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1 Introduction

Credibility models are actuarial tools to distribute premiums fairly among
an heterogeneous group of policyholders (henceforth called entities). More
generally, they can be seen as prediction methods applicable in any setting
where repeated measures are made for subjects with different risk levels.

The credibility theory facilities of actuar consist of one data set and two
main functions:

1. matrix hachemeister containing the famous data set of Hachemeis-
ter (1975);

2. function simpf to simulate data from compound hierarchical models;

3. function cm to fit hierarchical and regression credibility models.

2 Hachemeister data set

The data set of Hachemeister (1975) consists of private passenger bodily
injury insurance average claim amounts, and the corresponding number of
claims, for five U.S. states over 12 quarters between July 1970 and June
1973. The data set is included in the package in the form of a matrix with
5 rows and 25 columns. The first column contains a state index, columns
2–13 contain the claim averages and columns 14–25 contain the claim num-
bers:

> data(hachemeister)
> hachemeister
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state ratio.1 ratio.2 ratio.3 ratio.4 ratio.5 ratio.6
[1,] 1 1738 1642 1794 2051 2079 2234
[2,] 2 1364 1408 1597 1444 1342 1675
[3,] 3 1759 1685 1479 1763 1674 2103
[4,] 4 1223 1146 1010 1257 1426 1532
[5,] 5 1456 1499 1609 1741 1482 1572

ratio.7 ratio.8 ratio.9 ratio.10 ratio.11 ratio.12
[1,] 2032 2035 2115 2262 2267 2517
[2,] 1470 1448 1464 1831 1612 1471
[3,] 1502 1622 1828 2155 2233 2059
[4,] 1953 1123 1343 1243 1762 1306
[5,] 1606 1735 1607 1573 1613 1690

weight.1 weight.2 weight.3 weight.4 weight.5 weight.6
[1,] 7861 9251 8706 8575 7917 8263
[2,] 1622 1742 1523 1515 1622 1602
[3,] 1147 1357 1329 1204 998 1077
[4,] 407 396 348 341 315 328
[5,] 2902 3172 3046 3068 2693 2910

weight.7 weight.8 weight.9 weight.10 weight.11 weight.12
[1,] 9456 8003 7365 7832 7849 9077
[2,] 1964 1515 1527 1748 1654 1861
[3,] 1277 1218 896 1003 1108 1121
[4,] 352 331 287 384 321 342
[5,] 3275 2697 2663 3017 3242 3425

3 Portfolio simulation

Function simpf simulates portfolios of data following compound models
of the form

S = C1 + · · · + CN , (1)

where C1, C2, . . . are mutually independent and identically distributed ran-
dom variables each independent from N . Both the frequency and the sever-
ity components can have a hierarchical structure. The main characteristic
of hierarchical models is to have the probability law at some level in the
classification structure be conditional on the outcome in previous levels.
For example, consider the following compound hierarchical model:

Sijt = Cijt1 + · · · + CijtNijt , (2)

for i = 1, . . . , I, j = 1, . . . , Ji, t = 1, . . . , nij and with

Nijt|Λij ,Φi ∼ Poisson(wijtΛij) Cijtu|Θij ,Ψi ∼ Lognormal(Θij ,1)Λij|Φi ∼ Gamma(Φi,1) Θij|Ψi ∼ N(Ψi,1) (3)Φi ∼ Exponential(2) Ψi ∼ N(2,0.1).
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The random variables Φi, Λij , Ψi and Θij are generally seen as risk param-
eters in the actuarial literature. The wijts are known weights, or volumes.
Using as convention to number the data level 0, the above is a two-level
hierarchical model.

Function simpf is presented in the credibility theory section because it
was originally written in this context, but it has much wider applications.
For instance, it is used by aggregateDist for the simulation of the aggre-
gate claim amount random variable.

Goulet and Pouliot (2007) describe in detail the model specification
method used in simpf. For the sake of completeness, we briefly outline
this method here.

A hierarchical model is completely specified by the number of nodes
at each level (I, J1, . . . , JI and n11, . . . , nIJ , above) and by the probability
laws at each level. The number of nodes is passed to simpf by means of
a named list where each element is a vector of the number of nodes at a
given level. Vectors are recycled when the number of nodes is the same
throughout a level. Probability models are expressed in a semi-symbolic
fashion using an object of mode "expression". Each element of the object
must be named — with names matching those of the number of nodes list
— and should be a complete call to an existing random number generation
function, with the number of variates omitted. Hierarchical models are
achieved by replacing one or more parameters of a distribution at a given
level by any combination of the names of the levels above. If no mixing is
to take place at a level, the model for this level can be NULL.

Function simpf also supports usage of weights in models. These usu-
ally modify the frequency parameters to take into account the “size” of an
entity. Weights are used in simulation wherever the name weights appears
in a model.

Hence, function simpf has four main arguments: 1) nodes for the num-
ber of nodes list; 2) model.freq for the frequency model; 3) model.sev for
the severity model; 4) weights for the vector of weights in lexicographic
order, that is all weights of entity 1, then all weights of entity 2, and so on.

For example, assuming that I = 2, J1 = 4, J2 = 3, n11 = · · · = n14 = 4
and n21 = n22 = n23 = 5 in model (3) above, and that weights are simply
simulated from a uniform distribution on (0.5,2.5), then simulation of a
data set with simpf is achieved with:

> wijt <- runif(31, 0.5, 2.5)
> nodes <- list(cohort = 2, contract = c(4, 3), year = c(4,
+ 4, 4, 4, 5, 5, 5))
> mf <- expression(cohort = rexp(2), contract = rgamma(cohort,
+ 1), year = rpois(weights * contract))
> ms <- expression(cohort = rnorm(2, sqrt(0.1)),
+ contract = rnorm(cohort, 1), year = rlnorm(contract,
+ 1))
> pf <- simpf(nodes = nodes, model.freq = mf, model.sev = ms,
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+ weights = wijt)

The function returns the variates in a two-dimension list of class "simpf"
containing all the individual claim amounts for each entity. Such an object
can be seen as a three-dimension array with a third dimension of poten-
tially varying length. The function also returns a matrix of integers giving
the classification indexes of each entity in the portfolio (subscripts i and
j in the notation above). Displaying the complete content of the object re-
turned by simpf can be impractical. For this reason, the print method for
this class only prints the simulation model and the number of claims in
each node:

> pf

Portfolio of claim amounts

Frequency model
cohort ~ rexp(2)
contract ~ rgamma(cohort, 1)
year ~ rpois(weights * contract)

Severity model
cohort ~ rnorm(2, sqrt(0.1))
contract ~ rnorm(cohort, 1)
year ~ rlnorm(contract, 1)

Number of claims per node:

cohort contract year.1 year.2 year.3 year.4 year.5
[1,] 1 1 2 2 1 0 NA
[2,] 1 2 0 0 0 0 NA
[3,] 1 3 0 3 0 2 NA
[4,] 1 4 0 1 1 1 NA
[5,] 2 1 0 1 1 1 2
[6,] 2 2 0 0 0 0 0
[7,] 2 3 3 4 2 2 0

The package defines methods for four generic functions to easily access
key quantities of the simulated portfolio.

1. By default, the method of aggregate returns the values of aggregate
claim amounts Sijt in a regular matrix (subscripts i and j in the rows,
subscript t in the columns). The method has a by argument to get
statistics for other groupings and a FUN argument to get statistics
other than the sum:

> aggregate(pf)
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cohort contract year.1 year.2 year.3 year.4 year.5
[1,] 1 1 31.37 7.521 11.383 0.000 NA
[2,] 1 2 0.00 0.000 0.000 0.000 NA
[3,] 1 3 0.00 72.706 0.000 23.981 NA
[4,] 1 4 0.00 98.130 50.622 55.705 NA
[5,] 2 1 0.00 11.793 2.253 2.397 10.48
[6,] 2 2 0.00 0.000 0.000 0.000 0.00
[7,] 2 3 44.81 88.737 57.593 14.589 0.00

> aggregate(pf, by = c("cohort", "year"), FUN = mean)

cohort year.1 year.2 year.3 year.4 year.5
[1,] 1 15.69 29.73 31.00 26.562 NA
[2,] 2 14.94 20.11 19.95 5.662 5.238

2. The method of frequency returns the number of claims Nijt . It is
a wrapper for aggregate with the default sum statistic replaced by
length. Hence, arguments by and FUN remain available:

> frequency(pf)

cohort contract year.1 year.2 year.3 year.4 year.5
[1,] 1 1 2 2 1 0 NA
[2,] 1 2 0 0 0 0 NA
[3,] 1 3 0 3 0 2 NA
[4,] 1 4 0 1 1 1 NA
[5,] 2 1 0 1 1 1 2
[6,] 2 2 0 0 0 0 0
[7,] 2 3 3 4 2 2 0

> frequency(pf, by = "cohort")

cohort freq
[1,] 1 17
[2,] 2 16

3. The method of severity (a generic function introduced by the pack-
age) returns the individual claim amounts Cijtu in a matrix similar to
those above, but with a number of columns equal to the maximum
number of observations per entity,

max
i,j

nij∑
t=1

Nijt .

Thus, the original period of observation (subscript t) and the identi-
fier of the severity within the period (subscript u) are lost and each
variate now constitute a “period” of observation. For this reason, the
method provides an argument splitcol in case one would like to
extract separately the individual severities of one or more periods:
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> severity(pf)

$first
cohort contract claim.1 claim.2 claim.3 claim.4 claim.5

[1,] 1 1 7.974 23.401 3.153 4.368 11.383
[2,] 1 2 NA NA NA NA NA
[3,] 1 3 3.817 41.979 26.910 4.903 19.078
[4,] 1 4 98.130 50.622 55.705 NA NA
[5,] 2 1 11.793 2.253 2.397 9.472 1.004
[6,] 2 2 NA NA NA NA NA
[7,] 2 3 14.322 11.522 18.966 33.108 15.532

claim.6 claim.7 claim.8 claim.9 claim.10 claim.11
[1,] NA NA NA NA NA NA
[2,] NA NA NA NA NA NA
[3,] NA NA NA NA NA NA
[4,] NA NA NA NA NA NA
[5,] NA NA NA NA NA NA
[6,] NA NA NA NA NA NA
[7,] 14.99 25.11 40.15 17.44 4.426 10.16

$last
NULL

> severity(pf, splitcol = 1)

$first
cohort contract claim.1 claim.2 claim.3 claim.4 claim.5

[1,] 1 1 3.153 4.368 11.383 NA NA
[2,] 1 2 NA NA NA NA NA
[3,] 1 3 3.817 41.979 26.910 4.903 19.078
[4,] 1 4 98.130 50.622 55.705 NA NA
[5,] 2 1 11.793 2.253 2.397 9.472 1.004
[6,] 2 2 NA NA NA NA NA
[7,] 2 3 33.108 15.532 14.990 25.107 40.150

claim.6 claim.7 claim.8
[1,] NA NA NA
[2,] NA NA NA
[3,] NA NA NA
[4,] NA NA NA
[5,] NA NA NA
[6,] NA NA NA
[7,] 17.44 4.426 10.16

$last
cohort contract claim.1 claim.2 claim.3

[1,] 1 1 7.974 23.40 NA
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[2,] 1 2 NA NA NA
[3,] 1 3 NA NA NA
[4,] 1 4 NA NA NA
[5,] 2 1 NA NA NA
[6,] 2 2 NA NA NA
[7,] 2 3 14.322 11.52 18.97

4. The method of weights extracts the weights matrix from a simulated
data set:

> weights(pf)

cohort contract year.1 year.2 year.3 year.4 year.5
[1,] 1 1 0.8361 2.115 1.2699 1.1555 NA
[2,] 1 2 1.7042 1.709 0.7493 1.0892 NA
[3,] 1 3 1.6552 1.762 1.5240 1.5100 NA
[4,] 1 4 1.5681 1.614 2.2358 2.1594 NA
[5,] 2 1 0.7229 1.907 2.2950 1.0595 0.9564
[6,] 2 2 0.5307 0.758 0.6868 0.9738 2.0823
[7,] 2 3 1.6995 2.320 1.6208 2.0114 1.2583

In addition, all methods have a classification and a prefix argu-
ment. When the first is FALSE, the classification index columns are omitted
from the result. The second argument overrides the default column name
prefix; see the simpf.summaries help page for details.

Function simpf was used to simulate the data in Forgues et al. (2006).

4 Hierarchical credibility model

The linear model fitting function of R is named lm. Since credibility models
are very close in many respects to linear models, and since the credibility
model fitting function of actuar borrows much of its interface from lm, we
named the credibility function cm.

Function cm acts as a unified interface for all credibility models sup-
ported by the package. Currently, these are the unidimensional models of
Bühlmann (1969) and Bühlmann and Straub (1970), the hierarchical model
of Jewell (1975) (of which the first two are special cases) and the regression
model of Hachemeister (1975). The modular design of cm makes it easy to
add new models if desired.

This subsection concentrates on usage of cm for hierarchical models.
There are some variations in the formulas of the hierarchical model in

the literature. We compute the credibility premiums as given in Bühlmann
and Jewell (1987) or Bühlmann and Gisler (2005). We support three types
of estimators of the between variance structure parameters: the unbiased
estimators of Bühlmann and Gisler (2005) (the default), the slightly differ-
ent version of Ohlsson (2005) and the iterative pseudo-estimators as found
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in Goovaerts and Hoogstad (1987) or Goulet (1998). For instance, for a two-
level hierarchical model like (3), the best linear prediction for year n + 1
based on ratios Xijt = Sijt/wijt is

π̂ij = zijXijw + (1− zij)π̂i
π̂i = ziXizw + (1− zi)m

(4)

with

zij =
wijΣ

wijΣ + s2/a
, Xijw =

nij∑
t=1

wijt
wijΣ Xijt

zi =
ziΣ

ziΣ + a/b , Xizw =
Ji∑
j=1

zij
ziΣ Xijw .

The estimator of s2 is

ŝ2 = 1∑I
i=1

∑Ji
j=1(nij − 1)

I∑
i=1

Ji∑
j=1

nij∑
t=1

wijt(Xijt −Xijw)2. (5)

The three types of estimators for parameters a and b are the following.
First, let

Ai =
Ji∑
j=1

wijΣ(Xijw −Xiww)2 − (Ji − 1)s2 ci = wiΣΣ −
Ji∑
j=1

w2
ijΣ

wiΣΣ

B =
I∑
i=1

zi.(Xizw − X̄zzw)2 − (I − 1)a d = zΣΣ −
I∑
i=1

z2
iΣ
zΣΣ ,

with

X̄zzw =
I∑
i=1

ziΣ
zΣΣ Xizw . (6)

(Hence, E[Ai] = cia and E[B] = db.) Then, the Bühlmann–Gisler estimators
are

â = 1
I

I∑
i=1

max
(
Ai
ci
,0
)

(7)

b̂ = max
(
B
d
,0
)
, (8)

the Ohlsson estimators are

â′ =
∑I
i=1Ai∑I
i=1 ci

(9)

b̂′ = B
d

(10)
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and the iterative (pseudo-)estimators are

ã = 1∑I
i=1(Ji − 1)

I∑
i=1

Ji∑
j=1

zij(Xijw −Xizw)2 (11)

b̃ = 1
I − 1

I∑
i=1

zi(Xizw −Xzzw)2, (12)

where

Xzzw =
I∑
i=1

zi
zΣ Xizw . (13)

Note the difference between the two weighted averages (6) and (13). See
Goulet and Ouellet (2007) for further discussion on this topic.

Finally, the estimator of the collective mean m is m̂ = Xzzw .
The credibility modeling function cm assumes that data is available in

the format most practical applications would use, namely a rectangular
array (matrix or data frame) with entity observations in the rows and with
one or more classification index columns (numeric or character). One will
recognize the output format of simpf and its summary methods.

Then, function cm works much the same as lm. It takes in argument a
formula of the form ˜ terms describing the hierarchical interactions in a
data set; the data set containing the variables referenced in the formula; the
names of the columns where the ratios and the weights are to be found in
the data set. The latter should contain at least two nodes in each level and
more than one period of experience for at least one entity. Missing values
are represented by NAs. There can be entities with no experience (complete
lines of NAs).

In order to give an easily reproducible example, we group states 1 and
3 of the Hachemeister data set into one cohort and states 2, 4 and 5 into
another. This shows that data does not have to be sorted by level. The
fitted model using the iterative estimators is:

> X <- cbind(cohort = c(1, 2, 1, 2, 2), hachemeister)
> fit <- cm(~cohort + cohort:state, data = X, ratios = ratio.1:ratio.12,
+ weights = weight.1:weight.12, method = "iterative")
> fit

Call:
cm(formula = ~cohort + cohort:state, data = X, ratios = ratio.1:ratio.12,

weights = weight.1:weight.12, method = "iterative")

Structure Parameters Estimators

Collective premium: 1746
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Between cohort variance: 88981
Within cohort/Between state variance: 10952
Within state variance: 139120026

The function returns a fitted model object of class "cm" containing the
estimators of the structure parameters. To compute the credibility premi-
ums, one calls a method of predict for this class:

> predict(fit)

$cohort
[1] 1949 1543

$state
[1] 2048 1524 1875 1497 1585

One can also obtain a nicely formatted view of the most important re-
sults with a call to summary:

> summary(fit)

Call:
cm(formula = ~cohort + cohort:state, data = X, ratios = ratio.1:ratio.12,

weights = weight.1:weight.12, method = "iterative")

Structure Parameters Estimators

Collective premium: 1746

Between cohort variance: 88981
Within cohort/Between state variance: 10952
Within state variance: 139120026

Detailed premiums

Level: cohort
cohort Indiv. mean Weight Cred. factor Cred. premium
1 1967 1.407 0.9196 1949
2 1528 1.596 0.9284 1543

Level: state
cohort state Indiv. mean Weight Cred. factor
1 1 2061 100155 0.8874
2 2 1511 19895 0.6103
1 3 1806 13735 0.5195
2 4 1353 4152 0.2463
2 5 1600 36110 0.7398
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Cred. premium
2048
1524
1875
1497
1585

The methods of predict and summary can both report for a subset of
the levels by means of an argument levels. For example:

> summary(fit, levels = "cohort")

Call:
cm(formula = ~cohort + cohort:state, data = X, ratios = ratio.1:ratio.12,

weights = weight.1:weight.12, method = "iterative")

Structure Parameters Estimators

Collective premium: 1746

Between cohort variance: 88981
Within cohort variance: 10952

Detailed premiums

Level: cohort
cohort Indiv. mean Weight Cred. factor Cred. premium
1 1967 1.407 0.9196 1949
2 1528 1.596 0.9284 1543

> predict(fit, levels = "cohort")

$cohort
[1] 1949 1543

The results above differ from those of Goovaerts and Hoogstad (1987)
for the same example because the formulas for the credibility premiums
are different.

5 Bühlmann and Bühlmann–Straub models

As mentioned above, the Bühlmann and Bühlmann–Straub models are sim-
ply one-level hierarchical models. In this case, the Bühlmann–Gisler and
Ohlsson estimators of the between variance parameters are both identical
to the usual Bühlmann and Straub (1970) estimator

â = wΣΣ
w2ΣΣ −∑I

i=1w
2
iΣ

 I∑
i=1

wiΣ(Xiw −Xww)2 − (I − 1)ŝ2

 , (14)

11



and the iterative estimator

ã = 1
I − 1

I∑
i=1

zi(Xiw −Xzw)2 (15)

is better known as the Bichsel–Straub estimator.
To fit the Bühlmann model using cm, one simply does not specify any

weights:

> cm(~state, hachemeister, ratios = ratio.1:ratio.12)

Call:
cm(formula = ~state, data = hachemeister, ratios = ratio.1:ratio.12)

Structure Parameters Estimators

Collective premium: 1671

Between state variance: 72310
Within state variance: 46040

In comparison, the results for the Bühlmann–Straub model using the
Bichsel–Straub estimator are:

> cm(~state, hachemeister, ratios = ratio.1:ratio.12,
+ weights = weight.1:weight.12)

Call:
cm(formula = ~state, data = hachemeister, ratios = ratio.1:ratio.12,

weights = weight.1:weight.12)

Structure Parameters Estimators

Collective premium: 1684

Between state variance: 89639
Within state variance: 139120026

6 Regression model of Hachemeister

The regression model of Hachemeister (1975) is a generalization of the
Bühlmann–Straub model. If data shows a systematic trend, the latter model
will typically under- or over-estimate the true premium of an entity. The
idea of Hachemeister was to fit to the data a regression model where the
parameters are a credibility weighted average of an entity’s regression pa-
rameters and the group’s parameters.
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In order to use cm to fit a credibility regression model to a data set, one
has to specify a vector or matrix of regressors by means of argument xreg.
For example, fitting the model

Xit = β0 + β1(12− t)+ εt , t = 1, . . . ,12

to the original data set of Hachemeister is done with

> fit <- cm(~state, hachemeister, xreg = 12:1, ratios = ratio.1:ratio.12,
+ weights = weight.1:weight.12)
> fit

Call:
cm(formula = ~state, data = hachemeister, ratios = ratio.1:ratio.12,

weights = weight.1:weight.12, xreg = 12:1)

Structure Parameters Estimators

Collective premium: 1885 -32.05

Between state variance: 145359 -6623.4
-6623 301.8

Within state variance: 49870187

Computing the credibility premiums requires to give the “future” values
of the regressors as in predict.lm, although with a simplified syntax for
the one regressor case:

> predict(fit, newdata = 0)

[1] 2437 1651 2073 1507 1759
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