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Function coverage of actuar defines a new function to compute the
probability density function (pdf) of cumulative distribution function (cdf)
of any probability law under the following insurance coverage modifica-
tions: ordinary or franchise deductible, limit, coinsurance, inflation.

In addition, the function can return the distribution of either the pay-
ment per loss or the payment per payment random variable. This termi-
nology refers to whether or not the insurer knows that a loss occurred. For
the exact definitions of the terms as used by coverage, see Chapter 5 of
Klugman et al. (2004).

In the presence of a deductible, four random variables can be defined:

1. Y P , the payment per payment with an ordinary deductible;

2. Y L, the payment per loss with an ordinary deductible;

3. Ỹ P , the payment per payment with a franchise deductible;

4. Ỹ L, the payment per loss with a franchise deductible.

The most common case in insurance applications is the distribution of the
amount paid per payment with an ordinary deductible, Y P . Hence, it is the
default in coverage.

When there is no deductible, all four random variables are equivalent.
This document presents the definitions of the above four random vari-

ables and their corresponding cdf and pdf for a deductible d, a limit u, a
coinsurance level α and an inflation rate r . An illustrative plot of each cdf
and pdf is also included. In these plots, a dot indicates a probability mass
at the given point.

In definitions below, X is the nonnegative random variable of the losses
with cdf FX(·) and pdf fX(·).
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1 Payment per payment, ordinary deductible
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2 Payment per loss, ordinary deductible
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3 Payment per payment, franchise deductible
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4 Payment per loss, franchise deductible
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