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1 Introduction

One important task of actuaries is the modeling of claim amount distri-
butions for ratemaking, loss reserving or other risk evaluation purposes.
Package actuar (Dutang et al., 2008) offers many functions for loss distri-
butions modeling. The following subsections detail the following actuar
features:

1. introduction of 18 additional probability laws and utility functions
to get raw moments, limited moments and the moment generating
function;

2. fairly extensive support of grouped data;

3. calculation of the empirical raw and limited moments;

4. minimum distance estimation using three different measures;

5. treatment of coverage modifications (deductibles, limits, inflation, coin-
surance).

2 Probability laws

R already includes functions to compute the probability density function
(pdf), the cumulative distribution function (cdf) and the quantile function
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Family Distribution Root

Transformed beta Transformed beta trbeta
Burr burr
Loglogistic llogis
Paralogistic paralogis
Generalized Pareto genpareto
Pareto pareto
Inverse Burr invburr
Inverse Pareto invpareto
Inverse paralogistic invparalogis

Transformed gamma Transformed gamma trgamma
Inverse transformed gamma invtrgamma
Inverse gamma invgamma
Inverse Weibull invweibull
Inverse exponential invexp

Other Loggamma lgamma
Single parameter Pareto pareto1
Generalized beta genbeta

Table 1: Probability laws supported by actuar classified by family and root
names of the R functions.

of a fair number of probability laws, as well as functions to generate vari-
ates from these laws. For some root foo, the utility functions are named
dfoo, pfoo, qfoo and rfoo, respectively.

The actuar package provides d, p, q and r functions for all the probabil-
ity laws useful for loss severity modeling found in Appendix A of Klugman
et al. (2004) and not already present in base R, excluding the inverse Gaus-
sian and log-t but including the loggamma distribution (Hogg and Klugman,
1984).

Table 1 lists the supported distributions as named in Klugman et al.
(2004) along with the root names of the R functions. For reference, Ap-
pendix A also gives for every distribution the pdf, the cdf and the name
of the argument corresponding to each parameter in the parametrization
of Klugman et al. (2004). One will note that by default all functions (ex-
cept those for the Pareto distribution) use a rate parameter equal to the
inverse of the scale parameter. This differs from Klugman et al. (2004) but
is better in line with the functions for the gamma, exponential and Weibull
distributions in base R.

In addition to the d, p, q and r functions, the package provides m, lev
and mgf functions to compute, respectively, theoretical raw moments

mk = E[Xk], (1)
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theoretical limited moments

E[(X ∧ x)k] = E[min(X,x)k] (2)

and the moment generating function

MX(t) = E[etX], (3)

when it exists. Every probability law of Table 1 is supported, plus the fol-
lowing ones: beta, exponential, chi-square, gamma, lognormal, normal (no
lev), uniform and Weibull of base R and the inverse Gaussian distribution
of package SuppDists (Wheeler, 2008). The m and lev functions are es-
pecially useful with estimation methods based on the matching of raw or
limited moments; see Section 5 for their empirical counterparts. The mgf
functions come in handy to compute the adjustment coefficient in ruin the-
ory; see the "risk" vignette.

In addition to the 17 distributions of Table 1, the package provides sup-
port for a family of distributions deserving a separate presentation. Phase-
type distributions (Neuts, 1981) are defined as the distribution of the time
until absorption of continuous time, finite state Markov processes with m
transient states and one absorbing state. Let

Q =
[

T t
0 0

]
(4)

be the transition rates matrix (or intensity matrix) of such a process and let
(πππ,πm+1) be the initial probability vector. Here, T is anm×m non-singular
matrix with tii < 0 for i = 1, . . . ,m and tij ≥ 0 for i ≠ j, t = −Te and e is
a column vector with all components equal to 1. Then the cdf of the time
until absorption random variable with parameters πππ and T is

F(x) =
{
πm+1, x = 0,
1−πππeTxe, x > 0

(5)

where

eM =
∞∑
n=0

Mn

n!
(6)

is the matrix exponential of matrix M.
The exponential, the Erlang (gamma with integer shape parameter) and

discrete mixtures thereof are common special cases of phase-type distribu-
tions.

The package provides d, p, r, m and mgf functions for phase-type distri-
butions. The root is phtype and parameters πππ and T are named prob and
rates, respectively. For the package, function pphtype is central to the
evaluation of the probability of ruin; see ?ruin and the "risk" vignette.

The core of all the functions presented in this subsection is written in C
for speed. The matrix exponential C routine is based on expm() from the
package Matrix (Bates and Maechler, 2008).
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3 Grouped data

Grouped data is data represented in an interval-frequency manner. Typi-
cally, a grouped data set will report that there were nj claims in the interval
(cj−1, cj], j = 1, . . . , r (with the possibility that cr = ∞). This representa-
tion is much more compact than an individual data set — where the value
of each claim is known — but it also carries far less information. Now that
storage space in computers has almost become a non issue, grouped data
has somewhat fallen out of fashion.

Still, grouped data remains in use in some fields of actuarial practice
and also of interest in teaching. For this reason, actuar provides facili-
ties to store, manipulate and summarize grouped data. A standard storage
method is needed since there are many ways to represent grouped data in
the computer: using a list or a matrix, aligning the njs with the cj−1s or
with the cjs, omitting c0 or not, etc. Moreover, with appropriate extrac-
tion, replacement and summary methods, manipulation of grouped data
becomes similar to that of individual data.

First, function grouped.data creates a grouped data object similar to —
and inheriting from — a data frame. The input of the function is a vector of
group boundaries c0, c1, . . . , cr and one or more vectors of group frequen-
cies n1, . . . , nr . Note that there should be one group boundary more than
group frequencies. Furthermore, the function assumes that the intervals
are contiguous. For example, the following data

Group Frequency (Line 1) Frequency (Line 2)

(0,25] 30 26
(25,50] 31 33
(50,100] 57 31
(100,150] 42 19
(150,250] 65 16
(250,500] 84 11

is entered and represented in R as

> x <- grouped.data(Group = c(0, 25, 50, 100, 150,
+ 250, 500), Line.1 = c(30, 31, 57, 42, 65, 84),
+ Line.2 = c(26, 33, 31, 19, 16, 11))

Object x is stored internally as a list with class

> class(x)

[1] "grouped.data" "data.frame"

With a suitable print method, these objects can be displayed in an unam-
biguous manner:

> x
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Group Line.1 Line.2
1 (0, 25] 30 26
2 (25, 50] 31 33
3 (50, 100] 57 31
4 (100, 150] 42 19
5 (150, 250] 65 16
6 (250, 500] 84 11

Second, the package supports the most common extraction and replace-
ment methods for "grouped.data" objects using the usual [ and [<- op-
erators. In particular, the following extraction operations are supported.

i) Extraction of the vector of group boundaries (the first column):

> x[, 1]

[1] 0 25 50 100 150 250 500

ii) Extraction of the vector or matrix of group frequencies (the second and
third columns):

> x[, -1]

Line.1 Line.2
1 30 26
2 31 33
3 57 31
4 42 19
5 65 16
6 84 11

iii) Extraction of a subset of the whole object (first three lines):

> x[1:3, ]

Group Line.1 Line.2
1 (0, 25] 30 26
2 (25, 50] 31 33
3 (50, 100] 57 31

Notice how extraction results in a simple vector or matrix if either of the
group boundaries or the group frequencies are dropped.

As for replacement operations, the package implements the following.

i) Replacement of one or more group frequencies:

> x[1, 2] <- 22
> x
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Group Line.1 Line.2
1 (0, 25] 22 26
2 (25, 50] 31 33
3 (50, 100] 57 31
4 (100, 150] 42 19
5 (150, 250] 65 16
6 (250, 500] 84 11

> x[1, c(2, 3)] <- c(22, 19)
> x

Group Line.1 Line.2
1 (0, 25] 22 19
2 (25, 50] 31 33
3 (50, 100] 57 31
4 (100, 150] 42 19
5 (150, 250] 65 16
6 (250, 500] 84 11

ii) Replacement of the boundaries of one or more groups:

> x[1, 1] <- c(0, 20)
> x

Group Line.1 Line.2
1 (0, 20] 22 19
2 (20, 50] 31 33
3 (50, 100] 57 31
4 (100, 150] 42 19
5 (150, 250] 65 16
6 (250, 500] 84 11

> x[c(3, 4), 1] <- c(55, 110, 160)
> x

Group Line.1 Line.2
1 (0, 20] 22 19
2 (20, 55] 31 33
3 (55, 110] 57 31
4 (110, 160] 42 19
5 (160, 250] 65 16
6 (250, 500] 84 11

It is not possible to replace the boundaries and the frequencies simultane-
ously.

The package defines methods of a few existing summary functions for
grouped data objects. Computing the mean

r∑
j=1

(cj−1 + cj
2

)
nj (7)

is made simple with a method for the mean function:
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Figure 1: Histogram of a grouped data object

> mean(x)

Line.1 Line.2
188.0 108.2

Higher empirical moments can be computed with emm; see Section 5.
The R function hist splits individual data into groups and draws an

histogram of the frequency distribution. The package introduces a method
for already grouped data. Only the first frequencies column is considered
(see Figure 1 for the resulting graph):

> hist(x[, -3])

R has a function ecdf to compute the empirical cdf of an individual data
set,

Fn(x) =
1
n

n∑
j=1

I{xj ≤ x}, (8)

where I{A} = 1 ifA is true and I{A} = 0 otherwise. The function returns
a "function" object to compute the value of Fn(x) in any x.
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The approximation of the empirical cdf for grouped data is called an
ogive (Klugman et al., 1998; Hogg and Klugman, 1984). It is obtained by
joining the known values of Fn(x) at group boundaries with straight line
segments:

F̃n(x) =


0, x ≤ c0

(cj − x)Fn(cj−1)+ (x − cj−1)Fn(cj)
cj − cj−1

, cj−1 < x ≤ cj

1, x > cr .

(9)

The package includes a function ogive that otherwise behaves exactly like
ecdf. In particular, methods for functions knots and plot allow, respec-
tively, to obtain the knots c0, c1, . . . , cr of the ogive and a graph (see Figure
2):

> Fnt <- ogive(x)
> knots(Fnt)

[1] 0 20 55 110 160 250 500

> Fnt(knots(Fnt))

[1] 0.00000 0.07309 0.17608 0.36545 0.50498 0.72093 1.00000

> plot(Fnt)

Finally, a method of function quantile for grouped data objects returns
linearly smoothed quantiles, that is the inverse of the ogive evaluated at
various points:

> quantile(x)

0% 25% 50% 75% 100%
0.00 76.47 158.21 276.04 500.00

> Fnt(quantile(x))

[1] 0.00 0.25 0.50 0.75 1.00

4 Data sets

This is certainly not the most spectacular feature of actuar, but it remains
useful for illustrations and examples: the package includes the individual
dental claims and grouped dental claims data of Klugman et al. (2004):

> data("dental")
> dental

[1] 141 16 46 40 351 259 317 1511 107 567
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Figure 2: Ogive of a grouped data object

> data("gdental")
> gdental

cj nj
1 (0, 25] 30
2 ( 25, 50] 31
3 ( 50, 100] 57
4 (100, 150] 42
5 (150, 250] 65
6 (250, 500] 84
7 (500, 1000] 45
8 (1000, 1500] 10
9 (1500, 2500] 11
10 (2500, 4000] 3

5 Calculation of empirical moments

The package provides two functions useful for estimation based on mo-
ments. First, function emm computes the kth empirical moment of a sample,
whether in individual or grouped data form:
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Figure 3: Empirical limited expected value function of an individual data
object (left) and a grouped data object (right)

> emm(dental, order = 1:3)

[1] 3.355e+02 2.931e+05 3.729e+08

> emm(gdental, order = 1:3)

[1] 3.533e+02 3.577e+05 6.586e+08

Second, in the same spirit as ecdf and ogive, function elev returns a
function to compute the empirical limited expected value — or first lim-
ited moment — of a sample for any limit. Again, there are methods for
individual and grouped data (see Figure 3 for the graphs):

> lev <- elev(dental)
> lev(knots(lev))

[1] 16.0 37.6 42.4 85.1 105.5 164.5 187.7 197.9 241.1
[10] 335.5

> plot(lev, type = "o", pch = 19)
> lev <- elev(gdental)
> lev(knots(lev))

[1] 0.00 24.01 46.00 84.16 115.77 164.85 238.26 299.77
[9] 324.90 347.39 353.34

> plot(lev, type = "o", pch = 19)

6 Minimum distance estimation

Two methods are widely used by actuaries to fit models to data: maximum
likelihood and minimum distance. The first technique applied to individual
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data is well covered by function fitdistr of the package MASS (Venables
and Ripley, 2002).

The second technique minimizes a chosen distance function between
theoretical and empirical distributions. Package actuar provides function
mde, very similar in usage and inner working to fitdistr, to fit models
according to any of the following three distance minimization methods.

1. The Cramér-von Mises method (CvM) minimizes the squared difference
between the theoretical cdf and the empirical cdf or ogive at their
knots:

d(θ) =
n∑
j=1

wj[F(xj ;θ)− Fn(xj ;θ)]2 (10)

for individual data and

d(θ) =
r∑
j=1

wj[F(cj ;θ)− F̃n(cj ;θ)]2 (11)

for grouped data. Here, F(x) is the theoretical cdf of a parametric
family, Fn(x) is the empirical cdf, F̃n(x) is the ogive andw1 ≥ 0,w2 ≥
0, . . . are arbitrary weights (defaulting to 1).

2. The modified chi-square method (chi-square) applies to grouped
data only and minimizes the squared difference between the expected
and observed frequency within each group:

d(θ) =
r∑
j=1

wj[n(F(cj ;θ)− F(cj−1;θ))−nj]2, (12)

where n =
∑r
j=1nj . By default, wj = n−1

j .

3. The layer average severity method (LAS) applies to grouped data only
and minimizes the squared difference between the theoretical and
empirical limited expected value within each group:

d(θ) =
r∑
j=1

wj[LAS(cj−1, cj ;θ)− ˜LASn(cj−1, cj ;θ)]2, (13)

where LAS(x,y) = E[X ∧ y] − E[X ∧ x], ˜LASn(x,y) = Ẽn[X ∧ y] −
Ẽn[X ∧ x] and Ẽn[X ∧ x] is the empirical limited expected value for
grouped data.

The arguments of mde are a data set, a function to compute F(x) or
E[X ∧ x], starting values for the optimization procedure and the name of
the method to use. The empirical functions are computed with ecdf, ogive
or elev.

The expressions below fit an exponential distribution to the grouped
dental data set, as per Example 2.21 of Klugman et al. (1998):
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> mde(gdental, pexp, start = list(rate = 1/200),
+ measure = "CvM")

rate
0.003551

distance
0.002842

> mde(gdental, pexp, start = list(rate = 1/200),
+ measure = "chi-square")

rate
0.00364

distance
13.54

> mde(gdental, levexp, start = list(rate = 1/200),
+ measure = "LAS")

rate
0.002966

distance
694.5

It should be noted that optimization is not always that simple to achieve.
For example, consider the problem of fitting a Pareto distribution to the
same data set using the Cramér–von Mises method:

> mde(gdental, ppareto, start = list(shape = 3, scale = 600),
+ measure = "CvM")

Error in mde(gdental, ppareto, start = list(shape = 3, scale = 600),
measure = "CvM") :

optimization failed

Working in the log of the parameters often solves the problem since
the optimization routine can then flawlessly work with negative parameter
values:

> pparetolog <- function(x, logshape, logscale) ppareto(x,
+ exp(logshape), exp(logscale))
> (p <- mde(gdental, pparetolog, start = list(logshape = log(3),
+ logscale = log(600)), measure = "CvM"))

logshape logscale
1.581 7.128

distance
0.0007905
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Coverage modification Per-loss variable (Y L) Per-payment variable (Y P )

Ordinary deductible (d)

{
0, X ≤ d
X − d, X > d

{
X − d, X > d

Franchise deductible (d)

{
0, X ≤ d
X, X > d

{
X, X > d

Limit (u)

{
X, X ≤ u
u, X > u

{
X, X ≤ u
u, X > u

Coinsurance (α) αX αX

Inflation (r ) (1+ r)X (1+ r)X

Table 2: Coverage modifications for per-loss variable (Y L) and per-payment
variable (Y P ) as defined in Klugman et al. (2004).

The actual estimators of the parameters are obtained with

> exp(p$estimate)

logshape logscale
4.861 1246.485

This procedure may introduce additional bias in the estimators, though.

7 Coverage modifications

Let X be the random variable of the actual claim amount for an insurance
policy, Y L be the random variable of the amount paid per loss and Y P be the
random variable of the amount paid per payment. The terminology for the
last two random variables refers to whether or not the insurer knows that a
loss occurred. Now, the random variables X, Y L and Y P will differ if any of
the following coverage modifications are present for the policy: an ordinary
or a franchise deductible, a limit, coinsurance or inflation adjustment (see
Klugman et al., 2004, Chapter 5 for precise definitions of these terms).
Table 2 summarizes the definitions of Y L and Y P .

Often, one will want to use data Y P1 , . . . , Y Pn (or Y L1 , . . . , Y Ln) from the ran-
dom variable Y P (Y L) to fit a model on the unobservable random variable
X. This requires expressing the pdf or cdf of Y P (Y L) in terms of the pdf
or cdf of X. Function coverage of actuar does just that: given a pdf or
cdf and any combination of the coverage modifications mentioned above,
coverage returns a function object to compute the pdf or cdf of the mod-
ified random variable. The function can then be used in modeling like any
other dfoo or pfoo function.
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For example, let Y P represent the amount paid by an insurer for a policy
with an ordinary deductible d and a limit u− d (or maximum covered loss
of u). Then the definition of Y P is

Y P =
{
X − d, d ≤ X ≤ u
u− d, X ≥ u (14)

and its pdf is

fY P (y) =



0, y = 0
fX(y + d)
1− FX(d)

, 0 < y < u− d
1− FX(u)
1− FX(d)

, y = u− d

0, y > u− d.

(15)

Assume X has a gamma distribution. Then an R function to compute the
pdf (15) in any y for a deductible d = 1 and a limit u = 10 is obtained with
coverage as follows:

> f <- coverage(pdf = dgamma, cdf = pgamma, deductible = 1,
+ limit = 10)
> f

function (x, shape, rate = 1, scale = 1/rate)
ifelse(x == 0, 0, ifelse(0 < x & x < 9, do.call("dgamma", list(

x + 1, shape = shape, rate = rate, scale = scale))/do.call("pgamma",
list(1, shape = shape, rate = rate, scale = scale, lower.tail = FALSE)),
ifelse(x == 9, do.call("pgamma", list(10, shape = shape,

rate = rate, scale = scale, lower.tail = FALSE))/do.call("pgamma",
list(1, shape = shape, rate = rate, scale = scale, lower.tail = FALSE)),
0)))

<environment: 0x102978498>

> f(0, shape = 5, rate = 1)

[1] 0

> f(5, shape = 5, rate = 1)

[1] 0.1343

> f(9, shape = 5, rate = 1)

[1] 0.02936

> f(12, shape = 5, rate = 1)

[1] 0
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Note how function f is built specifically for the coverage modifications
submitted and contains as little useless code as possible.

Let object y contain a sample of claims amounts from policies with the
above deductible and limit. Then one can fit a gamma distribution by max-
imum likelihood to the claim severity process as follows:

> library(MASS)
> fitdistr(y, f, start = list(shape = 2, rate = 0.5))

shape rate
4.4828 0.8085

(0.7550) (0.1434)

The vignette "coverage" contains more detailed pdf and cdf formulas
under various combinations of coverage modifications.
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A Probability laws

This appendix gives the pdf and cdf of the probability laws appearing in
Table 1 using the parametrization of Klugman et al. (2004) and Hogg and
Klugman (1984).

In the following,

Γ(α;x) = 1Γ(α)
∫ x

0
tα−1e−t dt, α > 0, x > 0

with Γ(α) = ∫∞
0
tα−1e−t dt

is the incomplete gamma function, whereas

β(a,b;x) = 1
β(a,b)

x∫
0

ta−1(1− t)b−1 dt, a > 0, b > 0,0 < x < 1

with

β(a,b) =
∫ 1

0
ta−1(1− t)b−1 dt

= Γ(a)Γ(b)Γ(a+ b)
is the (regularized) incomplete beta function.

Unless otherwise stated all parameters are strictly positive and the func-
tions are defined for x > 0.

A.1 Transformed beta family

Transformed beta

Root: trbeta, pearson6
Parameters: shape1 (α), shape2 (γ), shape3 (τ), rate (λ = 1/θ), scale (θ)

f(x) = γu
τ(1−u)α
xβ(α,τ)

, u = v
1+ v , v =

(
x
θ

)γ
F(x) = β(τ,α;u)

Burr

Root: burr
Parameters: shape1 (α), shape2 (γ), rate (λ = 1/θ), scale (θ)

f(x) = αγu
α(1−u)
x

, u = 1
1+ v , v =

(
x
θ

)γ
F(x) = 1−uα
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Loglogistic

Root: llogis
Parameters: shape (γ), rate (λ = 1/θ), scale (θ)

f(x) = γu(1−u)
x

, u = v
1+ v , v =

(
x
θ

)γ
F(x) = u

Paralogistic

Root: paralogis
Parameters: shape (α), rate (λ = 1/θ), scale (θ)

f(x) = α
2uα(1−u)

x
, u = 1

1+ v , v =
(
x
θ

)α
F(x) = 1−uα

Generalized Pareto

Root: genpareto
Parameters: shape1 (α), shape2 (τ), rate (λ = 1/θ), scale (θ)

f(x) = u
τ(1−u)α
xβ(α,τ)

, u = v
1+ v , v = x

θ
F(x) = β(τ,α;u)

Pareto

Root: pareto, pareto2
Parameters: shape (α), scale (θ)

f(x) = αu
α(1−u)
x

, u = 1
1+ v , v = x

θ
F(x) = 1−uα

Inverse Burr

Root: invburr
Parameters: shape1 (τ), shape2 (γ), rate (λ = 1/θ), scale (θ)

f(x) = τγu
τ(1−u)
x

, u = v
1+ v , v =

(
x
θ

)γ
F(x) = uτ
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Inverse Pareto

Root: invpareto
Parameters: shape (τ), scale (θ)

f(x) = τu
τ(1−u)
x

, u = v
1+ v , v = x

θ
F(x) = uτ

Inverse paralogictic

Root: invparalogis
Parameters: shape (τ), rate (λ = 1/θ), scale (θ)

f(x) = τ
2uτ(1−u)

x
, u = v

1+ v , v =
(
x
θ

)τ
F(x) = uτ

A.2 Transformed gamma family

Transformed gamma

Root: trgamma
Parameters: shape1 (α), shape2 (τ), rate (λ = 1/θ), scale (θ)

f(x) = τu
αe−u

xΓ(α) , u =
(
x
θ

)τ
F(x) = Γ(α;u)

Inverse transformed gamma

Root: invtrgamma
Parameters: shape1 (α), shape2 (τ), rate (λ = 1/θ), scale (θ)

f(x) = τu
αe−u

xΓ(α) , u =
(
θ
x

)τ
F(x) = 1− Γ(α;u)

18



Inverse gamma

Root: invgamma
Parameters: shape (α), rate (λ = 1/θ), scale (θ)

f(x) = u
αe−u

xΓ(α) , u = θ
x

F(x) = 1− Γ(α;u)

Inverse Weibull

Root: invweibull, lgompertz
Parameters: shape (τ), rate (λ = 1/θ), scale (θ)

f(x) = τue
−u

x
, u =

(
θ
x

)τ
F(x) = e−u

Inverse exponential

Root: invexp
Parameters: rate (λ = 1/θ), scale (θ)

f(x) = ue
−u

x
, u = θ

x
F(x) = e−u

A.3 Other distributions

Loggamma

Root: lgamma
Parameters: shapelog (α), ratelog (λ)

f(x) = λ
α(lnx)α−1

xλ+1Γ(α) , x > 1

F(x) = Γ(α;λ lnx), x > 1

Single parameter Pareto

Root: pareto1
Parameters: shape (α), min (θ)
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f(x) = αθα

xα+1
, x > θ

F(x) = 1−
(
θ
x

)α
, x > θ

Although there appears to be two parameters, only α is a true parame-
ter. The value of θ is the minimum of the distribution and is usually set in
advance.

Generalized beta

Root: genbeta
Parameters: shape1 (α), shape2 (β), shape3 (τ), rate (λ = 1/θ), scale (θ)

f(x) = τu
α(1−u)β−1

xβ(α,β)
, u =

(
x
θ

)τ
, 0 < x < θ

F(x) = β(α,β;u)
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