
3.1 U sin g Pe rtu rb a tio n A n a ly sis in R

We have d eveloped a packag e in R that m akes pertu rbation -based sen sitivity an alysis sim ple to

apply an d to in terpret. For m ost m od els this ru n n in g a sen sitivity an alysis in volves on ly two steps.

1 . S pecify the d ata, m od el, an d m od el option s for the u n pertu rbed m od el, an d option ally, the

error fu n ction s for the pertu rbation .

2 . U se summary() or plot(summary()) to see the sen sitivity of the param eter estim ates to

pertu rbation s.

Pertu rb works au tom atically alm ost with an y R m od el, su ch as lm, glm, an d nls, that accepts

data as an arg u m en t to su pply d ata an d that retu rn s estim ated coeffi c ien ts throu g h coef().

T he ex am ple below shows how to con d u ct a sen sitivity an alysis of the classic an alysis by L on g ley

[1 96 4 ] u sin g sensitivity() an d d efau lt n oise fu n ction s.

> library(accuracy)

> data(longley)

> plongley = sensitivity(longley, lm, Employed ~ .)

> sp = summary(plongley)

> print(sp)

Sensitivity of coefficients to perturbations:

mean stderr min 2.5%

(Intercept) -2.816858e+03 1.247001e+03 -5.708401e+03 -4.598391e+03

GNP.deflator 1.453037e-02 7.019360e-02 -1.712023e-01 -1.376388e-01

GNP -1.902816e-02 3.590807e-02 -1.067855e-01 -7.660611e-02

Unemployed -1.728276e-02 5.231649e-03 -3.003093e-02 -2.518958e-02

Armed.Forces -9.256278e-03 1.892578e-03 -1.387656e-02 -1.249442e-02

Population -8.269447e-02 1.796583e-01 -4.645566e-01 -4.140411e-01

Year 1.486675e+00 6.417051e-01 -2.315547e-01 3.714535e-02

97.5% max

(Intercept) -21.445918706 508.139158286

GNP.deflator 0.125940789 0.163924128

GNP 0.051912542 0.056673221

Unemployed -0.007318374 -0.006627787

Armed.Forces -0.005528618 -0.004996486

Population 0.213444854 0.232697310

Year 2.405856671 2.966351120
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Sensitivity of stderrs to perturbations:

mean stderr min 2.5% 97.5%

(Intercept) 9.639239e+02 1.825737e+02 5.055049e+02 6.088589e+02 1.245687e+03

GNP.deflator 9.875113e-02 2.650882e-02 4.876198e-02 5.579313e-02 1.572639e-01

GNP 3.242529e-02 7.092493e-03 1.612093e-02 1.717666e-02 4.676840e-02

Unemployed 4.825799e-03 1.002236e-03 2.252507e-03 2.844293e-03 6.992892e-03

Armed.Forces 2.676993e-03 5.265342e-04 1.417451e-03 1.654835e-03 3.769170e-03

Population 2.245257e-01 6.278467e-02 1.151731e-01 1.350575e-01 3.544378e-01

Year 4.962089e-01 9.307081e-02 2.606958e-01 3.157326e-01 6.401086e-01

max

(Intercept) 1.359574e+03

GNP.deflator 1.670187e-01

GNP 4.805988e-02

Unemployed 7.172210e-03

Armed.Forces 3.871694e-03

Population 4.305722e-01

Year 6.943244e-01

> plot(sp)
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This is a rare example of a model that is very sensitive to noise. E ven so, note that the small

amounts of noise applied tremendously alter some of the estimated coefficients, but not others. In

most practical cases, however, the substantive implications of your model will remain the same

across the sensitivity analysis – in which case, you can publish them with greater confi dence.

If you do not specify error functions, a default error function will be selected based on measure-

ment type of the variable: continuous, ordered, or unordered. C ontinuous variables, by default are

subject to a small amount of mean-zero component-wise uniformly distributed noise, which is typi-

cal of instrumentation-driven measurement error. O rdered factors are assigned a small probability

of having observations reclassifi ed to the neighboring classifi cation, and unordered factors have a

small probability of being reassigned to another legal value.

A lternatively, one can specify the error functions to use yourself, or use one of many supplied

by accu racy . The accu racy package comes with a wide range of noise functions for continuous

distributions, and random reclassifi cation of factors. 2

2The perturb m o d u le fo r c o llin ea rity d ia g n o sis by H en d rick x , et. a l [2 0 0 4 ] (which wa s d ev elo p ed fo r R a fter the

accuracy m o d u le) p ro v id es a d d itio n a l m etho d s fo r ra n d o m ly rec la ssifyin g fa c to rs tha t v ia its reclassify() fu n c tio n .
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Your choice of error functions should be chosen to refl ect measurement error model for the

specific data you are using. In numerical analysis, uniform noise is often used since this is what

would be expected from simple rounding error. N ormal random noise is commonly used in statistics,

under the assumption that measurement error is the sum of multiple independent error processes.

In addition, when normal perturbations are used, the result can be interpreted, for many models,

as eq uivalent to the results of running a slightly perturbed mod el on unperturbed data. In some

cases, like discrete or ratio variables, other forms of noise are necessary to preserve the structure

of the problem. [see for example, Altman, G ill, M cD onald 2005 ]. N oise can. The magnitude

of the noise is also under the control of the researcher. M ost use a magnitude eq uivalent to the

researchers estimate of the underlying measurement error in the data. N oise is usually adjusted

to the size of each component, since this better preserves the structure of the problem, however

in some cases the underlying measurement error model may imply norm-wise scaling of the noise.

For more information on noise distributions and measurement error models see , e.g., B elsley 1991,

Chaitin-Chatelin & Traviesas-Caasan [2004b], Caroll et. al [1995 ], Cheng & Van N ess [1999], Fuller

[198 7 ].

If multiple plausible measurement error models can be hypothesized for your data, we rec-

ommend that you run perturb multiple times with diff erent noise specifications, H owever, in our

experience with social science analyses, the choice of error model does not tend to eff ect, in practice,

the substantive conclusions from the sensitivity analysis.

Some researchers omit perturbations to outcome variables, since, in terms of statistical theory,

mean-zero measurement error on outcome variables (as opposed to explanatory variables) contribute

only to increased variance in estimates, not bias. While this attitude is well-justified in the context

of statistical theory, it is not similarly justified in the computational realm. If the estimation of a

model is computationally unstable, errors in the outcome variable may have large and unpredictable

biases on the model estimate. H ence, the conservative default in our module is to subject all

variables to perturbation, although you can change this.

Consider this example, which shows a sensitivity analysis of the anorexia analysis described in

Venables and Ripley [2002]. In this case, we leave the dependent variable unperturbed, by assigning

it the id en tity error function.

> data(anorexia, package = "MASS")

> panorexia = sensitivity(anorexia, glm, Postwt ~ Prewt + Treat +

+ offset(Prewt), family = gaussian, ptb.R = 100, ptb.ran.gen = c(PTBi,

+ PTBus, PTBus), ptb.s = c(1, 0.005, 0.005))

> summary(panorexia)

This function can be used in conjunction with accuracy. Hendrickx, et. al also provide a number of collinearity

diagnostics, including one based on data perturbations.
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Sensitivity of coefficients to perturbations:

mean stderr min 2.5% 97.5% max

(Intercept) 49.7570055 0.400507716 48.5181534 49.0224197 50.3636033 50.4646899

Prewt -0.5653872 0.004852886 -0.5743432 -0.5732861 -0.5563066 -0.5506232

TreatCont -4.0975142 0.035348062 -4.2054884 -4.1730985 -4.0308849 -4.0128961

TreatFT 4.5641063 0.042065546 4.4577757 4.4870128 4.6527536 4.6774678

Sensitivity of stderrs to perturbations:

mean stderr min 2.5% 97.5% max

(Intercept) 13.3889029 0.0518627561 13.2655519 13.2790441 13.4851746 13.5380041

Prewt 0.1611573 0.0006352277 0.1596833 0.1598193 0.1622761 0.1629719

TreatCont 1.8935009 0.0039662784 1.8842722 1.8864319 1.9019317 1.9045316

TreatFT 2.1333835 0.0044430846 2.1230710 2.1249585 2.1423483 2.1461762

Finally, if a model in R does not take a data argument or does not return coefficients through

the coef method, it is usually only a matter of a few minutes to write a small wrapper that calls the

original model with appropriate data, and that provides a coef method for retrieving the results.

(Alternatively, you might to choose to run such models in Z e lig , as described in the next section.)

For example, the mle function for maximum-likelihood estimation does not have an explicit

data option. Instead, it normally receives data implicitly through the log-likelihood function, ll,

passed into it. To adapt it for use in perturb we simply construct a another function that accepts

data and a log-likelihood function separately, constructs a temporary log-likelihood function with

the data passed in the environment, and then calls mle with the temporary function.

> mleD <- function(data, lld, ...) {

+ f = formals(lld)

+ f[1] = NULL

+ ll <- function() {

+ cl = as.list(match.call())

+ cl[1] = NULL

+ cl$data = as.name("data")

+ do.call(lld, cl)

+ }

+ formals(ll) = f

+ mle(ll, ...)

+ }
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Finally, construct the log-likelihood function to accept data. As in this example, which is based

on the documented example in the Stats4 package:

> library(stats4)

> dat = as.data.frame(cbind(0:10, c(26, 17, 13, 12, 20, 5, 9, 8,

+ 5, 4, 8)))

> llD <- function(data, ymax = 15, xhalf = 6) -sum(stats::dpois(data[[2]],

+ lambda = ymax/(1 + data[[1]]/xhalf), log = TRUE))

> summary(sensitivity(dat, mleD, llD))

Sensitivity of coefficients to perturbations:

mean stderr min 2.5% 97.5% max

ymax 24.939287 0.6009417 20.991162 24.676434 25.140677 26.22968

xhalf 3.072633 0.1608800 2.884105 2.988534 3.094082 4.16676

3.2 Perturbation Analysis Using Z elig

Z elig [K ing, et. al 2005] is an easy-to-use R package that can estimate and help interpret the results

of a large range of statistical models. Z elig provides a uniform interface to these models, that the

A c c u rac y package can utilize to enable sensitivity analyses. Another advantage of Z elig is that

it provides uniform tools for computing and visualizing quantities of real interest (emulating the

popular C larify package for Stata [Tomz, Wittenberg and K ing 2003]), such as predicted values,

expected values, first differences, and risk ratios. Using A c c u rac y and Zelig the researcher can

easily compute the sensitivity of such predicted values (etc.) to measurement error. 3

To illustrate, we replicate the sensitivity analysis of Longley’s model (above), using Z elig. In-

stead of specifying the data and model in perturb we specify it in Zelig, and we use the convenience

function sensitivityZelig() to run the sensitivity analysis

> library(Zelig)

Loading required package: MASS

Attaching package: MASS

The following object(s) are masked _by_ .GlobalEnv :

3Zelig also integrates nonparametric matching methods as an optional preprocessing step. Thus A c c u ra c y

supports sensitivity analysis of models subject to such pre-processing as well.
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anorexia

Loading required package: boot

##

## Zelig (Version 2.4-5, built: 2005-10-18)

## Please refer to http://gking.harvard.edu/zelig for full documentation

## or help.zelig() for help with commands and models supported by Zelig.

##

> zelig.out = zelig(Employed ~ ., "ls", longley)

> perturb.zelig.out = sensitivityZelig(zelig.out)

Just as above, summary() and plot(summary()) summarize the sensitivity of the model coef-

ficients. In addition, we can use the Zelig methods setx and sim to simulate various quantities of

interest, which we display by using summary() and plot() on the output of sim.

In more detail, this code generates sensitivity estimates of the parameter coefficients:

> summary(perturb.zelig.out)

Sensitivity of coefficients to perturbations:

mean stderr min 2.5% 97.5% max

(Intercept) -3.597e+03 8.639e+02 -4.883e+03 -4.741e+03 -1.792e+03 -1.557e+03

GNP.deflator 2.321e-02 5.969e-02 -7.371e-02 -5.720e-02 1.203e-01 1.236e-01

GNP -4.367e-02 2.801e-02 -9.428e-02 -9.113e-02 6.424e-03 2.158e-02

Unemployed -2.145e-02 4.118e-03 -2.920e-02 -2.826e-02 -1.430e-02 -1.200e-02

Armed.Forces -1.052e-02 1.436e-03 -1.289e-02 -1.258e-02 -7.923e-03 -7.055e-03

Population 2.134e-02 1.813e-01 -3.041e-01 -2.252e-01 3.923e-01 4.251e-01

Year 1.885e+00 4.435e-01 8.171e-01 9.613e-01 2.480e+00 2.536e+00

Sensitivity of stderrs to perturbations:

mean stderr min 2.5% 97.5% max

(Intercept) 9.146e+02 1.909e+02 4.862e+02 5.635e+02 1.234e+03 1.277e+03

GNP.deflator 8.415e-02 1.476e-02 5.227e-02 6.027e-02 1.080e-01 1.086e-01

GNP 3.022e-02 7.205e-03 1.791e-02 1.985e-02 4.523e-02 5.435e-02

Unemployed 4.566e-03 1.013e-03 2.618e-03 3.021e-03 6.676e-03 7.625e-03

Armed.Forces 2.394e-03 4.363e-04 1.479e-03 1.611e-03 3.110e-03 3.228e-03

Population 1.989e-01 5.507e-02 1.230e-01 1.317e-01 3.226e-01 3.850e-01

Year 4.702e-01 9.754e-02 2.507e-01 2.912e-01 6.323e-01 6.492e-01
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While this code generates predictions of the distribution of the explanatory variable, ‘Employed’,

around the point where ‘Year’ equals 1955, and the other variables are at their means:

> setx.out = setx(perturb.zelig.out, Year = 1955)

> sim.perturb.zelig.out = psim(perturb.zelig.out, setx.out)

> summary(sim.perturb.zelig.out)

**** 30 COMBINED perturbation simulations

Model: ls

Number of simulations: 1000

Values of X

(Intercept) GNP.deflator GNP Unemployed Armed.Forces Population Year

1947 1 101.7 387.7 319.3 260.7 117.4 1954

Expected Values: E(Y|X)

mean sd 2.5% 97.5%

1947 65.3 0.1064 65.1 65.51

This creates a profile plot of the predicted distribution of the explanatory variable:

> plot(sim.perturb.zelig.out)

**** 30 COMBINED perturbation simulations

16



64.8 65.0 65.2 65.4 65.6 65.8

0
1

2
3

Expected Values: E(Y|X)

D
e
n
s
it
y

Zelig currently has several dozen models already available. For example we could easily have run

the same analysis with a ‘normal bayesian’ regression model instead of OLS as follows, just by sub-

stituting zelig(Employed .,"normal.bayes",longley) for zelig(Employed .,"ls",longley).

Finally it is to add new models to Zelig, by providing a few simple methods and interface function.

Although the effort to do so is slightly greater than the approach above, writing a Zelig interface

has the advantage of enabling a variety of additional quantities of interest to be easily computed.

4 U sin g U n iv e rsa l N u m e ric F in g e rp rin ts (U N F ’s) to E n su re D a ta

In te g rity

In the course of past research [see, e.g., Altman, Gill, McDonald 2003], we performed numerical

benchmark tests on over twenty different software packages and versions of packages. An unexpected

lesson from this testing is that loading data into a statistical software package from text or binary

files–a seemingly straightforward operation–may produce unexpected results. We discovered many

cases where a data file that was saved without error in one package was interpreted in unintended
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