0.0180819 -0.0002521 0.0186051 0.1274393

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Intercept 3.071e-01 1.243e-02 24.714 <2e-16 ***

price 2.171e-04 2.152e-04 1.009 0.3130

square -2.251e-06 1.151e-06 -1.956 0.0506 .

cube 4.291e-09 1.903e-09 2.255 0.0242 *

kvar1 -8.097e-09 3.243e-09 -2.497 0.0126 *

kvar2 1.114e-08 7.374e-09 1.511 0.1311

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.033 on 1946 degrees of freedom

Multiple R-squared: 0.08943, Adjusted R-squared: 0.08709

F-statistic: 38.22 on 5 and 1946 DF, p-value: < 2.2e-16

> yhat2 <- fit2$splinehat

> fit3 <- fourier(ratio ~ price, q = 1, data = dupage99)

Reminder: first explanatory variable is used for fourier expansion

Call:

lm(formula = newform)

Residuals:

Min 1Q Median 3Q Max

-0.1203103 -0.0181056 -0.0003924 0.0185667 0.1279510

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Intercept 0.3078984 0.0083341 36.944 <2e-16 ***

z 0.0002245 0.0094015 0.024 0.9809

square -0.0018828 0.0016826 -1.119 0.2633

sin(1z) -0.0092653 0.0038085 -2.433 0.0151 *

cos(1z) 0.0076087 0.0056814 1.339 0.1807

16



---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.03302 on 1947 degrees of freedom

Multiple R-squared: 0.08819, Adjusted R-squared: 0.08632

F-statistic: 47.08 on 4 and 1947 DF, p-value: < 2.2e-16

> yhat3 <- fit3$fourierhat

> ymin = min(yhat1, yhat2, yhat3)

> ymax = max(yhat1, yhat2, yhat3)

> plot(dupage99$price, yhat1, type = "l", xlab = "Sales Price (1000s)",

+ ylab = "Assessment Ratio", ylim = c(ymin, ymax))

> lines(dupage99$price, yhat2, col = "blue")

> lines(dupage99$price, yhat3, col = "red")

> legend("topright", c("OLS", "Spline", "Fourier"), col = c("black",

+ "blue", "red"), lwd = 1)

The nonlinear functions suggest a flat region in the 250,000 400,000 range,
followed by a sharp decline thereafter. The spline function appears to suggest an
unrealistic upward slope at the very highest values; the endpoints of polynomial
functions are often heavily influenced by a small number of data points.

Various nonparametric procedures might be considered as an alternative to
the cubic spline for fourier models. The lwr1 command in the aratio package
uses locally weighted regression (LWR) to approximate a function of the form
y = f(x) + u. Details of the procedure can be found in the help facility for
the lwr1 command. LWR is implemented by fitting a series of weighted least
squares regressions to various target points for x, with more weight place on
observations that are closer to the target point, x0. The relative weight given to
close and distant observations is controlled by the “bandwidth” and “window”
options. The window option is preferable for most applications. It specifies the
proportion of the observations that are included in the regression for each target
point. The default window size of .25 means that the n*.25 observations whose
values of x are closest to x0 are given positive weight in the regression, and
among this 25% of the observations more weight is placed on the observation
whose values of x are closer to x0. The predictions from the LWR regressions
are stored as “yhat”.

Although the lwr1 command offers many options for windows sizes and
weighting schemes, the default version of the command is very simple. The
following commands add an LWR fit with a 25% window size to the previous
diagram:

> fit4 <- lwr1(ratio ~ price, data = dupage99)

> yhat4 <- fit4$yhat

> ymin = min(yhat1, yhat2, yhat3, yhat4)

> ymax = max(yhat1, yhat2, yhat3, yhat4)

> plot(dupage99$price, yhat1, type = "l", xlab = "Sales Price (1000s)",

+ ylab = "Assessment Ratio", ylim = c(ymin, ymax))

17



> lines(dupage99$price, yhat2, col = "blue")

> lines(dupage99$price, yhat3, col = "red")

> lines(dupage99$price, yhat4, col = "green")

> legend("topright", c("OLS", "Spline", "Fourier", "LWR"), col = c("black",

+ "blue", "red", "green"), lwd = 1)

The lwr1 command can also be used to choose a value of the window size
or bandwidth that minimizes an information criterion function. As with the
cubespline or fourier function, the default is the generalized cross-validation
criterion. The option is implemented by specifying an array of possible values
for “window” (or “bandwidth”). Possibilities might be c(.10, .15, .20, .25, .30) or
seq(from=.10, to=.90, by=.10). See the “Introduction to R” documentation file
for a discussion of vectors in R. The following results suggest that the default
window size of 25% is too small for the dupage99 data set:

> fit5 <- lwr1(ratio ~ price, data = dupage99, window = seq(0.1,

+ 0.9, 0.1))

[1] 0.100000000 0.001099664

[1] 0.200000000 0.001094039

[1] 0.300000000 0.001092076

[1] 0.400000000 0.001091576

[1] 0.500000000 0.001092178

[1] 0.600000000 0.001092309

[1] 0.700000000 0.001092366

[1] 0.800000000 0.001092265

[1] 0.900000000 0.001091868

h = 0.4 Function Value = 0.001091576

The following diagram shows the estimated LWR functions with windows
sizes of 25% and 40%:

> yhat4 <- fit4$yhat

> yhat5 <- fit5$yhat

> plot(dupage99$price, yhat4, xlab = "Sales Price (1000s)", ylab = "Assessment Ratio",

+ type = "l")

> lines(dupage99$price, yhat5, col = "red")

> legend("topright", c("25%", "40%"), col = c("black", "red"),

+ lwd = 1)

Though the functions are quite similar, the smaller window size produces
somewhat noisier estimates at low sales prices. All of the nonlinear estimates
suggest that assessment ratios decline more quickly with sales price for prices
less than about $200,00 after which the rate of decline moderates somewhat.

Regressions are not necessarily the best way to approach modeling the po-
tential regressivity of assessments. As an example, consider the following set of
simulated data:

18



> n = 1000

> set.seed(277)

> price <- 1 + round(9 * runif(n), digits = 0)

> o <- order(price)

> price <- price[o]

> a = 0.12

> b = 0.12

> ratiohi <- runif(n, 0.33, (0.33 + a) - (a - 0.02) * price/10)

> ratiolo <- runif(n, (0.33 - b) + (b - 0.02) * price/10, 0.33)

> p = b/(a + b)

> ratio <- ifelse(runif(n) < p, ratiohi, ratiolo)

> plot(price, ratio, xlab = "Sales Price ($100,000)", ylab = "Assessment Ratio")

> fit <- lm(ratio ~ price)

> lines(price, fitted(fit), col = "red")

To simplify the picture, sales prices are randomly drawn from the set of
integers ranging from 1 to 10. For each sales price, the assessment ratios are
randomly drawn from a uniform distribution centered on the statutory assess-
ment ratio of 0.33. The variance is much higher at lower sales prices. This may
be a reasonable representation of a case where assessors are trying to estimated
values correctly while low-priced properties are simply more variable and hence
harder to assess accurately.

The red line is the set of predictions from a regression of the assessment
ratios on sales prices. The results are:

> summary(fit)

Call:

lm(formula = ratio ~ price)

Residuals:

Min 1Q Median 3Q Max

-0.100501 -0.026345 -0.002235 0.025680 0.105986

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.3324290 0.0029168 113.972 <2e-16 ***

price -0.0003869 0.0004860 -0.796 0.426

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.04041 on 998 degrees of freedom

Multiple R-squared: 0.0006346, Adjusted R-squared: -0.0003668

F-statistic: 0.6337 on 1 and 998 DF, p-value: 0.4262

These results suggest that assessments are neither progressive nor regressive.
Nonetheless, it is clear from the scatterplot that owners of low-priced homes are

19



much more likely to be both the beneficiaries of quite low assessment rates and
the victims of very high rates.

Quantile regression is a good alternative to the standard linear regression
model in this situation. Roughly speaking, a standard regression fit is the line
connecting the average values of the assessment ratio for each sales price the
expected value of the assessment ratio when price =1, 2, 3, and so on. Since
the mean price is .33 in each case, the regression line is horizontal.

Quantile regression generalizes this approach by analyzing other parts of
the distribution. This type of regression computes conditional “quantiles,” com-
monly referred to as “percentiles.” For example, suppose we wanted to know
how assessment ratios respond to price when the ratio is in the top part of the
distribution for each price. We might focus on the 90th percentile of the assess-
ment ratio distribution what is the 90th percentile ratio when price = 1, when
price = 2, and so on? The following series of commands calculates the 10th and
90th percentiles at each price:

> p <- seq(1:10)

> q10vect <- p

> q90vect <- p

> q10 <- array(0, dim = n)

> q90 <- array(0, dim = n)

> for (i in seq(1:10)) {

+ samp <- price == p[i]

+ q10[samp] <- quantile(ratio[samp], 0.1)

+ q90[samp] <- quantile(ratio[samp], 0.9)

+ }

> plot(price, ratio, xlab = "Sales Price ($100,000)", ylab = "Assessment Ratio")

> lines(price, q10, col = "red")

> lines(price, q90, col = "red")

The red lines show that the 10th and 90th percentiles of the assessment
ratio distributions are honing in on .33 as sales price increases. In other words,
assessments are becoming less variable as sales price increases.

Note that there is nothing in the above procedure that guarantees that the
red lines will be straight. The quantile lines could appear quite irregular, par-
ticularly if the data set included many different sales prices rather than only
ten. Quantile regression does roughly the same thing as this procedure but
it estimates a line for each target quantile across all actual values of the sales
prices. Straight lines can be fit easily using the quantreg package. For example,
the following commands show the .10 and .90 quantile lines (tau = .10 and tau
= .90) for the simulated data set:

> library(quantreg)

> fit10 <- rq(ratio ~ price, tau = 0.1)

> yhat10 <- fitted(fit10)

> fit90 <- rq(ratio ~ price, tau = 0.9)

> yhat90 <- fitted(fit90)

20



> lines(price, yhat10, col = "blue")

> lines(price, yhat90, col = "blue")

The blue lines are the predictions from the quantile regressions. In the case
of this simulated data set, the straight-line quantile fits are clearly very close to
the values that would be found by calculating the 10th and 90th percentiles of
the assessment ratios at each sales price. The results would clearly look much
different if the sales could have many values rather than 10, e.g., 1.125, 1.487,
8.265, etc. The quantreg package’s “rq” command will compute quantile lines
for any target “tau”, e.g., specifying tau=.25 will fit a line for the quantile .25
and tau=.50 will fit a line for quantile .50, the median.

It also should be borne in mind that there is no reason why the quantile lines
must be mirror images above and below the mean or median. For example, the
following simulated data set has much higher variability among high assessment
ratios than for low ratios:

> set.seed(987)

> a = 0.12

> b = 0.03

> ratiohi <- runif(n, 0.33, (0.33 + a) - (a - 0.02) * price/10)

> ratiolo <- runif(n, (0.33 - b) + (b - 0.02) * price/10, 0.33)

> p = b/(a + b)

> ratio <- ifelse(runif(n) < p, ratiohi, ratiolo)

> plot(price, ratio, xlab = "Sales Price ($100,000)", ylab = "Assessment Ratio")

> fit10 <- rq(ratio ~ price, tau = 0.1)

> fit90 <- rq(ratio ~ price, tau = 0.9)

> lines(price, fitted(fit10), col = "red")

> lines(price, fitted(fit90), col = "red")

Finally, consider the case that matches a textbook regression model in which
the errors are normally distributed with constant variance:

> set.seed(48597)

> n = 1000

> price <- 1 + round(9 * runif(n), digits = 0)

> ratio <- 0.33 + 0 * price + rnorm(n, 0, 0.05)

> plot(price, ratio, xlab = "Sales Price ($100,000)", ylab = "Assessment Ratio")

> fit10 <- rq(ratio ~ price, tau = 0.1)

> fit90 <- rq(ratio ~ price, tau = 0.9)

> lines(price, fitted(fit10), col = "red")

> lines(price, fitted(fit90), col = "red")

In this classic case, the quantile lines are close to parallel, i.e., there is not a
clear tendency toward increasing or decreasing variability in assessment ratios
as sales price increases.

The aratio package supplements the package quantreg by providing a con-
venient way to calculate nonlinear quantile lines. The qreglwr command uses

21



methods analogous to those used in standard locally weighted regression to esti-
mate nonlinear quantile models. As is the case with the lwr1 command, qreglwr
fits quantile regressions at a set of target points, with more weight placed on
observations with prices that are close to the target values. The following set of
commands illustrates the simplest use of qreglwr:

> fit <- qreglwr(ratio ~ price, graph.yhat = T)

By default, nonlinear quantile lines are estimated for five target quantiles:
.10, .25, .50, .75, and .90. The lines in the diagram correspond to these quantiles;
the highest line is the highest quantile, the second highest line is the second
highest quantile, etc.

The predictions are stored in the matrix yhat. The following commands
would duplicate the previous diagram:

> plot(price, fit$yhat[, 1], xlab = "price", ylab = "ratio", ylim = c(min(fit$yhat),

+ max(fit$yhat)), type = "l")

> lines(price, fit$yhat[, 2])

> lines(price, fit$yhat[, 3])

> lines(price, fit$yhat[, 4])

> lines(price, fit$yhat[, 5])

The graph.yhat option controls whether the graph is printed when the qreglwr
command is issued.

The qreglwr command does not have an explicit limit on the number of quan-
tiles. Thus, qreglw(ratio price,graph.yhat=T, taumat=seq(.10,.90,.10)) will lead
to a graph with 9 quantiles ranging from .10 to .90 in increments of .10. By
default, qreglwr specifies a window of .50. Larger values will produce smoother
quantile lines; smaller values will produce noisier lines.

The following commands apply the qreglwr estimator to the dupage99 data
set:

> fit <- qreglwr(dupage99$ratio ~ dupage99$price)

> plot(dupage99$price, fit$yhat[, 1], type = "l", ylim = c(min(fit$yhat),

+ max(fit$yhat)), xlab = "Sales Price (1000s)", ylab = "Assessment Ratio")

> lines(dupage99$price, fit$yhat[, 2])

> lines(dupage99$price, fit$yhat[, 3])

> lines(dupage99$price, fit$yhat[, 4])

> lines(dupage99$price, fit$yhat[, 5])

Like the nonlinear regression estimates, the quantile estimator suggests that
assessment ratios decrease with sales price through most parts of the distri-
bution. In this case, the quantile approach does not provide much additional
information. Apart from a slight tendency for a greater variance as sales price
increase, the lines are close to being parallel, which suggests that simple regres-
sion procedures provide an adequate portrayal of the assessment process in this
case.

22



Perhaps a better example of what can be learned from the quantile approach
comes from a sample of assessment ratios in Cook County IL. The data set (not
included here) comprises 28,010 residential assessments from 2006. All of the
homes sold in 2006. Unlike DuPage County, the statutory assessment rate in
Cook County is 0.16, although systematic under-assessment produces an average
assessment ratio for the sample of 0.087. The qreglwr command produces the
results for this data set found in Figure 3.

Figure 3: Results from “qreglwr”

The outstanding feature of this graph is the extraordinarily high degree of
variability in assessment ratios at low sales prices. From about $200,000 to
$800,000, assessment ratios are roughly proportional to sales price. Approxi-
mately 10% of the assessment ratios are above the highest line (the 90% quantile
line) and 10% are below the lowest line (the 10% quantile line). Thus, approx-
imately 80% of the assessment ratios line in a range of about 6% - 10%, even
though the statutory rate is 16%. A pattern of regressivity is primarily evident
only at very low sales prices, but even this pattern is overwhelmed by the sheer
variability of assessments for low prices.

23



7 Conditional Density Estimation

Quantile regressions are one way of analyzing conditional densities: given a sales
price, what does the distribution of assessment ratios look like? A point on the
10% quantile line shows (approximately) the 10% percentile of this conditional
distribution. Another way to approach this problem is to directly estimate the
conditional density function. If x and y are two random variables, then f(x,y)
is the joint density function and the conditional density for y given x is f(y|x)
= f(x,y)/f(x), where f(x) is the unconditional density function for x. These
functions are easy to estimate using nonparametric kernel density estimators.

The condens command calculates conditional density estimate for f(assessment
ratio | sales price): conditional on the sales price, what does the distribution
of assessment ratios look like? The lattice package is used to produce a rich
set of graphs that provide alternative ways of viewing the conditional density
estimates.

The following series of command illustrates the use of condens for the du-
page99 data set.

> library(aratio)

> par(ask = T)

> data(dupage99)

> dupage99$ratio <- dupage99$av/dupage99$price

> dropobs1 <- nptrim_obs(dupage99$ratio, k = 3)

Total number of observations 2000.0000000

Number of missing observations 0.0000000

Number of non-missing observations 2000.0000000

Number of non-missing observatons trimmed 8.0000000

Total number of observations dropped 8.0000000

Number of non-missing observations after trimming 1992.0000000

minimum 0.1533382

25th percentile 0.2785128

75th percentile 0.3188254

maximum 0.6126000

lower bound for trimming 0.1575750

upper bound for trimming 0.4397633

> dropobs2 <- (dupage99$price < quantile(dupage99$price, 0.01)) |

+ (dupage99$price > quantile(dupage99$price, 0.99))

> dupage99 <- dupage99[dropobs1 == FALSE & dropobs2 == FALSE, ]

> o <- order(dupage99$price)

> dupage99 <- dupage99[o, ]

> dupage99$price <- dupage99$price/1000

> fit <- condens(price, ratio, window = 0.5, contour = TRUE, level = TRUE,

+ wire = TRUE, dens = TRUE, targetx.dens = c(100, 200, 300,

+ 400), ngrid = 40, data = dupage99)

24



By default, condens only produces a contour plot. In this case, all of the
plot options have been specified, so contour, level, wire, and density graphs all
are produced. Figure 4 contains the contour map. The level map and the wire
map are contained if Figures 5 and 6 respectively. The density map is Figure 7.

Figure 4: The Contour Map

The contour and level plots show the same thing in different formats. The
bands or colors show contours of equal densities. Much like the quantile lines,
they suggest that assessment ratios tend to decline with sales price. The dis-
tribution of ratios widens somewhat as sales price increase. The heavy concen-
tration of assessment ratios in the region with relatively low sales prices shows
that there is relatively low variability in assessment rates in these regions.

The wire plot is not very informative in this case. The lattice package can be
used to vary the point of view for wire plots. Rotating the plot can sometimes
provide some useful perspectives. Overall, I have found the contour and level
plots to be much more useful than the wire plot.

The density plots provide a much different perspective on the conditional
density function. In this case, the density plot shows four conditional density
functions for assessment ratios –the density function conditional on a $100,000
sales price, a $200,000 sale price, etc. As the sales price increases, the density
functions shift to the left; this result again implies that higher sales prices are
associated with lower assessment ratios. It also is clear from this density plot

25



Figure 5: The Level Map

that the conditional density functions spread out as sales price increases. The
graph shows clearly that the variance of the conditional density functions in-
creases as sales price increases. Together, the contour, level, and density plots
provide useful visual summaries of the relationships between sales prices and
assessment ratios across their full distribution.

By default, the density plot presents five conditional density estimates one
each for the 10th, 25th, 50th, 75th, and 90th percentiles of the sales price
distribution. These percentiles can be altered using the quantile.dens option.
Alternatively, target sales prices can be entered directly using the targetx.dens
option, as was done here. No more than 5 values should be listed for quan-
tile.dens or targetx.dens, although fewer entries are acceptable. If quantile.dens
or targetx.dens has more than 5 entries, only the first 5 are used.

26



Figure 6: The Wire Map

27



Figure 7: The Density Map

28


