
Simulation of compound hierarchical
models

Christophe Dutang
ISFA, Université Claude Bernard Lyon 1

Vincent Goulet
École d’actuariat, Université Laval

Mathieu Pigeon
École d’actuariat, Université Laval

Louis-Philippe Pouliot
École d’actuariat, Université Laval

1 Introduction

Hierarchical probability models are widely used for data classified in a tree-
like structure and in Bayesian inference. The main characteristic of such mod-
els is to have the probability law at some level in the classification structure
be conditional on the outcome in previous levels. For example, adopting a
bottom to top description of the model, a simple hierarchical model could be
written as

Xt|Λ, Θ ∼ Poisson(Λ)

Λ|Θ ∼ Gamma(3, Θ)

Θ ∼ Gamma(2, 2),
(1)

where Xt represents actual data. The random variables Θ and Λ are generally
seen as uncertainty, or risk, parameters in the actuarial literature; in the sequel,
we refer to them as mixing parameters.

The example above is merely a multi-level mixture of models, something
that is simple to simulate “by hand”. The following R expression will yield n
variates of the random variable Xt:

> rpois(n, rgamma(n, 3, rgamma(n, 2, 2)))

However, for categorical data common in actuarial applications there will
usually be many categories — or nodes — at each level. Simulation is then

1

complicated by the need to always use the correct parameters for each variate.
Furthermore, actuaries often need to simulate both the frequency and the
severity of claims for compound models of the form

S = C1 + · · ·+ CN , (2)

where C1, C2, . . . are mutually independent and identically distributed ran-
dom variables each independent of N.

The package provides function simul to simulate data from compound
models like (2) where both the frequency and the severity components can
have a hierarchical structure. The function also supports weights (or volumes)
in the model. We give here a brief description of the function and its usage; see
Goulet and Pouliot (2008) for details about the supported models and more
thorough examples.

2 Description of hierarchical models

We need a method to describe hierarchical models in R that will meet the
following criteria:

1. simple and intuitive to go from the mathematical formulation of the
model to the R formulation and back;

2. allows for any number of levels and nodes;

3. at any level, allows for any use of parameters higher in the hierarchical
structure.

A hierarchical model is completely specified by the number of nodes at
each level (I, J1, . . . , JI and n11, . . . , nI J , above) and by the probability laws at
each level. The number of nodes is passed to simul by means of a named
list where each element is a vector of the number of nodes at a given level.
Vectors are recycled when the number of nodes is the same throughout a
level. Probability models are expressed in a semi-symbolic fashion using an
object of mode "expression". Each element of the object must be named —
with names matching those of the number of nodes list — and should be a
complete call to an existing random number generation function, but with the
number of variates omitted. Hierarchical models are achieved by replacing
one or more parameters of a distribution at a given level by any combination
of the names of the levels above. If no mixing is to take place at a level, the
model for this level can be NULL.

Example 1. Consider the following expanded version of model (1):

Xijt|Λij, Θi ∼ Poisson(Λij), t = 1, . . . , nij

Λij|Θi ∼ Gamma(3, Θi), j = 1, . . . , Ji

Θi ∼ Gamma(2, 2), i = 1, . . . , I,

2

with I = 3, J1 = 4, J2 = 5, J3 = 6 and nij ≡ n = 10. Then the number of nodes
is specified by

list(Theta = 3, Lambda = c(4, 5, 6), Data = 10)

and the probability model is expressed as

expression(Theta = rgamma(2, 2),
Lambda = rgamma(3, Theta),
Data = rpois(Lambda))

Storing the probability model requires an expression object in order to
avoid evaluation of the incomplete calls to the random number generation
functions. Function simul builds and executes the calls to the random gen-
eration functions from the top of the hierarchical model to the bottom. At
each level, the function 1) infers the number of variates to generate from the
number of nodes list, and 2) appropriately recycles the mixing parameters
simulated previously.

The actual names in the list and the expression object can be anything; they
merely serve to identify the mixing parameters. Furthermore, any random
generation function can be used. The only constraint is that the name of the
number of variates argument is n.

Function simul also supports usage of weights in models. These usually
modify the frequency parameters to take into account the “size” of an en-
tity. Weights are used in simulation wherever the name weights appears in a
model.

3 Usage

Function simul can simulate data for structures where both the frequency
model and the severity model are hierarchical. It has four main arguments:
1) nodes for the number of nodes list; 2) model.freq for the frequency model;
3) model.sev for the severity model; 4) weights for the vector of weights in
lexicographic order, that is all weights of entity 1, then all weights of entity 2,
and so on.

The function returns the variates in a list of class "portfolio" with a dim
attribute of length two. The list contains all the individual claim amounts for
each entity. Since every element can be a vector, the object can be seen as a
three-dimension array with a third dimension of potentially varying length.
The function also returns a matrix of integers giving the classification indexes
of each entity in the portfolio.

The package also defines methods for four generic functions to easily ac-
cess key quantities for each entity of the simulated portfolio:

1. a method of aggregate to compute the aggregate claim amounts S;

3

2. a method of frequency to compute the number of claims N;

3. a method of severity (a generic function introduced by the package) to
return the individual claim amounts Cj;

4. a method of weights to extract the weights matrix.

In addition, all methods have a classification and a prefix argument.
When the first is FALSE, the classification index columns are omitted from the
result. The second argument overrides the default column name prefix; see
the simul.summaries help page for details.

The following example illustrates these concepts in detail.

Example 2. Consider the following compound hierarchical model:

Sijt = Cijt1 + · · ·+ CijtNijt ,

for i = 1, . . . , I, j = 1, . . . , Ji, t = 1, . . . , nij and with

Nijt|Λij, Φi ∼ Poisson(wijtΛij) Cijtu|Θij, Ψi ∼ Lognormal(Θij, 1)

Λij|Φi ∼ Gamma(Φi, 1) Θij|Ψi ∼ N(Ψi, 1)

Φi ∼ Exponential(2) Ψi ∼ N(2, 0.1).

Using as convention to number the data level 0, the above is a two-level com-
pound hierarchical model.

Assuming that I = 2, J1 = 4, J2 = 3, n11 = · · · = n14 = 4 and n21 = n22 =
n23 = 5 and that weights are simply simulated from a uniform distribution on
(0.5, 2.5), then simulation of a data set with simul is achieved with:

> nodes <- list(cohort = 2,
+ contract = c(4, 3),
+ year = c(4, 4, 4, 4, 5, 5, 5))
> mf <- expression(cohort = rexp(2),
+ contract = rgamma(cohort, 1),
+ year = rpois(weights * contract))
> ms <- expression(cohort = rnorm(2, sqrt(0.1)),
+ contract = rnorm(cohort, 1),
+ year = rlnorm(contract, 1))
> wijt <- runif(31, 0.5, 2.5)
> pf <- simul(nodes = nodes, model.freq = mf, model.sev = ms, weights = wijt)

Object pf is a list of class "portfolio" containing, among other things,
the aforementioned two-dimension list as element data and the classification
matrix (subscripts i and j) as element classification:

> class(pf)

[1] "portfolio"

> pf$data

4

year.1 year.2 year.3 year.4 year.5
[1,] Numeric,2 Numeric,2 11.38 Numeric,0 NA
[2,] Numeric,0 Numeric,0 Numeric,0 Numeric,0 NA
[3,] Numeric,0 Numeric,3 Numeric,0 Numeric,2 NA
[4,] Numeric,0 98.13 50.62 55.7 NA
[5,] Numeric,0 11.79 2.253 2.397 Numeric,2
[6,] Numeric,0 Numeric,0 Numeric,0 Numeric,0 Numeric,0
[7,] Numeric,3 Numeric,4 Numeric,2 Numeric,2 Numeric,0

> pf$classification

cohort contract
[1,] 1 1
[2,] 1 2
[3,] 1 3
[4,] 1 4
[5,] 2 1
[6,] 2 2
[7,] 2 3

The output of pf$data is not much readable. Printing the results of simul
like this would bring many users to wonder what Numeric,n means. It is
actually R’s way to specify that a given element in the list is a numeric vector of
length n — the third dimension mentioned above. To ease reading, the print
method for objects of class "portfolio" only prints the simulation model and
the number of claims in each node:

> pf

Portfolio of claim amounts

Frequency model
cohort ~ rexp(2)
contract ~ rgamma(cohort, 1)
year ~ rpois(weights * contract)

Severity model
cohort ~ rnorm(2, sqrt(0.1))
contract ~ rnorm(cohort, 1)
year ~ rlnorm(contract, 1)

Number of claims per node:

cohort contract year.1 year.2 year.3 year.4 year.5
[1,] 1 1 2 2 1 0 NA
[2,] 1 2 0 0 0 0 NA
[3,] 1 3 0 3 0 2 NA
[4,] 1 4 0 1 1 1 NA
[5,] 2 1 0 1 1 1 2
[6,] 2 2 0 0 0 0 0
[7,] 2 3 3 4 2 2 0

5

By default, the method of aggregate returns the values of Sijt in a regular
matrix (subscripts i and j in the rows, subscript t in the columns). The method
has a by argument to get statistics for other groupings and a FUN argument to
get statistics other than the sum:

> aggregate(pf)

cohort contract year.1 year.2 year.3 year.4 year.5
[1,] 1 1 31.37 7.521 11.383 0.000 NA
[2,] 1 2 0.00 0.000 0.000 0.000 NA
[3,] 1 3 0.00 72.706 0.000 23.981 NA
[4,] 1 4 0.00 98.130 50.622 55.705 NA
[5,] 2 1 0.00 11.793 2.253 2.397 10.48
[6,] 2 2 0.00 0.000 0.000 0.000 0.00
[7,] 2 3 44.81 88.737 57.593 14.589 0.00

> aggregate(pf, by = c("cohort", "year"), FUN = mean)

cohort year.1 year.2 year.3 year.4 year.5
[1,] 1 15.69 29.73 31.00 26.562 NA
[2,] 2 14.94 20.11 19.95 5.662 5.238

The method of frequency returns the values of Nijt. It is mostly a wrapper
for the aggregate method with the default sum statistic replaced by length.
Hence, arguments by and FUN remain available:

> frequency(pf)

cohort contract year.1 year.2 year.3 year.4 year.5
[1,] 1 1 2 2 1 0 NA
[2,] 1 2 0 0 0 0 NA
[3,] 1 3 0 3 0 2 NA
[4,] 1 4 0 1 1 1 NA
[5,] 2 1 0 1 1 1 2
[6,] 2 2 0 0 0 0 0
[7,] 2 3 3 4 2 2 0

> frequency(pf, by = "cohort")

cohort freq
[1,] 1 13
[2,] 2 16

The method of severity returns the individual variates Cijtu in a matrix
similar to those above, but with a number of columns equal to the maximum
number of observations per entity,

max
i,j

nij

∑
t=1

Nijt.

6

Thus, the original period of observation (subscript t) and the identifier of
the severity within the period (subscript u) are lost and each variate now
constitute a “period” of observation. For this reason, the method provides an
argument splitcol in case one would like to extract separately the individual
severities of one or more periods:

> severity(pf)

$main
cohort contract claim.1 claim.2 claim.3 claim.4 claim.5

[1,] 1 1 7.974 23.401 3.153 4.368 11.383
[2,] 1 2 NA NA NA NA NA
[3,] 1 3 3.817 41.979 26.910 4.903 19.078
[4,] 1 4 98.130 50.622 55.705 NA NA
[5,] 2 1 11.793 2.253 2.397 9.472 1.004
[6,] 2 2 NA NA NA NA NA
[7,] 2 3 14.322 11.522 18.966 33.108 15.532

claim.6 claim.7 claim.8 claim.9 claim.10 claim.11
[1,] NA NA NA NA NA NA
[2,] NA NA NA NA NA NA
[3,] NA NA NA NA NA NA
[4,] NA NA NA NA NA NA
[5,] NA NA NA NA NA NA
[6,] NA NA NA NA NA NA
[7,] 14.99 25.11 40.15 17.44 4.426 10.16

$split
NULL

> severity(pf, splitcol = 1)

$main
cohort contract claim.1 claim.2 claim.3 claim.4 claim.5

[1,] 1 1 3.153 4.368 11.383 NA NA
[2,] 1 2 NA NA NA NA NA
[3,] 1 3 3.817 41.979 26.910 4.903 19.078
[4,] 1 4 98.130 50.622 55.705 NA NA
[5,] 2 1 11.793 2.253 2.397 9.472 1.004
[6,] 2 2 NA NA NA NA NA
[7,] 2 3 33.108 15.532 14.990 25.107 40.150

claim.6 claim.7 claim.8
[1,] NA NA NA
[2,] NA NA NA
[3,] NA NA NA
[4,] NA NA NA
[5,] NA NA NA
[6,] NA NA NA
[7,] 17.44 4.426 10.16

$split

7

cohort contract claim.1 claim.2 claim.3
[1,] 1 1 7.974 23.40 NA
[2,] 1 2 NA NA NA
[3,] 1 3 NA NA NA
[4,] 1 4 NA NA NA
[5,] 2 1 NA NA NA
[6,] 2 2 NA NA NA
[7,] 2 3 14.322 11.52 18.97

Finally, the weights matrix corresponding to the data in object pf is

> weights(pf)

cohort contract year.1 year.2 year.3 year.4 year.5
[1,] 1 1 0.8361 2.115 1.2699 1.1555 NA
[2,] 1 2 1.7042 1.709 0.7493 1.0892 NA
[3,] 1 3 1.6552 1.762 1.5240 1.5100 NA
[4,] 1 4 1.5681 1.614 2.2358 2.1594 NA
[5,] 2 1 0.7229 1.907 2.2950 1.0595 0.9564
[6,] 2 2 0.5307 0.758 0.6868 0.9738 2.0823
[7,] 2 3 1.6995 2.320 1.6208 2.0114 1.2583

Combined with the argument classification = FALSE, the above meth-
ods can be used to easily compute loss ratios:

> aggregate(pf, classif = FALSE) / weights(pf, classif = FALSE)

year.1 year.2 year.3 year.4 year.5
[1,] 37.53 3.556 8.9638 0.000 NA
[2,] 0.00 0.000 0.0000 0.000 NA
[3,] 0.00 41.264 0.0000 15.881 NA
[4,] 0.00 60.781 22.6412 25.796 NA
[5,] 0.00 6.183 0.9818 2.263 10.95
[6,] 0.00 0.000 0.0000 0.000 0.00
[7,] 26.37 38.244 35.5328 7.253 0.00

Example 3. Scollnik (2001) considers the following model for the simulation
of claims frequency data in a Markov Chain Monte Carlo (MCMC) context:

Sit|Λi, α, β ∼ Poisson(wijΛi)

Λi|α, β ∼ Gamma(α, β)

α ∼ Gamma(5, 5)
β ∼ Gamma(25, 1)

for i = 1, 2, 3, j = 1, . . . , 5 and with weights wit simulated from

wit|ai, bi ∼ Gamma(ai, bi)

ai ∼ U(0, 100)
bi ∼ U(0, 100).

8

Strictly speaking, this is not a hierarchical model since the random variables α
and β are parallel rather than nested. Nevertheless, with some minor manual
intervention, function simul can simulate data from this model.

First, one simulates the weights (in lexicographic order) with

> wit <- rgamma(15, rep(runif(3, 0, 100), each = 5),
+ rep(runif(3, 0, 100), each = 5))

Second, one calls simul to simulate the frequency data. The key here
consists in manually inserting the simulation of the shape and rate parameters
of the gamma distribution in the model for Λi. Finally, wrapping the call to
simul in frequency will immediately yield the matrix of observations:

> frequency(simul(list(entity = 3, year = 5),
+ expression(entity = rgamma(rgamma(1, 5, 5), rgamma(1, 25, 1)),
+ year = rpois(weights * entity)),
+ weights = wit))

entity year.1 year.2 year.3 year.4 year.5
[1,] 1 0 0 0 0 0
[2,] 2 0 0 0 0 0
[3,] 3 0 1 0 1 1

One will find more examples of simul usage in the simulation demo file.
Function simul was used to simulate the data in Forgues et al. (2006).

References

A. Forgues, V. Goulet, and J. Lu. Credibility for severity revisited. North
American Actuarial Journal, 10(1):49–62, 2006.

V. Goulet and L.-P. Pouliot. Simulation of compound hierarchical models in
R. North American Actuarial Journal, 12:401–412, 2008.

D. P. M. Scollnik. Actuarial modeling with MCMC and BUGS. North American
Actuarial Journal, 5(2):96–124, 2001.

9

	Introduction
	Description of hierarchical models
	Usage

