
1 NOTE

This vignette is based on: “accuracy: Tools for Accurate and Reliable Statistical Computing” by

Micah Atman, Jeff Gill, Michael P. McDonald, in the Journal of Statistical Software, Vol. 21, Issue

1, Jul 2007.

Please use the above article for citation and reference purposes.

2 Introduction

Social science data are often subject to measurement error, and nearly all methods of statistical

computing can yield inaccurate results under some combinations of data and model specification.

This is an issue of practical concern – since our previous work and that of others, demonstrates that

published analyses are affected with surprising frequency [Altman et al., 2003, 2005, McCullough

and Vinod, 1999, Altman and McDonald, 2002, 2003]. Unfortunately, most practitioners ignore

even routine numerical issues in statistical computing. This is in contrast to some scientific and

engineering disciplines, which require assessments of the accuracy of both data and results.1

A simple example (below), using generated data, shows how numeric issues can affect even

seemingly simple calculations. Consider the calculation of a variable’s dispersion: In R, the function

sd returns the ‘sample standard deviation’, but does not provide an option to return the ‘population

standard deviation’.2 The three functions below compute this quantity. The first two functions

are direct implementations of textbook formulas, and the third simply adjusts the results of the sd

function.
1For example, publication in any of the American Institute of Aeronautics and Astronautics journals requires that

all reported data must be accompanied with error bars, and the numerical accuracy of the resulting analyses be

explicitly assessed [AIAA, 1998].
2The population standard deviation differs from the sample standared deviation in that it uses n rather than n−1

as a divisor.

1



> sdp.formula1 <- function(x) {

+ n <- length(x)

+ sqrt(n * sum(x^2) - sum(x)^2)/n

+ }

> sdp.formula2 <- function(x) {

+ sum(sqrt((x - sum(x)/length(x))^2))/length(x)

+ }

> sdp.formula3 <- function(x) {

+ sqrt(var(x) * (length(x) - 1)/length(x))

+ }

To see the damaging effects of numerical errors, we apply these functions to the following

generated data frames, each of which produces columns of numbers, of increasing magnitude, that

have standard deviations of 0.5.

> testMat <- function(len = 50, digits = c(3, 5, 7, 9, 11, 13,

+ 15, 17, 19)) {

+ len <- 2 * len

+ dat <- NULL

+ for (i in digits) {

+ dat <- as.data.frame(cbind(dat, 1:len%%2 + 10^i))

+ }

+ names(dat) <- as.character(digits)

+ return(dat)

+ }

Although the three formulas for calculating the standard deviation of the populations are math-

ematically correct, the results computed with them are obviously wrong. The first method is par-

ticularly bad: The range of inputs that yield correct answers is much smaller for the first method

than for the others, some of the errors produced by the first method are extremely large, and the

pattern of errors is not easily discernable as the number of observations in each column increases.
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> dat <- testMat(4)

> print(rbind(sapply(dat, sdp.formula1), sapply(dat, sdp.formula2),

+ sapply(dat, sdp.formula3)), digits = 3)

3 5 7 9 11 13 15 17 19

[1,] 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0 0

[2,] 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0

[3,] 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0

> dat <- testMat(10)

> print(rbind(sapply(dat, sdp.formula1), sapply(dat, sdp.formula2),

+ sapply(dat, sdp.formula3)), digits = 3)

3 5 7 9 11 13 15 17 19

[1,] 0.5 0.5 0.51 NaN 0.0 0.0 1.34e+07 NaN NaN

[2,] 0.5 0.5 0.50 0.5 0.5 0.5 5.00e-01 0 0

[3,] 0.5 0.5 0.50 0.5 0.5 0.5 5.00e-01 0 0

> dat <- testMat(50)

> print(rbind(sapply(dat, sdp.formula1), sapply(dat, sdp.formula2),

+ sapply(dat, sdp.formula3)), digits = 3)

3 5 7 9 11 13 15 17 19

[1,] 0.5 0.5 0.493 0.0 0.0 0.0 0.0 0 0

[2,] 0.5 0.5 0.500 0.5 0.5 0.5 0.5 0 0

[3,] 0.5 0.5 0.500 0.5 0.5 0.5 0.5 0 0

The second and third of the methods are much better – they produce correct results for the test

data, up to the 8th column, and yield simply zero thereafter.3 In fact, in this example, the second

and third sdp formulas are accurate, and it is the test inputs that suffer from roundoff error – as

1 + 1016 silently rounds to 1016.

When social scientists encounter similar behavior from software, they often find it baffling.

Ironically, as user-friendly statistical packages have enabled social scientists to adopt increasingly

sophisticated statistical methods, users have become even less familiar with the computational
3In S-PLUS, colStdevs(x,unbiased=F), yields results identical to formula’s 2 and 3.
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details involved in their estimation.4 We have demonstrated such issues to numerous colleagues,

and most consider it entirely mysterious until the underlying mechanics have been thoroughly

explained. These comments, collected by one reviewer or our previous work [Zandt, 2005] after

showing a version of the standard deviation example to his colleagues, are representative:

I polled my colleagues, all quantitative psychologists who routinely perform complex

statistical analyses by showing them (a similar table of standard deviations, as computed

by Excel). The responses I got ranged from “I don’t want to hear about this,” and “Oh

my God!” to “I’m confused.” Colleagues of a certain age, those who remember punching

Fortran code onto cards or tape, were not surprised at all. Another colleague said“These

issues are completely unknown to us.”.

Our example is relatively easy to grasp because it uses simple calculations on a restricted range

of inputs. In practice, the computational issues involved are more complex, and inaccurate results

less obvious to users. Many computational problems reveal themselves only as obscure warning

messages delivered at the end of analysis, or not as all, yielding purportedly correct estimates. The

various sources of computational accuracies can include: un-modeled measurement error; bugs;

errors in data input; data that is ill-conditioned for a particular model; floating point underflow,

overflow, and rounding; non-random structure in “random” number generators; local optima or

discontinuities in optimization landscapes; inappropriate or unlucky choices of starting values; and

inadequate stopping criteria.

A number of book-length works are devoted to each of these sources of error, and correcting

them may require intensive examination of the numerical details of a particular problem. Fortu-

nately, a number of relatively straightforward techniques exist to detect such problems. While these

techniques cannot prevent or fix errors, they can alert the researcher to many situations in which

numerical and measurement errors would otherwise lead an analysis astray.

We describe here a set of software tools we have developed to make these techniques readily

available to users of the S language. In particular, we have created accuracy, a package that runs in R

[R Development Core Team, 2007] and S-PLUS, to help researchers to determine whether the results

of their statistical analyses are potentially affected by measurement and numerical error. This

package provides a variety of numerical tools for improving the accuracy and reliability of statistical

analysis, including: methods to compare the results from multiple models, sensitivity analyses for

numerical and measurement error, methods for checking whether a local optima has “trapped” a
4This is probably exacerbated by the fact that most social scientists do not write software – and as [Stromberg,

2004] points out, many academics (incorrectly) perceive writing statistical software for public use (and particularly

for robust methods) to be unrewarding.
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maximum likelihood estimate, non-linear regression, or other optimization-based method; a routine

to supply true random numbers by tapping external physical sources of entropy; and a generalized

Cholesky method for recovering information from non-invertible Hessians. The accuracy module

also provides an interface to Zelig, a package for R that provides a simple unified way to estimate,

interpret, and present the results of a large range of statistical methods [Imai et al., 2007].5

3 Common Sources of Inaccuracy

3.1 Accuracy and stability

What is computational accuracy? The computational accuracy of a statistical analysis can be

thought of as the distance (using a well-behaved measure) between the actual results produced

by the computer program and results that would have been produced had all algorithms been

implemented correctly, and all calculations been performed perfectly.

Computational accuracy alone is not enough to ensure reliable computations. Given infinitely

precise and accurate inputs, a computation can yield perfectly accurate results, and yet the same

program yield wildly incorrect answers in the presence of minute amounts of measurement or

rounding error in the inputs. Since, in practice, data is almost certainly subject to some finite

measurement error, and calculations to some finite numerical error, reliable statistical computations

must be computationally stable as well as accurate.

Somewhat more formally, stability is simply the distance of the true estimate, given the data,

Y, from the computer output, given the data and noise:

S = ∇ (estimate (Y ) , output (Y + ∆)) (1)

Less formally, a stable algorithm gives, to quote Higham [2002], “almost the right answer to almost

the same problem.”

Instability may arise from or be exacerbated by several levels of problems: accumulated nu-

merical errors in the computations used to implement the model; limitations in the algorithms

guiding these computations; or interactions between the form of the statistical model with the data

being analyzed. Regardless of the source of problem, if the data inputs are not given with absolute

precision and accuracy, whether because of measurement error in collecting the data or numerical
5In this article we discuss accuracy version 1.28. This article was written using Sweave [Leisch, 2002], which ensures

that what appears in the article corresponds precisely to the output for that version. We continue to improve the

package and to release future versions. Thus the output in the current version of accuracy may differ slightly from

our examples here.
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error in processing it, and if the model estimation process is unstable, then any inferences follow

are unlikely to be correct.

To understand how to detect and correct for computational problems, it is useful to understand

their sources. Most statistical models, most problems at the computational level fall into three broad

categories: First, computational problems occur because nearly all software uses floating-point

number representations for computation rather than using perfect symbolic representation. Second,

computational problems occur because of the limits or incorrect use of optimization algorithms.

Third, computational result from non-randomness in “random” number generation.

3.2 Floating point arithmetic errors

A floating point numbering system is a subset of the real number system where elements have

the form: y = ±m × βe−t. Each numbering system is characterized by the following quanti-

ties: a base (β), an exponent range (e, emin ≤ e ≤ emax), a precision (t), a sign, and a mantissa(
m, 0 ≤ m ≤ βt − 1

)
. For a particular y only m, e, and a sign are stored. In IEEE floating point,

which is now used in almost all software, one can think of each number as being represented, in

base 2, a single bit for the sign, a sequence of t bits for the mantissa, and an exponent of length e

bits.6

Unfortunately, some numbers cannot be exactly represented using this scheme. An interesting

example is the number 0.1, which is an infinitely repeating decimal in base 2. Rounding error

occurs when this number is represented as a floating point value, since 0.1 must be represented in

a finite number of bits: 0.0001100110011 . . . Moreover, floating point arithmetic is not necessarily

exact even when the operands happen to be represented exactly. For example, when floating point

numbers are added or subtracted their exponents must first be normalized: The mantissa of the

smaller number is divided in two while increasing its exponent, until the two operands have the same

exponent. This division may cause low-order bits in the mantissa of the smaller number to be lost,

which results in rounding error. In addition, floating point operations are susceptible to overflow

and to underflow, when a number is larger (smaller) than the largest (smallest) number capable

of being represented. (Careful programmers can avoid some of these problems, with considerable

effort, by explicit use of multiple precision arithmetic through packages such as gmp [Lucas et al.,

2007]. Most functions and calculations in R, S-PLUS, and other statistical languages, however,

remain potentially susceptible.)
6There are some additional complexities involved with“sub-normal”numbers, infinite values, and the precise details

of how rounding and other errors are handled during computation. See Overton [2001] for a detailed description of

the IEEE floating point standard.
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As Knuth [1997, page 229] points out, one of consequences of the inaccuracies in floating point

arithmetic is that the associative law of arithmetic sometimes breaks down:7

(a⊕ b)⊕ c 6= a⊕ (b⊕ c) (2)

Also, as Higham [2002, Section 2.10] notes, limits on precision can interfere with the mathemat-

ical properties of functions. Although many elementary functions can be efficiently calculated to

any desired degree of precision, the necessity of returning the final results at a fixed precision leads

to situations in which the computed function may not have all of the mathematical properties of

the true function of interest. The requirements of preserving symmetries, mathematical relations

and identities, and correct rounding to the destination precision can conflict, even for elementary

functions.

3.3 Non-linear optimization errors

The effects of numerical and measurement error can both interact and accumulate. In the stan-

dard deviation examples above, rounding error had a large cumulative effect on the final result.

As another example, in linear regression, when several explanatory variables are near-collinear,

their individual parameter estimates are based on little information, and are thus less stable, to

measurement errors. The cumulative effects of numerical error are, however, more often visible in

non-linear estimations. And the accuracy of many non-linear estimates is, in addition, inherently

dependent on well-informed (or fortuitous) choice of computational methods and parameters that

are not included in the formal statistical model, such as: starting values, convergence tolerances,

iteration step sizes, and optimization algorithms.

Standard techniques for the optimization of likelihood functions (and other non-linear modeling

techniques) typically involve the following steps:

1. Choose (implicitly or explicitly) starting values for each parameter in the model.

2. Use analytic gradients (or numerically calculated differences) of the likelihood function, given

the current parameter values, to determine a “direction” to move.

3. Identify an appropriate step size.

4. Take a “step” in that direction, updating the parameter values accordingly.

5. Update the parameters accordingly in accordance with the step size and direction.
7Where ⊕ denotes the standard arithmetic operators.
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Steps two through five are repeated until the algorithm has converged to a stationary point, or

some other stopping criterion (such as a limit on the number of iterations) is satisfied.

Floating point errors can affect the process of nonlinear optimization by inducing discontinuities

in the optimization function or its gradients, and optimization algorithms sometimes converge to

such false optima. As Chaitin-Chatelin and Traviesas-Caasan [2004a] point out, the classical theory

of singularities breaks down under floating point arithmetic – pseudo-singularities (induced by

computational inexactness) form a generic set rather than a set of measure zero.

In addition, even without numerical error, non-linear models may be ill-conditioned with respect

to a particular dataset, and the estimates thus particularly sensitive to errors in variables. Finally,

unless the optimization surface is convex or unimodal, no computationally-tractable optimization

algorithm, even without error in variables or calculation, is guaranteed to converge to a global

optimum in a finite amount of time. Thus, when there are multiple local optima, the resulting

parameter estimates will be incorrect unless the starting values chosen are within the basin of

attraction of the global optimum.

4 Comparing model results

Because of the potential for computational and other errors, it is sometimes necessary to systemat-

ically compare two tables of output that purport to estimate the same statistical model using the

same data. accuracy provides a number of functions, introduced in version 1.19, to aid in these

comparisons. These tools are meant to be used when comparing results of statistical benchmarks

to output already known to be correct; when moving to a new version of a statistical package; or

when building an extension to an existing model. In each of these cases one may want to verify

that the new algorithm or implementation yields the same results as an alternative.

Model comparisons may also be used as a component of robustness testing, to check whether a

change in computational parameters (such as starting values) or implementations lead to different

results.

The simplest function, LRE(), computes the log relative error between two numbers (or vectors,

matrices, or arrays). This is roughly interpretable as the number of significant digits of agreement

between the first and second sets of numbers, with larger numbers indicating closer agreement.

An LRE value of 16 is the maximum achievable using standard IEEE double precision – and thus

indicates complete agreement within the standard storage precision of R and S-PLUS. Numbers less

than or equal to zero indicate complete disagreement between two numbers.

To illustrate the use of the LRE function, we compare the output of the function for the student t
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distribution to numerically correct benchmark output.8 First we compute the quantiles, by applying

the qt function to the probability values given in the test data:

R> data("ttst")

R> tqt <- qt(ttst$p, ttst$df)

The LRE function is invoked to compare the computed quantiles to the correct quantiles, which

are contained in another column of the benchmark data. This produces a table that shows how

many of the 10,000 qt evaluations tested were accurate to a given number of ’digits’: from 0 (totally

inaccurate) to 16 (as accurate as the benchmark can measure):

R> lrq <- LRE(tqt, ttst$invt)

R> table(round(lrq))

4 5 6 7 8 9 10 16

6 138 5180 1897 173 20 2 36

The function modelsCompare can be used to compare the results from a list of two or more

models. Its default behavior is to extract the estimated coefficient values from the model summary,

compare these sets of coefficients using the LRE function, and report for each coefficient the largest

of the differences between the first model given and each of the subsequent models in the list. (If,

for example one is interested only in both parameter estimates and standard errors, one can use

other functions to select the parameters of interest for use in modelsCompare.) For example, we

can use modelsCompare to see to what extent the use of mle optimization methods to solve the

same problem affects the estimated parameter coefficients:

First, run the models separately.

R> library("stats4")

R> x <- 0:10

R> y <- c(26, 17, 13, 12, 20, 5, 9, 8, 5, 4, 8)

R> ll <- function(ymax = 15, xhalf = 6) -sum(stats::dpois(y, lambda = ymax/(1 +

+ x/xhalf), log = TRUE))

R> fit1 <- mle(ll)

R> fit2 <- mle(ll, method = "Nelder-Mead")

R> fit3 <- mle(ll, method = "CG")

8This benchmark output was computed using two independent algorithms, using multiple precision arithmetic, for

more details see Altman, Gill and McDonald 2003, Section 3.2.5.
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R> fit4 <- mle(ll, method = "SANN")

R> fit5 <- mle(ll, method = "L-BFGS-B")

Then use modelsCompare to generate a report on the list of models.

R> modelsCompare(list(fit1, fit2, fit3, fit4, fit5), param.function = modelBetas)

ymax xhalf

2.466844 2.205808

We have also supplied a convenience function, modelsAgree, which uses modelsCompare to

provide a simple logical test that two models agree to a given number of digits for all coefficients.

For example, the following lines be used in “if” expressions to test that selected models agree to

two significant digits:

R> (min(as.vector(modelsCompare(list(fit1,

+ fit2), param.function = function(x) coef(summary(x))))) >=

+ 2)

[1] TRUE

R> modelsAgree(fit1, fit2, digits = 2, param.function = modelBetas)

[1] TRUE

While modelsCompare aids in ad hoc comparisons among different implementations of the same

model, often a more systematic approach is needed. The next section shows how to use accuracy

to systematically compare the results of the same model across slightly perturbed inputs.

5 Methods for sensitivity analysis through data perturbation

A straightforward way to test that a given model is stable with respect to some forms of numerical

and measurement error is to repeatedly introduce small random perturbations to the data, on

the order of the measurement error of the instruments used to collect it, and then recalculate

the estimate. When the range of estimates produced using this technique vary greatly the model

estimation is necessarily unstable, although the converse is not necessarily true. Where a model is

already known to be statistically appropriate, this type of sensitivity analysis will give the researcher

greater confidence that the their results are robust to numerical and measurement error.
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Data perturbations were described as a sensitivity test in early work by Beaton et al. [1976a,b],

who also developed a stability index based on this idea. Similar methods have been recommended

by Gill et al. [1981], Pregibon [1981], Cook [1986], Belsley [1991]. Belsley’s approach evaluates

collinearity in linear models regression models by adding random disturbances to suspected vari-

ables and assessing the consequences for parameter stability, thus exaggerating subtle effects to

make them more detectable. Hendrickx et al. [2004] extends Belsley’s collinearity diagnostic to

models of categorical variables. In separate work, Parker et al. [2000] formalize a variant of nu-

meric perturbations, which they call “Monte Carlo Arithmetic,” which replicates an analysis while

introducing uniformly distributed perturbations (in the form of random rounding) to all values in all

calculations. Extensive surveys of these methods and others are found in Altman et al. [2003] and

in Chaitin-Chatelin and Traviesas-Caasan [2004a,b]. Here we discuss the mathematical intuitions

behind the general methodology.

To see how perturbations affect the estimation process, consider two likelihood functions: a

standard form based on the observed data `(θ,x), and an identical specification but with perturbed

data `p(θ,xp). Here p denotes an individual perturbation scheme: p = [p1, p2, . . . , pn] ∈ <n applied

to the data: x = [x1, x2, . . . , xn] ∈ <n. One can show that comparing the two likelihood functions

is analogous to comparing an un-weighted likelihood function `(θ,x) =
∑

i `i(θ,xi) to a weighted

version `p(θ,xp) =
∑

i pi`i(θ,xi).

Alternatively, one could define the unperturbed likelihood function to be one in which there

are null perturbations or weights: `p0(θ,xp0) =
∑

i p0i`i(θ,xi), where p0 is simply a vector of

1’s. This provides two maximum likelihood vectors for comparison: θ̂ and θ̂p. Our approach is to

evaluate the range of θ̂ produced by multiple samples of xp generated by randomly production of p

disturbances across different datasets, x. This builds upon the very mechanical approach of Cook

[1986] who observes maximizing and minimizing perturbations, and roughly follows a simpler test

of logistic regression given by Pregibon [1981].

Although this evaluation methodology is not restricted to a particular class of likelihood func-

tions, Cook [1986] shows that for “well-behaved” functions there is a straightforward mapping

between perturbations of data and perturbations of the model 9 For example, normally-distributed

noise added to the data induces a corresponding small mean-shift in the likelihood curve [Laurent

and Cook, 1993].

Sensitivity analyses are invaluable because they can applied where benchmark tests and inde-

pendent confirmation are unavailable or inconclusive. Moreover, sensitivity analyses can be applied
9Cook 1986 does not explicitly enumerate these behavioral preconditions, but the analysis used does rely on

likelihood functions being twice continuously differentiable.
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to the actual data under study. Perturbation analyses can serve to draw attention to potential

problems in an algorithm, implementation, or model.

It is important to note, however, that sensitivity analysis cannot alone demonstrate whether a

particular set of estimates are correct, nor can they be used to improve estimates of “correct”values.

The mean of the range of parameter estimates produced by sensitivity is, in fact, likely to be slightly

biased – it is well known that explanatory variable measurement error introduces bias (although, as

above, this bias is slight and well-behaved, under certain conditions). Furthermore, in recognizing

the statistical problems with measurement error, we do not advise intentionally exacerbating it as

an estimation technique. Rather, the perturbations are a means of testing the reliability of the

estimates produced by a particular model and set data.

In summary, perturbation may introduce bias, but if the problem is well-conditioned and the

algorithm and implementation accurate, the bias should be small. Models that react dramatically

to modest levels of measurement error warrant caution. Furthermore, any bias introduced by

perturbations should be the same across different implementations of the model, thus perturbations

are one means of comparing the relative stability of competing computational approaches to model

estimation.

5.1 Running sensitivity analysis

The accuracy package makes perturbation-based sensitivity analysis simple to apply and to inter-

pret. For many models, running a sensitivity analysis involves only three steps.

1. Specify the data, and model.

2. Give this specification to sensitivity() to run.

3. Use summary() or plot(summary()) to display the sensitivity of the parameter estimates to

perturbations.

The sensitivity() command works automatically almost with any R and S-PLUS model,

including: lm, glm, and nls. All that is required is for the model to accept a data frame argument,

and to returns estimated coefficients through the standard coef() interface.

The example below shows how to conduct a sensitivity analysis of the classic analysis by using

sensitivity() and default noise

functions. For example, to run a sensitivity analysis, using the classic Longley [1967] dataset, a

well-studied example known to have multi-collinearity, execute the following command:
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R> plot(summary(plongley))
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Figure 1: Sensitivity Boxplots

R> plongley <- sensitivity(longley, lm, Employed ~ ., ptb.R = 500)

Sensitivity results can be expressed in plot format. In this plot, each boxplot shows, the distri-

bution of estimates across repeated perturbations for a single parameter using:

R> plot(summary(plongley))

And the resulting plot is shown in Figure 1

A tabular summary can reveal more information. The summary table compares the range of

parameter estimates produced under perturbation to the original, unperturbed, parameter esti-

mates. The table also highlights parameters that are particularly sensitive to perturbation – the

parameter estimate under perturbation exceeded the original estimate by more than +/- two times
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the original standard error in a disproportionate number of runs. For the Longley analysis, only

some parameters are unstable:

R> print(summary(plongley), digits = 1)

[1] "Sensitivity of coefficients over 500 perturbations:"

Perturb Est. (Orig. Est.) (Orig. Stderr) 2.5% 97.5% [Unstable]

(Intercept) -3e+03 -3e+03 9e+02 -5e+03 -1e+03 *

GNP.deflator 1e-02 2e-02 8e-02 -1e-01 1e-01

GNP -3e-02 -4e-02 3e-02 -8e-02 4e-02 *

Unemployed -2e-02 -2e-02 5e-03 -3e-02 -9e-03 *

Armed.Forces -1e-02 -1e-02 2e-03 -1e-02 -6e-03 *

Population -6e-02 -5e-02 2e-01 -4e-01 3e-01

Year 2e+00 2e+00 5e-01 6e-01 2e+00 *

In comparison, the “Thurber” example from the National Institute of Standards and Technology

(NIST) statistical benchmark datasets [Rogers et al., 1998], immediately below, exhibits instability

in all parameters, while the anorexia model following it is entirely insensitive to perturbation:

R> if (require("NISTnls", quietly = TRUE)) {

+ data("Thurber", package = "NISTnls")

+ fm1 <- nls(y ~ (b1 + x * (b2 + x * (b3 + b4 * x)))/(1 + x *

+ (b5 + x * (b6 + x * b7))), data = Thurber, trace = FALSE,

+ start = c(b1 = 1000, b2 = 1000, b3 = 400, b4 = 40, b5 = 0.7,

+ b6 = 0.3, b7 = 0.03))

+ thurber.out <- sensitivity(Thurber, nls, y ~ (b1 + x * (b2 +

+ x * (b3 + b4 * x))/(1 + x * (b5 + x * (b6 + x * b7)))),

+ start <- c(b1 = 1000, b2 = 1000, b3 = 400, b4 = 40, b5 = 0.7,

+ b6 = 0.3, b7 = 0.03))

+ print(summary(thurber.out), digits = 1)

+ }

If error functions are not specified, a default set of error function will be selected based on the

measurement type of each variable: continuous, ordered, or unordered. Continuous variables, by

default are subject to a small amount of mean-zero component-wise uniformly distributed noise,

which is typical of instrumentation-driven measurement error. Ordered factors are assigned a
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small probability of having observations reclassified to the neighboring classification, and unordered

factors have a small probability of being reassigned to another legal value.

Alternatively, one can specify the error functions to use, or use one of many already available.

The accuracy package comes with a wide range of functions to add noise to continuous variables

and to randomly reclassify factor variables.10

If measurement errors are correlated across variables, one can use a matrix-oriented perturbation

function, as illustrated below, returning to the Longley dataset:

R> if (require(MASS, quietly = TRUE)) {

+ plongleym <- sensitivity(longley, lm, Employed ~ ., ptb.rangen.ismatrix = TRUE,

+ ptb.ran.gen = function(x, size = 1) {

+ mvrnorm(n = dim(x)[1], mu = rep(0, dim(x)[1]), Sigma = matrix(0.9,

+ nrow = dim(x)[1], ncol = dim(x)[1])) * size +

+ x

+ })

+ }

Your choice of error functions should reflect the measurement error model that is appropriate

to the data you are using. In numerical analysis, uniform noise is often applied, since this is what

would result from simple rounding error. Normal random noise is commonly used in statistics,

under the assumption that measurement error is the sum of multiple independent error processes.

In addition, when normal perturbations are used, the result can be interpreted, for many models,

as equivalent to the results of running a slightly perturbed model on unperturbed data. In some

cases, like discrete or ratio variables, other forms of noise are necessary to preserve the structure

of the problem. [see, for example Altman et al., 2003, section 16.3]. The magnitude of the noise

is also under the control of the researcher. Most choose a magnitude roughly proportionate to

the researcher’s qualitative estimate of the underlying measurement error in the data. Noise is

usually adjusted to the size of each component, since this better preserves the structure of the

problem, however in some cases the underlying measurement error model may require norm-wise

scaling of the noise. For more information on noise distributions and measurement error models

see , e.g., Belsley [1991], Chaitin-Chatelin and Traviesas-Caasan [2004a], Cheng and Ness [1999],

Fuller [1987], Carroll et al. [1995].
10The perturb package for collinearity diagnosis by Hendrickx et al. [2004](which was developed for R after the

accuracy package) provides additional methods for randomly reclassifying factors that via its reclassify() function.

This function can be used in conjunction with accuracy. Hendrickx, et. al also provide a number of collinearity

diagnostics, including one based on data perturbations.
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We recommend that users run sensitivity multiple times with different noise specifications.

However, in our practical experience with social science analyses, the error model choice does not

tend to affect the substantive conclusions from the sensitivity analysis.

Some researchers omit perturbations to outcome variables, since, in terms of statistical theory,

mean-zero measurement error on outcome variables (as opposed to explanatory variables) contribute

only to increased variance in estimates, not bias. While this attitude is justified in the context of

statistical theory, it is not similarly justified in the computational realm. If the estimation of a model

is computationally unstable, errors in the outcome variable may have large and unpredictable biases

on the model estimate. Hence, the conservative default in our package is to subject all variables to

perturbation, although options are available to completely control the form and magnitude of all

perturbations.

Consider this example, which shows a sensitivity analysis of the anorexia analysis described

in Venables and Ripley [2002]. In this case, for illustration,11 we leave the dependent variable

unperturbed, by assigning it the identity error function.

R> data("anorexia", package = "MASS")

R> panorexia <- sensitivity(anorexia, glm, Postwt ~ Prewt + Treat +

+ offset(Prewt), family = gaussian, ptb.R = 500, ptb.ran.gen = list(PTBi,

+ PTBus, PTBus), ptb.s = c(1, 0.01, 0.01))

R> print(summary(panorexia), digits = 1)

[1] "Sensitivity of coefficients over 500 perturbations:"

Perturb Est. (Orig. Est.) (Orig. Stderr) 2.5% 97.5% [Unstable]

(Intercept) 49.8 49.8 13.4 48.4 51.2

Prewt -0.6 -0.6 0.2 -0.6 -0.5

TreatCont -4.1 -4.1 1.9 -4.2 -4.0

TreatFT 4.6 4.6 2.1 4.4 4.7

The anorexia example above is relatively stable. Most of the parameters estimates vary little

over repeated perturbations.

Finally, if a R or S-PLUS model does not take a data argument or does not return coefficients

through the coef method, it is usually only a matter of a few minutes to write a small wrapper

that calls the original model with appropriate data, and that provides a coef method for retrieving

the results. (Alternatively, you might to choose to run such models in Zelig, as described in the
11In fact, applying the default perturbation to the dependent variable affects this model only slightly.
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next section.)

For example, the mle function for maximum-likelihood estimation does not have an explicit

data option. Instead, it receives data implicitly through the log-likelihood function, ll, passed into

it. To adapt it for use in sensitivity one simply constructs another function that accepts data

and a log-likelihood function separately, constructs a temporary log-likelihood function with the

data passed in the environment, and then calls mle with the temporary function:

R> mleD <- function(data, lld, ...) {

+ f <- formals(lld)

+ f[1] <- NULL

+ ll <- function() {

+ cl <- as.list(match.call())

+ cl[1] <- NULL

+ cl$data <- as.name("data")

+ do.call(lld, cl)

+ }

+ formals(ll) <- f

+ mle(ll, ...)

+ }

Finally, construct the log-likelihood function to accept data. As in this example, which is based

on the documented example in the Stats4 package:

R> llD <- function(data, ymax = 15, xhalf = 6) -sum(stats::dpois(data[[2]],

+ lambda = ymax/(1 + data[[1]]/xhalf), log = TRUE))

5.2 Sensitivity Analysis of Zelig Models

Zelig[Imai et al., 2007] is an R package that can estimate and help interpret the results of a large

range of statistical models. Zelig provides a uniform interface to these models that accuracy utilizes

to perform sensitivity analyses. In addition, accuracy can also be used to perform sensitivity

analyses of the robust alternatives, simulated predicted values, expected values, first differences,

and risk ratios that Zelig produces for all the models it supports.12 So, using these packages together

provides a convenient means to analyze the sensitivity of predicted values to measurement error.
12Zelig also integrates nonparametric matching methods as an optional preprocessing step. Thus accuracy supports

sensitivity analysis of models subject to such pre-processing as well.
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To illustrate, we replicate Longley’s analysis, using zelig() (instead of lm) to run the OLS

model, and the convenience function sensitivityZelig to run the sensitivity analysis:
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R> data(longley)

R> goodZelig <- require(Zelig, quietly = TRUE) && (!inherits(try(zelig(Employed ~

+ GNP, "ls", longley, cite = FALSE), silent = TRUE), "try-error"))

##

## Zelig (Version 3.4-5, built: 2009-03-13)

## Please refer to http://gking.harvard.edu/zelig for full

## documentation or help.zelig() for help with commands and

## models supported by Zelig.

##

## Zelig project citations:

## Kosuke Imai, Gary King, and Olivia Lau. (2009).

## ``Zelig: Everyone's Statistical Software,''

## http://gking.harvard.edu/zelig.

## and

## Kosuke Imai, Gary King, and Olivia Lau. (2008).

## ``Toward A Common Framework for Statistical Analysis

## and Development,'' Journal of Computational and

## Graphical Statistics, Vol. 17, No. 4 (December)

## pp. 892-913.

## To cite individual Zelig models, please use the citation format printed with

## each model run and in the documentation.

##

R> if (goodZelig) {

+ zelig.out <- zelig(Employed ~ GNP.deflator + GNP + Unemployed +

+ Armed.Forces + Population + Year, "ls", longley)

+ perturb.zelig.out <- sensitivityZelig(zelig.out)

+ }

How to cite this model in Zelig:

Kosuke Imai, Gary King, and Oliva Lau. 2007. "ls: Least Squares Regression for Continuous Dependent Variables" in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software," http://gking.harvard.edu/zelig
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Just as above, summary and plot(summary()) can be used summarize the sensitivity of the

model coefficients. In addition, we can use the Zelig methods setx and sim to simulate various

quantities of interest. And when summary and plot are used, they will display a sensitivity analysis

of the predicted values.

For example, the code below generates predictions of the distribution of the explanatory variable,

‘Employed’, around the point where ‘Year’ equals 1955 and the other variables are at their means,

and creates a profile plot of the predicted distribution of the explanatory variable.

• This sets the values of the explanatory variables to be used for the predictive simulation:

R> if (goodZelig) {

+ setx.out <- setx(perturb.zelig.out, Year = 1955)

+ }

• This performs the simulations, using the perturbed models:

R> if (goodZelig) {

+ sim.perturb.zelig.out <- psim(perturb.zelig.out, setx.out)

+ }
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• This reports the range of predicted values, under perturbations. This can be thought of as predic-

tions that are “robust” to perturbations, in an informal sense via a summary, and accompanying

plot:

R> if (goodZelig) {

+ summary(sim.perturb.zelig.out)

+ }

**** 50 COMBINED perturbation simulations

Model: ls

Number of simulations: 1000

Values of X

(Intercept) GNP.deflator GNP Unemployed Armed.Forces Population Year

1947 1 101.7 387.7 319.3 260.7 117.4 1954

Expected Values: E(Y|X)

mean sd 2.5% 97.5%

1947 65.31 0.1156 65.07 65.53

R> if (goodZelig) {

+ plot(sim.perturb.zelig.out)

+ } else {

+ plot(1, 1)

+ }

The resulting plot is shown in Figure 2.

6 More accurate computing

When a model is shown to be sensitive to perturbations, there are a number of possible culprits,

including multiple optima, ill-conditioning, poor random number generation, and rounding error.

Although there is no single tool that can identify or fix these root causes, accuracy offers a number

of additional helpful tools for dealing with these sorts of issues. We discuss these in the following
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R> if (goodZelig) {

+ plot(sim.perturb.zelig.out)

+ } else {

+ plot(1, 1)

+ }

**** 50 COMBINED perturbation simulations

64.6 64.8 65.0 65.2 65.4 65.6 65.8

0
2

4

Expected Values: E(Y|X)

D
en

si
ty

Figure 2: Posterior of dependent variable across perturbations

sections.

6.1 True random numbers through entropy collection

‘Random’ numbers aren’t. The numbers provided by routines such as runif() are not genuinely

random. Instead, they are pseudo-random number generators (PRNG’s), deterministic processes

that create a sequence of numbers. Pseudo-random number generators start with a single “seed”

value (specified by the user or based on a default value) and generate a repeating sequence with

a certain fixed length, or ‘period’, p. This sequence is statistically similar, in limited respects, to

random draws from a uniform distribution.

The earliest PRNG’s, which are still in use in some places, and which were used in early versions

of R, come from the family of Linear Congruential Generators (LCGs), defined as:13

LCG(a,m, s, c) ≡

x0 = s,

xn = (axn−1 + c) mod m. (3)

13All parameters are integers.
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This function generates a sequence of numbers between [0,m−1] (in practice x is usually divided

by m to yield numbers between zero and one) which appears to be, using some tests, uniformly

distributed. Other PNRG’s are more complex, but share with the LCG the fundamental properties

of determinism and periodicity. See Gentle [1998] for an extensive treatment of modern PRNG’s

and theory.

R provides several high-quality PRNG’s natively, and packages such as gsl, rstream and rsprng

which can be used to generate quasi-random number streams, and concurrent PRNG streams.

Regardless of the particular PRNG algorithm used, however, a PRNG cannot perfectly mimic a

random sequence. And, in fact, there is no complete theory to describe the domains for which

PRNG and true random sequences can be considered interchangeable. In addition, the theory on

which PRNG’s are based assumes that the seed itself is truly random.

The runifT() routine is different from other random number generators in R. It delivers true

random numbers based on entropy collected from external physical sources of randomness.

Three sources of randomness are currently supported. On Unix and Linux system, the kernel

gathers environmental noise from device drivers and other sources into a system entropy pool. This

pool can be accessed through the ‘/dev/random’ pseudo-device. Alternatively, the “Hotbits” or

“random.org” web-based entropy servers, run by FourmiLab and the Distributed Systems Group at

Trinity college (respectively), provide random bytes collected from on physical noise sources.

Using any of these sources, accuracy retrieves chunks of random bits and stores them in a local

pool for later use. This pool is used as necessary to satisfy calls to runifT() and resetSeed(), and

is automatically refreshed from the external sources when empty. If external sources are unavailable,

the pool is refreshed using standard PRNG’s.

Entropy collection is relatively slow compared to PRNG’s. So, these routines are most practical

for generating either small numbers of very high quality random numbers (e.g. for cryptography)

or for seeding (and regularly reseeding) PRNG’s. The function resetSeed() sets the seed for

the standard PRNGś using true random bits. The runifS() automates this process further, by

reseeding runif() with random values, periodically, to improve the random properties of the resulting

sequence:
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For illustration we implement a test of randomness [Marsaglia and Tsang, 2002]:

R> birthday <- function(x, n = 2^20) {

+ spacings <- diff(trunc((x * .Machine$integer.max)%%n))

+ tab <- table(spacings)

+ tab <- tab[which(tab > 1)]

+ chisq.test(sample(tab, 200, replace = T))

+ }

This randomly resets the seed used by default PRNG:

R> old.seed <- resetSeed()

R> y = runif(1e+06)

R> birthday(y)

Chi-squared test for given probabilities

data: sample(tab, 200, replace = T)

X-squared = 35.36, df = 199, p-value = 1

Alternately, this resets the seed for the PRNG’s after every 10000 draws:

R> y <- runifS(1e+06)

R> birthday(y)

Chi-squared test for given probabilities

data: sample(tab, 200, replace = T)

X-squared = 33.24, df = 199, p-value = 1

For most applications, researchers using PRNG’s should simply substitute runifS in for runif.

For cryptographic applications, using runifT is appropriate.

6.2 Tests for global optimality

The estimation of many statistical models rests on finding the global optimum to a user-specified

non-linear function. R provides a number of tools for such estimations, including nlm(), nls(),

mle(), optim() and constrOptim().

All of these functions rely on local search algorithms, and the results they return may depend
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on the starting point of the search. Maximum likelihood functions, non-linear-regression models,

and the like, are not guaranteed to be globally convex in general. And even where convexity is

guaranteed by statistical theory, inaccuracies in statistical computation can sometimes induce false

local optima (discontinuities that may cause local search algorithms to converge, or at least stop).

A poor or unlucky choice of starting values may cause a search algorithm to converge at a local

optimum, which may be far from the real global optimum of the function. Inferences based on the

values of the parameters at the local optimum will not be correct.

Knowing when a function has reached its true maximum is something of an art. While the

plausibility of the solution in substantive terms is often used as a check, relying solely on the

expected answer as a diagnostic might bias researchers toward Type I errors, rejecting the null

hypothesis when it is true. Diagnostic tests are therefore useful to provide evidence that the

computed solution is the true solution. If such tests indicate that the global optimum has not been

reached, the user may consider a closer examination of starting values, applying an alternative

optimization algorithm, and/or heuristic designed for non-smooth optimization problems, such as

the simulated annealing option for optim(), or the optimizers provided by the gafit [Tendys, 2002],

genalg [Willighagen, 2005], rgenoud [Jr. and Sekhon, 2007] modules.

A number of strategies related to the choice of starting values have been formalized as tests or

global optimality. In this package we implement two. The ‘Starr’ test and the ‘Dehaan’ test.14

The intuition behind the Starr test statistic is to run the optimization from different starting

points to observe ‘basins of attraction’, and then to estimate the number of unobserved basins of

attraction from the number of observed basins of attraction. The greater the number of observed

basins of attraction, the lower the probability that a global optimum has been located. This idea

has been attributed to Turing [1948], and the test statistics was developed by Starr [1979]:

V2 =
S

r
+

2D
r (r − 1)

. (4)

Here V2 is the probability a convergence point has not been observed, and r is the number of

randomly chosen starting points. S is the number of convergence points that were produced from

one (or a Single) starting value and D is the number of convergence points that were produced

from two (or Double) different starting values.

Finch et al. [1989] demonstrate the value of the statistic by analyzing a one parameter equation

on a [0, 1] interval for r = 100. While the proposed statistic given by the above equation is

compelling, their example is similar to an exhaustive grid search on the [0, 1] interval. (Starr’s
14In addition to these tests, the R user may also wish to investigate the Bhat [Luebeck, 2005] package, which can

generate diagnostic profile likelihood plots.
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result is further generalizable for triples and higher order observed clumping of starting values into

their basins of attraction, but Finch, Mendell, and Thode assert that counting the number of singles

and doubles is usually sufficient.)

The statistic may be infeasible to compute for an unbounded parameter space with high dimen-

sionality. However, the intuition behind the statistic can still be applied soundly in these cases. If

multiple local optima are identified over the course of a search for good starting values, a researcher

should not simply stop once an apparent best fit has been found, especially if there are a number

of local optima which have basins of attraction that were identified only once or twice. Our imple-

mentation of the Starr test provides a ready-to-use-interface that can be easily incorporated into a

search of the parameter space for good optimization starting values.

For computationally intensive problems, another test, proposed by Veall [1990], drawing upon

a result presented by de Haan [1981], may be more practical. The de Haan/Veall test relies on

sampling the optimization function itself rather than identifying basins of attraction. A confidence

interval for the value of the likelihood function’s global optimum is generated from the points

sampled from the likelihood surface. This procedure is much faster than the Starr test because the

likelihood function is calculated only once for each trial, as opposed to running the optimization

algorithm many times to identify basins of attraction. As with starting value searches, researchers

are advised to increase the bounds of the search area and the number of trials if the function to be

evaluated has a high degree of dimensionality or a high number of local optima have been identified.

Veall suggests that by using a random search and applying extreme asymptotic theory, a con-

fidence interval for the candidate solution can be formulated. The method, according to Veall (pg.

1460) is to randomly choose a large number, n, of values for the parameter vector using a uniform

density over the entire parameter space. Call the largest value of the evaluated likelihood function

L1 and the second largest value L2. The 1− p confidence interval for the candidate solution, L
′
, is

[L1, L
p] where:

Lp = L1 +
L1 − L2

p−1/α − 1
(5)

and α = k/2, where k is some function that depends on n such that k(n)/n → 0, as k(n), n → ∞
(a likely candidate is k =

√
n).

As Veall (pg. 1461) notes, the bounds on the search of the parameter space must be large

enough to capture the global maximum and n must be large enough to apply asymptotic theory.

In Monte Carlo simulations, Veall suggests that 500 trials are sufficient for rejecting that a local

optimum is not the a priori identified global optimum.
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Examples of applying both the Dehaan and Starr tests are below:

R> data("BOD")

R> stval <- expand.grid(A = seq(10, 100, 2), lrc = seq(0.5, 0.8,

+ 0.025))

R> stval <- stval + cbind(runif(dim(stval)[1]), runif(dim(stval)[1]) *

+ 0.01)

R> llfun <- function(A, lrc) -sum((BOD$demand - A * (1 - exp(-exp(lrc) *

+ BOD$Time)))^2)

R> lls <- NULL

R> for (i in 1:nrow(stval)) {

+ lls <- rbind(lls, llfun(stval[i, 1], stval[i, 2]))

+ }

R> fm1 <- nls(demand ~ A * (1 - exp(-exp(lrc) * Time)), data = BOD,

+ start = c(A = 20, lrc = log(0.35)))

R> ss <- -sum(resid(fm1)^2)

R> dehaan(lls, ss)

[1] TRUE

R> llb <- NULL

R> for (i in 1:nrow(stval)) {

+ llb <- rbind(llb, coef(nls(demand ~ A * (1 - exp(-exp(lrc) *

+ Time)), data = BOD, start = c(A = stval[i, 1], lrc = stval[i,

+ 2]))))

+ }

R> starr(llb)

[1] 0

In the examples above, both tests report positive results. The researcher can thus be more

confident that nls has converged to the global optimum. In the next section we examine the case

where the estimation of a model has converged, but yields a Hessian that cannot be inverted.
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6.3 A generalized Cholesky method

We include in the accuracy package is an implementation of the Schnabel and Eskow [1990] matrix

Cholesky decomposition algorithm as implemented in Gill and King [2004]. Essentially this asks

the question, if my Hessian (or any other matrix) cannot be decomposed by the Cholesky algorithm

for low-level numerical reasons (or perhaps other reasons), then what is the smallest amount I need

to change the matrix to make it decomposable. Recall that the Cholesky decomposition is defined

as V in the decomposition C = V′V for the matrix C. Of course this idea of “change” has for the

algorithm multidimensional consequences and the elegance of the Schnabel and Eskow approach is

that takes this into account over the more primitive solutions whereby changes can impose greater

consequences down the procedure [Gill and Murray, 1974]. Their method, based on Gerschgorin

bounds, is implemented in our function sechol.

The generalized inverse is a commonly used technique in statistical analysis, but the generalized

Cholesky has not, to our knowlesge, before been used for statistical purposes, prior to its appearance

in Altman, Gill, & McDonald 2003. When the inverse of the negative Hessian does not exist, we

suggest the following procedure: Create a pseudo-variance matrix and use it, in place of the inverse,

in an importance resampling scheme. In brief, applying a generalized inverse (when necessary, to

avoid singularity) and generalized Cholesky decomposition (when necessary, to guarantee positive

definiteness) together often produce a pseudo-variance matrix for the mode that is a reasonable

summary of the curvature of the posterior distribution. This method is developed and analyzed in

detail in Gill and King [2004], here we provide a brief sketch.

The Gill/Murray Cholesky factorization of a singular matrix C, adds a diagonal matrix E

such that the standard Cholesky procedure is defined. Unfortunately it often increments C by an

amount much larger than necessary, providing a pseudo-Cholesky result that is further away from

the intended result. Schnabel and Eskow [1990] improve on the C+E procedure of Gill and Murray

by applying the Gerschgorin Circle Theorem to reduce the infinity norm of the E matrix. The

strategy is to calculate delta values that reduce the overall difference between the singular matrix

and the incremented matrix. This improves the Gill/Murray approach of incrementing diagonal

values of a singular matrix sufficiently that Cholesky steps can be performed.

This technique is complex to describe but simple to use. The following is an example of its use

with a singular matrix:
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R> S <- matrix(c(2, 0, 2.5, 0, 2, 0, 2.5, 0, 3), ncol = 3)

R> sechol(S)

[,1] [,2] [,3]

[1,] 1.414 0.000 1.767767

[2,] 0.000 1.414 0.000000

[3,] 0.000 0.000 0.004262

attr(,"delta")

[1] 1.817e-05

Surprisingly, the matrix resulting from the generalized inverse and Cholesky combination is not

usually ill-conditioned. In addition, although this is a “pseudo” rather than “approximate” variance

matrix (because the approximated matrix does not exist), the calculations make only small changes

in the resulting variance matrix to achieve positive definiteness. We then take random draws

from the exact posterior using importance resampling, but recommend two diagnostics to correct

potential problems with this procedure.

A diagnostic often used to detect a failure of importance resampling is a high rejection rate of

candidate values of θ̃, often due to low values of the importance ratio. In this case the procedure

will run for a long time, and even though the procedure may eventually yield sufficient sample

size, this can be very frustrating and time-consuming. However, a long run time may warn that

the approximation distribution fails to capture a range of values of θ that have posterior density

systematically different from the rest. Since the normal has support over (−∞,∞), the potential

for this problem to occur vanishes as the number of simulations grows. Therefore another diagnostic

check computes a very large number of simulations with an artificially large variance matrix, such

as the pseudo-variance matrix multiplied by a positive factor, which we label F . The more diffuse

coverage can identify missed values, however, like all related simulation procedures, it is impossible

to cover the full continuum of values that θ can take, and the procedure can miss subtle features

like pinholes in the surface, very sharp ridges, or other eccentricities. Similar to our examination

of likelihood maximia, the difficulty in identifying such features is most pronounced for complex,

multi-dimensional problems.

6.3.1 Uninvertible Hessian matrices

As an example, consider the effect of sechol on the progressively ill-conditioned matrices below.
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• This matrix is invertible, so both sechol yields the same results as chol:

R> S <- matrix(c(2, 0, 2.4, 0, 2, 0, 2.4, 0, 3), ncol = 3)

R> print(try(chol(S)))

[,1] [,2] [,3]

[1,] 1.414 0.000 1.6971

[2,] 0.000 1.414 0.0000

[3,] 0.000 0.000 0.3464

R> sechol.out <- sechol(S)

R> t(sechol.out) %*% sechol.out

[,1] [,2] [,3]

[1,] 2.0 0 2.4

[2,] 0.0 2 0.0

[3,] 2.4 0 3.0

• This matrix is not invertible, so sechol works, and chol does not

R> S <- matrix(c(2, 0, 10, 0, 2, 0, 10, 0, 3), ncol = 3)

R> print(try(chol(S)))

[1] "Error in chol.default(S) : \n the leading minor of order 3 is not positive definite\n"

attr(,"class")

[1] "try-error"

R> sechol.out <- sechol(S)

R> t(sechol.out) %*% sechol.out

[,1] [,2] [,3]

[1,] 2 0 10

[2,] 0 2 0

[3,] 10 0 50

It should be clear that the meaning of ‘works’, as above, depends greatly on the extent of the
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singularity in the matrix. More generally, consider the example from Altman et al. [2003]:

VarSigma1 =


2 0 2.4

0 2 0

2.4 0 3

 . (6)

The Cholesky decomposition of this matrix is given by:

chol(VarSigma1) =


1.41 0 1.69

0 1.41 0

0 0 0.35

 . (7)

The procedure works since this matrix is positive definite. Suppose now that we change the values

on the corners have been changed from 2.4 to 2.5. Now the matrix is nonpositive definite and we

cannot calculate the Cholesky decomposition in the normal manner. However, sechol returns

GCHOL(VarSigma2) =


1.58 0 1.58

0 1.41 0

0 0 0.71

 , (8)

which preserves the sense that only a small change (2.4 to 2.5) has been made.

6.3.2 Example: prior elicitation for logit regression

Bayesian applications of the logit model for dichotomous outcomes are quite common and often use

rather vague priors. Suppose, instead, that we want to elicit prior information from subject matter

experts and include this explicitly qualitative information in the statistical model. In this way the

Bayesian posterior distribution is a compromise between expert knowledge and the data at hand.

Arguments for this approach can be found in Gill and Walker [2005].

Begin with the basic logit regression model conforming to the standard assumptions, defining

terms conventionally:

P (Yi = 1|X) = [1 + exp(Xiθ)]−1 (9)

, where X is an n × p, rank p matrix of explanatory variables with a leading column of ones for

the constant, θ is a p× 1 vector of coefficients, Y is an n× 1 vector of observed outcome variable

values, and ε is a n×1 vector of errors. The Bayesian approach to uninformed priors for this model

often specifies that p(θ) ∝ c over (−∞,∞) for an arbitrary constant value c.

To elicit prior judgments for the prior, experts need to be queried in such a way some parametric

form for the prior on θ can be stipulated that conforms to their assessments. Kadane et al.
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[1980] suggest the following approach: Establish j design points of the explanatory variable vector,

X̃1, X̃2, . . . , X̃j , such that these represent interesting cases spanning the range of the p variables.

The assessors are asked to study each of the X̃i scenarios and produce Y∗i , an expected outcome

variable (zero or one) corresponding to the design point cases. Such a value represents a typical

response to the hypothesized design point, X̃i. For a single expert, the result is a “stacked” design

matrix from collecting the X̃i values, and an expected outcome variable vector from collecting the

Yi values.

An elicited prior point estimate for θ is produced by running a logit model as if these were

conventional data. However, if the researcher does not ensure that the design matrix leads to a

positive definite Hessian matrix (the matrix of second derivatives at the MLE point estimates) in

the estimation process, then she may proceed to elicit responses from the expert before noticing

that the Hessian cannot produce a variance/covariance matrix for the estimated coefficients (there

is nothing in the definition of interesting X̃i cases that ensures this). Since these experts are often

busy and difficult to schedule, repeating the process may not be possible. Obviously, the matrix

can be reconfigured by deleting cases, but this leads to a loss of information and potential biases.

Consider the following simple case from education policy. The California Department of Education

(CDE) collected testing data for unified school districts and collections of schools that logically

constitute similar units (n = 303) in 1998 by requiring students in the 2nd through 11th grade

to take standardized tests for a variety of subjects including mathematics, which we will analyze

here, at each grade level (the Stanford 9). The raw test scores are replaced with a binary outcome

indicating whether or not the student exceeded the national median, summed by district, as a way

to deal with large measurement error (this is also a criteria for evaluating administrators). The

following design matrix (with insufficient variation) is stipulated:

X′ =



PercentLowIncome 10 30 25 55 50 40 30 15

MeanTeacherExperience 5 30 15 10 17 15 15 22

Per − PupilSpending 5002 5000 5000 5000 5000 5000 5000 5000

PercentMinorityTeachers 21 22 22 22 22 22 22 21

ClassSize 20 20 21 22 18 20 24 18


.

Elicitations are produced by an expert in education policy, giving the following vector: Y =

[1, 0, 0, 0, 1, 1, 0, 1] (test scores are heavily influenced by demographics in this policy environment).

These numbers are admittedly synthetic but are contrived to show how easy the following problem

emerges.
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Running a standard probit model through glm produces a warning and nonsensical estimates:

R> glm(Y.vec ~ X.mat[, -1], family = binomial(link = "probit"))

Call: glm(formula = Y.vec ~ X.mat[, -1], family = binomial(link = "probit"))

Coefficients:

(Intercept) X.mat[, -1]Percent Low Income

-2.04e+04 2.03e-01

X.mat[, -1]Mean Teacher Experience X.mat[, -1]Per-Pupil Spending

-7.42e-01 4.07e+00

X.mat[, -1]Percent Minority Teachers X.mat[, -1]Class Size

9.05e+00 -9.87e+00

Degrees of Freedom: 7 Total (i.e. Null); 2 Residual

Null Deviance: 11.1

Residual Deviance: 3e-10 AIC: 12
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One gets somewhat farther constucting the probit likelihood and using optim:

R> probit.log.like <- function(beta, X, Y) {

+ -sum(log(1 - pnorm(X %*% beta)) * (1 - Y)) - sum(log(pnorm(X %*%

+ beta)) * Y)

+ }

R> dd.log.like <- function(beta, X, Y) {

+ lambda.0 <- (1 - Y) * (-1 * dnorm(X %*% beta)/(1 - pnorm(X %*%

+ beta)))

+ lambda.1 <- Y * dnorm(X %*% beta)/(pnorm(X %*% beta))

+ (-sum(lambda.0 * (lambda.0 + X %*% beta) * (1 - Y)) * t(X) %*%

+ X - sum(lambda.1 * (lambda.1 + X %*% beta) * (Y)) * t(X) %*%

+ X)

+ }

R> star.prob <- optim(fn = probit.log.like, par = rep(0, ncol(X.mat)),

+ X = X.mat, Y = Y.vec)

R> star.pars = star.prob$par

R> names(star.pars) = dimnames(X.mat)[[2]]

R> star.pars

Constant Percent Low Income Mean Teacher Experience

1.55672 0.03890 -0.34391

Per-Pupil Spending Percent Minority Teachers Class Size

0.01009 0.99277 -3.42488
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However, the resulting Hessian matrix is singular and cannot be inverted:

R> star.hess <- dd.log.like(star.prob$par, X.mat, Y.vec)

R> matrix(star.hess, nrow = 6)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] -2.189 -69.79 -35.31 -10948 -47.62 -44.61

[2,] -69.790 -2702.65 -1123.48 -348955 -1528.53 -1430.01

[3,] -35.305 -1123.48 -676.82 -176530 -769.33 -710.76

[4,] -10947.973 -348954.67 -176529.98 -54742603 -238118.00 -223064.75

[5,] -47.621 -1528.53 -769.33 -238118 -1036.17 -971.04

[6,] -44.611 -1430.01 -710.76 -223065 -971.04 -916.57

R> strsplit(try(solve(star.hess)), ":")

[[1]]

[1] "Error in solve.default(star.hess) "

[2] " \n system is computationally singular"

[3] " reciprocal condition number = 1.93887e-16\n"

Using the Moore-Penrose generalized inverse we can produce a serviceable variance/covariance

matrix but it is not positive definite and we cannot therefore apply the Cholesky decomposition to

get usable standard errors:

R> library("MASS")

R> star.vc <- ginv(-star.hess)

R> strsplit(try(chol(star.vc)), ":")

[[1]]

[1] "Error in chol.default(star.vc) "

[2] " \n the leading minor of order 5 is not positive definite\n"
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Fortunately the Schnabel and Eskow variant of the Cholesky decomposition (implemented and

discussed in Gill and King [2004]) is able to do this:

R> round(sechol(star.vc), 4)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0 -0.0057 0.0486 -0.0018 0.0392 0.3707

[2,] 0 0.0459 0.0020 -0.0002 -0.0004 -0.0137

[3,] 0 0.0000 0.0883 0.0001 -0.0060 -0.0772

[4,] 0 0.0000 0.0000 0.0001 -0.0002 -0.0020

[5,] 0 0.0000 0.0000 0.0000 0.0009 0.0000

[6,] 0 0.0000 0.0000 0.0000 0.0000 0.0010

attr(,"delta")

[1] 8.695e-07

Obviously this highlights a severe problem (i.e., the first column), but it gives useful information

for the other dimensions. Since the first column is for the constant, we can replace zero with an

arbitrary positive standard error in the prior assignment (for instance, from a modified problem)

without causing much controversy.

So now we have plausible standard errors for all terms but the constant, without having to

re-specify the model completely:

SE = [0.0459, 0.0883, 0.0001, 0.0009, 0.0009] (10)

In this case the glm function in R provided results but with a warning that the fitted values are

very close to zero or one where it is very difficult (numerically) to get measures of curvature. This is

because the right-hand-side of the GLM specification is very large in absolute value pushing way into

the probit function as it asymptotically approaches the limit. As such, a conventional estimation

does not exist since it is not possible perfectly separate the two possible outcomes [Venables and

Ripley, 2002].

This estimation process is not the actual Bayesian production of a posterior, but is designed to

extract qualitative information into a prior specification. From here, the researcher may impose a

parametric assumption (normal, t, etc.) and use these values, or may engage in the more involved

process of stipulating something nonparametric.
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7 Obtaining the software

In this article, we have discussed a number of tools and methods for assessing the sensitivity of

complex models to numerical and measurement error. These tools are all included in the accuracy

module, which can be obtained from any CRAN mirror (http://cran.r-project.org/), from the

new CSAN site http://csan.insightful.com), or from our website: http://www.hmdc.harvard.

edu/micah_altman/software.15

accuracy (with Zelig) has also been incorporated in the Virtual Data Center (VDC) [Altman

et al., 2001] digital library and data analysis system. This offers a web-based interface to perform

simulation and sensitivity analysis that is simple enough for even novices to use. The VDC system

is available from: http://thedata.org.
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