
WebDevelopR: A Website Development Package for

R

Evan Ray
University of Massachusetts, Amherst

Peter Krafft
Massachusetts Institute of Technology

John Staudenmayer
University of Massachusetts, Amherst

Abstract

Many statistical methods would be useful to non-statisticians who lack the ability to
program the method in a language such as R or even use programs written by others. One
way to address this is for statisticians to create websites that receive data, automatically
run the statistical method, and produce output. The purpose of this paper is to introduce
an R package and tools that make this relatively easy to do. Our work augments and
improves upon the R package CGIwithR. We review that and several other packages and
discuss their benefits and drawbacks. We then present the WebDevelopR package, which
addresses some of those drawbacks. We discuss two versions of this new package. The
first is relatively simple and is intended for statisticians without experience in website
development, and the second is intended for statisticians who have more experience in
creating websites. Both versions are illustrated with simple examples.

Keywords: AJAX, CGI, HTML, JavaScript, Perl.

1. Introduction

It is common for statisticians to develop methods to process and analyze data stored in
formatted files, such as output from electronic devices or laboratory instruments. Many
statisticians then make those methods available to others through an R (R Core Team 2012)
package or other software. However, using these software packages can be difficult for non-
statisticians who want to apply these methods to their data. One option for making this
easier is to build a website that serves as a graphical user interface for the statistical analysis
software.

This paper describes an R package, WebDevelopR, and a set of tools to create such a website.
These new tools address some technical difficulties with the earlier package CGIwithR (Firth
2003). They also aim to fill a gap in existing solutions by providing a method of building
a website to run R scripts that makes it comparatively easy to both create and customize
the website. There are two versions of the WebDevelopR package. One version, turnkey, is
simpler to use and is intended for a statistician with little or no experience in website design.
It allows the developer to create a simple website with a form for the site user to provide
input to the R script and a page to display the results of the analysis. This requires only

2 WebDevelopR: A Website Development Package for R

knowledge of R and enough familiarity with HTML to edit a template form to provide the
desired user input fields. The second version of the package, developer, is intended for the
statistician who is comfortable with JavaScript and HTML, and it is more flexible.

The remainder of the paper is organized as follows. In Section 2 we describe several existing
approaches, their benefits, and their limitations. We focus on the package CGIwithR, and
discuss some technical problems a developer might encounter in using that package. In Section
3 we present a new R package, WebDevelopR, that addresses those drawbacks and technical
difficulties. We describe two versions of this package and demonstrate how each can be used
through an example website. In Section 4 we discuss some security considerations to be aware
of when using WebDevelopR. The paper concludes with a brief discussion. A separate file
with appendices contains the code used in the examples, detailed instructions describing how
to use the package, documentation of R utilities in the package, and a list of resources we
have found useful to learn about web development. A reader who simply wants to use the
package can skip to Section 3.

2. Existing approaches and technical background

The ability to use R for statistical analysis inside of a website application is widely useful,
and there are many tools available that make this possible. Each of these tools has different
purposes, strengths and weaknesses that make it more or less appropriate for a particular
project. We briefly discuss five current options to give a sense of what is available, and then
we describe a sixth tool, CGIwithR, in more detail. It is the basis for our approach. For more
tools and examples, two resources about web-based R are

• http://cran.r-project.org/doc/FAQ/R-FAQ.html#R-Web-Interfaces, and

• http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/StatCompCourse

Table 1 provides the current web address of each approach we discuss.

One of the simplest choices for web development using R is Rweb, which provides a template
for a website that has an embedded R application. Three versions of the website are described
in Banfield (1999). The first is a command prompt that is initialized to hold whatever code the
developer wants to present to the user. The user may delete or otherwise edit the code in the
prompt. The second is a similar interface that uses JavaScript to enhance the appearance of the
site. The third provides an interface to run a few pre-selected R routines. The main purpose
of these tools is for running low intensity scripts on the host servers, such as class homework
assignments. The websites provided by Rweb can be used as templates for developing new
sites, but knowledge of Perl and HTML is required to do that.

Rwui (Newton and Wernisch 2007) is another tool for rapidly developing a website application
that runs an R script. The Rwui website uses a questionnaire to learn what user inputs,
analyses, and output the developer would like to include. It then automatically builds code
for a website that runs with the Apache Tomcat web server. The generation process is quick
and requires practically no knowledge of web development, but the resulting website cannot
be easily customized.

FastRWeb (Urbanek 2011) is an option that interfaces with R through the Rserve (Urbanek
2012) package. The advantage of this is that an instance of R is initialized before the page

Evan L. Ray, Peter Krafft, John Staudenmayer 3

Utility Name Current URL

Rweb http://www.math.montana.edu/Rweb/

Rwui http://sysbio.mrc-bsu.cam.ac.uk/Rwui/

FastRWeb http://www.rforge.net/FastRWeb/

rApache http://biostat.mc.vanderbilt.edu/rapache/

shiny http://www.rstudio.com/shiny/

CGIwithR http://www.omegahat.org/CGIwithR/

Table 1: Current URLs of the tools discussed.

request is received by the web server; this enables rapid response times. Creation of a fully fun-
tional web application using FastRWeb requires knowledge of HTML and JavaScript though.

The goal of rApache (Horner 2013) is to be able to write a website in R without using a
scripting language such as Ruby or PHP. It consists of an Apache module for linking to R and
an R package for linking to Apache. rApache provides a number of functions that allow web
development to be totally controlled by R. That large degree of flexibility comes at the cost
of being substantially more difficult to use. rApache benefits from a large number of online
examples and tutorials.

A more recent option is shiny (RStudio, Inc. 2013). This package makes it very easy to build
websites that interact with R without any knowledge of web programming or other scripting
languages. A drawback to shiny is that applications developed with it can only be deployed
online with the shiny web server, which has only been created recently and has a relatively
limited feature set. Integration with more feature-rich web servers such as Apache will not
be feasible without more development.

CGIwithR (Firth, 2003) is similar to several of the above packages in that it enables the
developer to use R as a CGI scripting language (i.e., to be able to dynamically generate
content to be displayed in a web browser, possibly using input from a web form in order to
do so). It accomplishes this by providing a Perl script that acts as a connecting layer between
the web server and R. When a web form is submitted to the web server, the server passes the
submitted data on to this Perl script. The script stores the submitted data in environment
variables and then runs the desired R script. When R loads, the CGIwithR package pulls any
submitted information from the environment variables and stores it in a native R object. The
R script then processes the data, and any generated output is captured. When R exits, the
Perl script sends this captured output to the web browser where it is (typically) displayed to
the site user as a new web page. This process is illustrated in Figure 1.

The CGIwithR package is often a good solution, but it has limitations when statistical analysis
requires the user to upload large data files or when the analysis takes an extended time to
complete. We discuss the causes of these problems and what WebDevelopR does to address
them here; additional features of WebDevelopR are discussed in Section 3.

One problem encountered with CGIwithR is that a limited amount of data can be stored in
the environment variables used to pass submitted data to R. The exact size limits depend
upon the configuration of the server, but the result is that it can be impossible to upload
large data files. On our web server, we were unable to upload files that were about 6MB. In

4 WebDevelopR: A Website Development Package for R

1) Submitted form

data is stored in

environment

variables.

2) R is called to run

the desired R

script.

3) Output from R is

captured by the

R.cgi script; when

R exits, output

from R is sent to

the web browser.

R

Web Server

R.cgi

1) Submitted data is

read from

environment

variables and

stored in native R

variables.

2) Data is processed

in R; R script

outputs HTML

which will be

returned to the

user’s web
browser.

User’s Web Browser

User selects data files and

analysis options in a web

form and submits the form

to the web server.

Output from R is displayed

to the user, typically as a

new web page.

Figure 1: Diagram of a server call using CGIwithR.

Evan L. Ray, Peter Krafft, John Staudenmayer 5

order to solve this problem, WebDevelopR stores submitted data in temporary files on the
hard drive, rather than in environment variables. Each time the script is called, a unique
session ID is generated to identify these temporary files, and the locations of these files are
passed to R via command line arguments.

A second problem with CGIwithR is that the connection between the web server and the site
user’s browser may time out while the R script is still running. When this happens, no results
are sent to the user and the web server typically terminates any CGI scripts associated with
the connection. Most web servers provide configuration options to set the timeout length (for
example, in the Apache HTTP Server the TimeOut directive can be used). However, even if
this setting is changed on the server, the user’s browser may terminate a connection after a
few minutes of inactivity (see for example the network.http.keep-alive.timeout setting
in the Mozilla Firefox browser). WebDevelopR resolves this problem by periodically sending
a character of data to the user’s browser while the R script is executing. These characters are
not displayed to the user, but they keep the connection alive until the analysis is complete.

Creation of websites with CGIwithR requires knowledge of HTML and JavaScript. The
turnkey version of the WebDevelopR package alleviates this requirement by providing a
template website that requires only minor edits to the HTML to create a useful site. This
template website includes some user interface features tailored for lengthy statistical calcu-
lations, using AJAX (Asynchronous JavaScript and XML) to provide status updates to the
website user while the calculations are progressing. Similar functionality could be created with
CGIwithR or several of the other packages we have discussed, but it would require knowledge
of JavaScript. On the other hand, the turnkey version of WebDevelopR provides a simple R

function to return status updates to the website user. The developer version of the package
also facilitates development with AJAX by allowing the developer to easily specify the data
type of the response from the CGI script. These features are discussed more in Section 3.

3. New approach

Two versions of the WebDevelopR package are available, turnkey and developer. Both
versions of the package use the same general framework as CGIwithR: Perl scripts provide
an interface between the web server and R. The main differences between CGIwithR and
the WebDevelopR lie in the functionality provided by that interface. Several of these new
features were mentioned in the previous section: submitted form data is stored in temporary
files on the hard drive rather than in environment variables; the connection between the web
browser and the server is kept alive during lengthy computations by sending a character of
data to the browser every second; and some features are added to simplify the use of AJAX.

The turnkey version of the package builds on that foundation and provides a template web
application consisting of a form and a results page, and a set of R functions to facilitate website
creation with only basic knowledge of HTML. This template can be set up to run a desired
R script by editing configuration settings and modifying the provided web form to include
the necessary user input fields; no knowledge of languages like JavaScript or Perl is required.
The developer version provides only the basic functionality for passing data from submitted
web forms to R, keeping the connection between the server and the web browser alive during
lengthy computations, and returning the output from R to the web browser. This version is
intended for experienced web programmers who want to make use of the opportunities for rich

6 WebDevelopR: A Website Development Package for R

user interactions made possible by AJAX. We describe each of these versions of the package
in detail and provide examples in Sections 3.1 and 3.2.

3.1. Turnkey version: For people with little experience as web programmers

In this section we describe the turnkey version of the package. We give an overview of how
it works, discuss package use and installation, and give an example.

Overview

The turnkey version of WebDevelopR combines several HTML, JavaScript, and Perl files
with some R code to create a simple web application. The web site user’s primary point of
interaction with the application is a web form. This form is configured by the application
developer, and allows the user to select data files to upload to the server for analysis and/or
choose other options for the analysis. The form submission is processed by an R script on the
server, and results are displayed on a new web page.

When the user submits the form, the application follows one of two paths depending on
whether the user’s web browser has JavaScript enabled. If JavaScript is not available, the
form is submitted to the processForm.cgi script, which is written in Perl. This script does
the following:

1. The script generates a unique session ID which is used throughout processing to keep
track of temporary files and options the user selected. Session IDs are assigned sequen-
tially and are obtained from a plain text file on the web server. Please see the security
notes in Section 4 below for further discussion.

2. It then stores the data from the submitted form in temporary files. These temporary
files will be accessed later by the R script.

3. It sets up a temporary file to store status updates for the user. Users who do not have
JavaScript enabled will not see these status updates during processing, but they will be
displayed when processing is complete.

4. The script next creates a hidden HTML element and a thread that prints a ‘.’ to the
browser every second in order to keep the connection from timing out. This thread will
continue to run until R has finished running.

5. The script now runs an R script, which loads the submitted data from the temporary
files, processes it, and outputs results to be displayed to the user in HTML. R code is
provided to read the data from temporary files and store it in native R variables.

6. When the processing in R is completed, the thread printing periods is killed, status
updates are retrieved and returned to the user’s browser, and output from R is returned
to the user.

7. Finally, all temporary files created in steps 2 and 3 above are deleted.

This process is illustrated in Figure 2.

Evan L. Ray, Peter Krafft, John Staudenmayer 7

1) A session ID is

generated.

2) Submitted form

data is stored in

temporary files.

3) A temporary file

that can be used

by the R script to

store status

updates is

created.

4) A hidden HTML

element is

created, and a

thread is created

whi h sends a .’
to the browser

every second.

5) R is called to run

the desired R

script.

6) Output from R is

captured by the

R.cgi script; when

R exits, the thread

printing .’s is
killed. Status

updates and

output from R are

sent to the web

browser.

7) Temporary files

created in steps 2

and 3 above are

deleted.

R

Web Server

R.cgi

1) Submitted data is

read from

temporary files

and stored in

native R variables.

2) Data is processed

in R; R script

outputs HTML

which will be

returned to the

user’s web
browser.

User’s Web Browser

User selects data files and

analysis options in a web

form and submits the form

to the web server.

Status updates and output

from R are displayed to the

user.

Figure 2: Diagram of a server call using WebDevelopR when JavaScript is not available on
the user’s web browser.

8 WebDevelopR: A Website Development Package for R

If JavaScript is available, the functionality in processForm.cgi is divided into several stages
to provide a better user experience. In this case, when the form is submitted it is sent to
the preProcessForm.cgi script, which handles items 1 and 2 of the processForm.cgi script.
Once the form preprocessing is completed, the user’s browser loads the results page. From
the results page, two different scripts on the web server are called. First, the wrapper script
R.cgi runs. This script handles the remaining items 3 through 7 in the list above. The results
page also periodically calls statusUpdate.cgi, which retrieves any status updates provided
by the R script and sends them back to the user’s browser where they are displayed when
they are received.

Package Use and Installation

When R loads, it has access to the submitted form data through two functions: form.data

and file.details. The form.data function returns a list with one component for each field
in the submitted form. The names of the components in this list are taken from the name

attribute of the corresponding form fields in the HTML document. If the name of the form
field in the HTML document began with a number, it is prepended with an X. In the case of file
upload fields, the corresponding entry in the list contains the full path to the temporary file
on the server where the uploaded file was stored (or an empty string if no file was uploaded).
For other form fields, the corresponding component of the list is a vector of submitted values
(or an empty string if no options were specified for that form element). For example, for
a group of checkboxes the entry in the list will be a vector of the values of the checkboxes
that were selected by the site user. The list returned by form.data also includes one other
component: sessionID, which contains the session ID assigned to the form submission.

Additional information about each uploaded file are in the list returned by file.details,
which only contains entries for form fields where a file was selected. For each uploaded file,
this list contains a vector of three values:

1. file.name is the original file name of the uploaded file (including the extension),

2. content.type is the MIME content type of the file, and

3. text.or.binary is Perl’s educated guess as to whether the uploaded file is a text or
binary file. Either “text” or “binary”.

WebDevelopR includes several utility functions that can be used to facilitate web develop-
ment. These are summarized in Table 2, their use is demonstrated in the sample code in
Appendix A, and more complete documentation is given in Appendix D. See also Appendix
E for some other resources and R packages that can be helpful in web programming.

There are seven major tasks to do in order to set up a working website with the turnkey

version of WebDevelopR, which we describe next. More detailed information about each of
these steps is in Appendix C.

1. Install a Perl interpreter and necessary modules. Perl is included by default on most
Unix-like operating systems. For Windows, you’ll need to install an implementation of
Perl such as Strawberry Perl (http://strawberryperl.com/). You will also need to
ensure that the following Perl Modules are installed (typically, they will be by default):

Evan L. Ray, Peter Krafft, John Staudenmayer 9

Function Name Description

status.update Provides status updates to the user while the R script is
still running.

web.jpg, web.png Used to create .png and .jpeg image files, and to embed
these images in the results page.

web.print Prints R objects in a formatted <pre> ... </pre> HTML
environment (similar to verbatim in LaTeX).

web.table, web.csv,
web.csv2

Prints an R data frame or matrix to a text file and inserts a
link to the file in the results page.

Table 2: The utility functions included in WebDevelopR.

• CGI

• Fcntl

• HTML::Entities

• Time::HiRes

• threads

2. Install and configure a web server. WebDevelopR can be used with any web server that
supports CGI scripts written in Perl. The Apache HTTP server is one common choice
(http://httpd.apache.org/). It should be configured to enable CGI scripts.

3. Install the WebDevelopR package. Note that if your webserver will run with a different
username than yours, you may need to install the package to a site library to ensure
that an instance of R created by your web server will have access to the package. This
can be achieved with the lib argument to the install.packages command in R.

4. Copy files included with WebDevelopR to appropriate locations on your server. Copy
the files in the turnkey\cgi-bin folder in the installation directory to your web server’s
cgi-bin folder, and the files in the turnkey\html folder in the installation directory to
your web server’s html folder (or equivalent – for the Apache server on Windows, this
folder is named htdocs). Permissions on these files should be set so that the web server
can execute the CGI scripts and read the files in the html folder. Also create a system

directory outside of your web server’s html folder and the cgi-bin where “system” files
can be stored and copy the contents of the turnkey\system folder in the installation
directory to it. Your web server should have read and write access to the files in this
directory.

5. Edit configuration settings in CGI and JavaScript files. Each of the CGI scripts in the
cgi-bin and the JavaScript scripts in the html\scripts folder has a section at the top
with configuration settings for things like the locations of files on the web server, the
title at the top of the web page, and how frequently status updates are retrieved.

6. Modify the provided index.html file to provide form fields for site users to enter input.
The file includes a form with examples of all of the basic form input field types.

10 WebDevelopR: A Website Development Package for R

7. Modify your R script to use submitted form data and provide output to site users and
place it in the web server’s cgi-bin folder. See the example code in Appendix A and
the package documentation for more information.

Example

In this section we present a simple example of how the turnkey version ofWebDevelopR could
be used. Our example is not very exciting, but it demonstrates the type of functionality that
can be achieved. The R code used for this example is in Appendix A. This R code uses the
utility functions provided by WebDevelopR (listed in Table 2) to send status updates to the
website user and include printed R objects, graphics, and links to .csv files on the results page.

The form pictured in Figure 3 allows the site user to select a data file to upload, enter a name
and description of the analysis to be displayed in the results, choose which summary statistics
will be calculated, and select the image format for a plot of the data.

Figure 3: Screenshot of the web form for the turnkey version

Once the user has entered this information and clicks the submit button, she is taken to a
waiting page while the R script runs. While on this page, status updates provided by the R

Evan L. Ray, Peter Krafft, John Staudenmayer 11

script are retrieved from the server and displayed to the user every few seconds. This screen
is pictured in Figure 4.

Figure 4: Screenshot of the waiting page for the turnkey version

When the analysis is complete, all status updates are displayed to the user as well as the
results of the analysis (a print of the data set, a plot, and a link to a .csv file containing more
results). A screenshot of this page is in Figure 5.

3.2. Developer version: For more experienced web programmers

We now turn to the developer version of WebDevelopR. Again, we describe how it works,
discuss package use and installation, and give an example.

Overview

The developer version of WebDevelopR provides a Perl script that processes form submis-
sions, runs an R script, and sends the output from R to the website user. The provided Perl

script does the actions below. Note that some of these are the same as in Section 3.1. We list
them again here to make the paper easier to read.

1. The script generates a unique session ID which is used throughout processing to keep
track of temporary files and options the user selected. Session IDs are assigned sequen-
tially and are obtained from a text file on the web server. Please see the security notes
in Section 4 below for further discussion.

2. It then stores the data from the submitted form in temporary files. These temporary
files will be accessed later by the R script.

3. The script next creates a JSON, XML, or hidden HTML element (depending on the
response document type, which can be specified via a configuration setting). It then
creates a thread that prints a ‘.’ to the browser every second in order to keep the
connection from timing out. This thread will continue to run until R has finished
running.

4. The script now runs the desired R script, which loads the submitted data from the
temporary files, processes it, and outputs results to be displayed to the user in JSON,
XML, or HTML. R code is provided to handle reading the data from temporary files and

12 WebDevelopR: A Website Development Package for R

Figure 5: Screenshot of the results page for the turnkey version

storing it in native R variables. A hidden input element in the submitted form specifies
the name of the R script to call; for security reasons, this script name is validated against
a list of scripts specified in the CGI script that processes the form submission.

5. When the processing in R is completed, the thread printing periods is killed and the
output from R is returned to the user’s web browser.

6. Finally, all temporary files created in steps 2 and 3 above are deleted.

Package Use and Installation

The form.data and file.details functions can be used to access the uploaded data as
described in Section 3.1.1 above. The same steps are required to install the developer version
as the turnkey version with a few small changes. In step 4, the files should be copied from

Evan L. Ray, Peter Krafft, John Staudenmayer 13

the developer\cgi-bin and developer\system folders in the package installation directory
instead of the corresponding turnkey folders. When using the developer version of the
package all HTML, CSS, JavaScript, and other desired CGI functionality must be programmed
by the site developer. Therefore, steps 5 and 6 of the installation procedure for the turnkey
version do not apply to the developer version. Detailed installation instructions are given in
Appendix C. Appendix E has a list of resources about web development that we have found
helpful.

Example

To demonstrate the use of the core version of the package, we present an example of a website
that creates a plot of two variables from data in an uploaded .csv file. The website is pictured
in Figure 6.

Figure 6: Screenshot of the example page for the developer version when the page is first
loaded.

This website includes a couple of features that give a sense of the possibilities for smooth
user interactions that can be created with AJAX. Specifically, user input can be processed
as it is entered without bringing the user to a new page each time data is submitted to the
web server. The first time we see this in action is when we populate the drop-down menus
with options for the user to select which variables will be used in the plot. These options are
automatically filled in when the user selects a data file, based on the variable names in the
heading row of the file. In order to accomplish this, as soon as the user selects a data file,
text that says “Loading...” is displayed and the file is uploaded to the server. On the server,
the file is read in by an R script, and the variable names in the file are extracted and sent
back to the user’s web brower where they are inserted into the dropdown menus as shown in

14 WebDevelopR: A Website Development Package for R

Figure 7. Similarly, once the user selects the variables to plot and the plot type and clicks the
“Plot!” button, these options are sent to a second R script which creates the plot. The plot
is inserted into the same web page (Figure 8). A single user interface and a single web page
is therefore maintained throughout the user’s interaction with the web application.

Figure 7: Screenshot of the example page for the developer version when the variable names
have been loaded from the selected data file.

This website consists of 6 separate files:

• An HTML file with the content of the web page

• A CSS file to control the visual display of the web page

• A JavaScript file to handle user interactions with the page and form submissions

• The WebDevelopR-dev.cgi script included with WebDevelopR

• Two R scripts: one reads in the data file, sends the variable names back to the browser,
and stores the data file on the server for later use by the second R script, and the second
creates the plot.

These files are included in the installation directory of the package and are all thoroughly
commented. The R scripts are also included in Appendix B of this paper for the reader’s
convenience.

The website has two different forms which are submitted to the server separately. The first
form has only one user input field – the file selection field, which is named “data”. This file

Evan L. Ray, Peter Krafft, John Staudenmayer 15

Figure 8: Screenshot of the example page for the developer version with the final plot.

selection field is set up so that whenever the user chooses a new file, the form is submitted to
the server (i.e., the file the user selected is uploaded to the server).

Upon submission, the R script example-dev1.R is called to process the file upload. This
script reads the uploaded data file and prints the variable names in the header row, as well
as the session ID, in XML format. It also saves the data file on the server so that it can be
used to create the plot later. The output from this script looks like the following:

<var1>Sepal.Length</var1>

<var2>Sepal.Width</var2>

<var3>Petal.Length</var3>

<var4>Petal.Width</var4>

<sessionID>163</sessionID>

When the R script finishes running, this output is sent back to the browser. A JavaScript

function in the browser is then called to process the results. This function inserts the variable
names into the drop-down menus in the second form, and creates a hidden field in the second
form with the session ID from the first form submission.

The user can then select the variables to use in the plot and the plot type, and click the
“Plot!” button. When this is done, the second of the two forms on the web page is submitted
to the server and a different R script is called to process the submission. This script creates
the plot specified by the user’s selections and saves it as an image file on the server. It then

16 WebDevelopR: A Website Development Package for R

prints the HTML to include the image on the web page. The ouput from this script looks like
the following:

<imgTagContainer>

</imgTagContainer>

When the R script exits, this output is sent back to the web browser. A JavaScript function
is then called which inserts the image tag into the web page so that the plot is displayed to
the user.

4. Some notes about security

There are several aspects of security to keep in mind when building web applications with
WebDevelopR (or any other CGI scripting platform). These range from the “standard” con-
cerns about preventing unauthorized access to your web server, to ensuring that some users
do not use up so many computational resources that the server is unable to serve its intended
clients, to securing the potentially confidential data that users upload so that anyone on the
internet cannot access it. In this section we present an incomplete list of suggestions and
thoughts on these topics. Several books on the subject are available (e.g., Sullivan and Liu
(2011) and Hope and Walther (2008)), in addition to online resources such as the Open Web
Application Security Project (https://owasp.org).

• Do not allow the web site user to enter R commands which will be executed on the
server. This is dangerous if proper precautions are not taken because commands like
system and file.remove can be used to alter important files on the server.

• Do not use input from the user to specify file names to read or write, or as a part of
system commands. Again, this could allow a malicious user to modify important system
files.

• As detailed in Appendix C, there are options in several of the CGI scripts to specify
limits on the size of data uploaded through the form. It is recommended that you use
these options to prevent disk space on the server from being used up.

• As mentioned above, Session IDs are generated sequentially, which means that they can
be easily guessed. Additionally, transmissions between the server and the user’s web
browser are not encrypted and no checks are performed to ensure that the user accessing
a particular file on the server (such as a graph or .csv file with analysis results) is the
same one who submitted the data. This could be a problem if your users are submitting
confidential or private data sets and do not want the results of the data analysis to
be visible to others. To address this, you should change the method used to generate
Session IDs and implement a secure connection between the web browser and the user’s
browser. Both of these changes are possible, but are beyond the scope of WebDevelopR.

Evan L. Ray, Peter Krafft, John Staudenmayer 17

5. Conclusions

It is common for statisticians to want to make analysis techniques they have developed avail-
able to others, including non-statisticians and people without programming expertise. Web-
sites are a convenient way to achieve this goal. As a result, many solutions have been developed
to facilitate the creation of websites that run R code. Each of these tools provides slightly
different functionality, and makes a different trade-off between the ease of initial site creation
and the ability to customize the site to suit project needs.

WebDevelopR encompasses two different solutions to this problem. One, the developer ver-
sion, provides only the basic script required to facilitate communication between a site user’s
web browser and an R script. In many ways, this script can be viewed as an extension of
CGIwithR, fixing a few technical problems associated with large data files and long com-
putations, addressing some security issues, and allowing the web programmer to choose the
data interchange format to be used in communications between the server and the browser.
This version of the package puts the burden of creating the website with HTML, CSS, and
JavaScript on the developer. However, it gives the developer the flexibility to create a variety
of interactive user interfaces for the web application.

The turnkey version of the package builds on the basic functionality in the developer version,
and includes a fully functional web site. This version allows statisticians with limited web
development knowledge to create a web application that runs R scripts more easily than they
could with other tools such as rApache, but with greater potential for customization than
with packages such as Rwui.

Acknowledgments

This was partially supported by U.S. National Institutes of Health grants 1RC1HL099557 and
RO1CA121005.

References

Banfield J (1999). “Rweb: Web-based Statistical Analysis.” Journal of Statistical Software,
4(1), 1–15. ISSN 1548-7660. URL http://www.jstatsoft.org/v04/i01.

Crane D, Pascarello E, James D (2006). Ajax in Action. Manning Publications.

Firth D (2003). “CGIwithR: Facilities for Processing Web Forms Using R.” Journal of
Statistical Software, 8(10), 1–8. ISSN 1548-7660. URL http://www.jstatsoft.org/v08/

i10.

Flanagan D (2011). JavaScript: The Definitive Guide. O’Reilly Media.

Hope P, Walther B (2008). Web Security Testing Cookbook: Systematic Techniques to Find
Problems Fast. O’Reilly Media.

Horner J (2011). brew: Templating Framework for Report Generation. R package version
1.0-6, URL http://CRAN.R-project.org/package=brew.

http://www.jstatsoft.org/v04/i01
http://www.jstatsoft.org/v08/i10
http://www.jstatsoft.org/v08/i10
http://CRAN.R-project.org/package=brew

18 WebDevelopR: A Website Development Package for R

Horner J (2013). rApache: Web Application Development with R and Apache. URL http:

//www.rapache.net/.

Lecoutre E (2003). “The R2HTML Package.” R News, 3(3), 33–36. URL http://cran.

r-project.org/doc/Rnews/Rnews_2003-3.pdf.

Meyer EA (2007). CSS Web Site Design. Peachpit Press.

Newton R, Wernisch L (2007). “Rwui: A Web Application to Create User Friendly Web
Interfaces for R Scripts.” R News, 7(2), 32–35. URL http://www.r-project.org/doc/

Rnews/Rnews_2007-2.pdf.

R Core Team (2012). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org.

Robbins JN (2006). Web Design in a Nutshell. O’Reilly Media.

RStudio, Inc (2013). shiny: Web Application Framework for R. R package version 0.4.0,
URL http://CRAN.R-project.org/package=shiny.

Sullivan B, Liu V (2011). Web Application Security: A Beginner’s Guide. McGraw-Hill.

Urbanek S (2011). FastRWeb: Fast Interactive Framework for Web Scripting Using R.
R package version 1.0-1, URL http://CRAN.R-project.org/package=FastRWeb.

Urbanek S (2012). Rserve: Binary R server. R package version 0.6-8, URL http://CRAN.

R-project.org/package=Rserve.

Appendix

A. R Code for Turnkey Example

This is the R code used to process the form submission in the example of the turnkey version
of the package in Section 3.1.

library("WebDevelopR")

########### Accessing the user input ###############

The form in sample.html contains input fields named

"data", "title", "description", "methods", and "plot".

submitted.data <- form.data()

file <- submitted.data[["data"]]

title <- submitted.data[["title"]]

http://www.rapache.net/
http://www.rapache.net/
http://cran.r-project.org/doc/Rnews/Rnews_2003-3.pdf
http://cran.r-project.org/doc/Rnews/Rnews_2003-3.pdf
http://www.r-project.org/doc/Rnews/Rnews_2007-2.pdf
http://www.r-project.org/doc/Rnews/Rnews_2007-2.pdf
http://www.R-project.org
http://www.R-project.org
http://CRAN.R-project.org/package=shiny
http://CRAN.R-project.org/package=FastRWeb
http://CRAN.R-project.org/package=Rserve
http://CRAN.R-project.org/package=Rserve

Evan L. Ray, Peter Krafft, John Staudenmayer 19

description <- submitted.data[["description"]]

methods <- submitted.data[["methods"]]

plot <- submitted.data[["plot"]]

############ Using the utility functions ###########

Status updates are shown in a separate section than the

results. The append=FALSE argument means that any previously

logged status updates are removed.

status.update("Processing your submission...", append=FALSE)

if(sum(methods == "sd" | methods == "var") == 0) {

status.update("Error: You must select a type of spread.")

quit("no")

}

if(length(file.details()) == 0) {

data <- data.frame(x = sample(1:5,5,TRUE),

y = sample(1:5,5,TRUE), z = sample(1:5,5,TRUE))

status.update("No file provided. Using random data...",

append = TRUE)

} else {

data <- read.csv(file)

}

You can print strings directly to the results section using

the cat function.

cat("This is the", title, "analysis.", description,

"R used the following dataset:")

web.print displays a nicely formatted version of R’s print.

The argument is a list of objects to print.

web.print(list(data))

results <- list()

The elements of "methods" are taken from the "value"

attributes of the inputs that the user selected (specified in

the HTML code).

for(m in methods) {

if(m == "mean") {

results$mean = apply(data, 2,

function(x) {mean(as.numeric(x))})

} else if(m == "median") {

results$median = apply(data, 2,

function(x) {median(as.numeric(x))})

} else if(m == "sd") {

20 WebDevelopR: A Website Development Package for R

results$spread = apply(data, 2, sd)

} else if(m == "var") {

results$spread = apply(data, 2, var)

}

}

results <- data.frame(results)

The web.png and web.jpeg functions embed graphics into the

results section displayed to the user.

if(plot == "png") {

The alt text is displayed if the image cannot be viewed.

web.png("results.png", attributes.text = "alt=\"Results\"",

width = 600, height = 300)

barplot(results$spread, names.arg = names(data),

main = "column spread")

garbage <- dev.off()

} else {

web.jpeg("results.jpeg", attributes.text = "alt=\"Results\"",

width = 600, height = 300)

barplot(results$spread, names.arg = names(data),

main = "column spread")

garbage <- dev.off()

}

web.csv creates a link to a file that the user can download.

web.csv(results, "results.csv", before.link.text = "Click ",

link.text = "here",

after.link.text = " to download the rest of your analysis.",

open.new.window = FALSE, enclose.in.p = FALSE)

status.update("Analysis complete.", append = TRUE)

B. R Code for Developer Example

The example website for the developer version of WebDevelopR includes two R scripts.
We provide the code for each of these scripts in this appendix. The first script reads in
the uploaded data file, extracts the variable names from the column headers, and prints the
variable names in an XML format. It also saves the data file so that the next script can use
it to create the plot.

##

Enter configuration information

The location where the uploaded file will be stored

Evan L. Ray, Peter Krafft, John Staudenmayer 21

FILE_WRITE_DIR <- ’/var/www/system/’

END configuration information entry

##

library("WebDevelopR")

The form in sample-core.html contains the input field

"data". This R script can access that input through the

form.data or file.details functions.

It can also access the sessionID through form.data.

submitted.data <- form.data()

sessionID = submitted.data[["sessionID"]]

Save the data file so that it can be accessed by the second R

script in order to create the plot. We put the session ID in

the file name so that the file won’t be overwritten by

another user’s submission.

file <- submitted.data[["data"]]

data <- read.csv(file)

save(data, file = paste(FILE_WRITE_DIR, ’session’, sessionID,

’-loaded-data.RData’, sep=’’))

Output some XML with the names of variables in the uploaded

data file. This will be used to populate the drop-down menus

on the web page.

variables <- colnames(data)

for(i in 1:length(variables)) {

cat("<var",i,">",variables[i],"</var",i,">\n",sep=’’)

}

Output some XML with the sessionID. We need to pass this on

to the second R script so that it can read in the correct

data file.

cat("<sessionID>",sessionID,"</sessionID>",sep=’’)

The second script creates the plot based on the user input and saves it as a graphic file on
the server. It then prints HTML code to include the image on the web page.

##

Enter configuration information

The location where the uploaded file was stored

FILE_READ_DIR <- ’/var/www/system/’

22 WebDevelopR: A Website Development Package for R

The location where the plot should be stored

RESULTS_DIR <- ’/var/www/html/results/’

The relative web path to the location where the plot is stored

WEB_PATH_RESULTS_DIR <- ’/results/’

END configuration information entry

##

library("WebDevelopR")

The form in sample.html contains input fields for

"xVar", "yVar", "method", and "firstSessionID".

This R file can access these inputs through the elements

associated with each of those names of the list returned by form.data.

submitted.data <- form.data()

Read in data from the previously uploaded file.

load(paste(FILE_READ_DIR, ’session’, submitted.data[["firstSessionID"]],

’-loaded-data.RData’, sep=’’))

Obtain the variables for the x and y axes of the plot selected

by the user.

x_var <- submitted.data[["xVar"]]

y_var <- submitted.data[["yVar"]]

Obtain the plot type for the plot selected by the user

if(submitted.data[["method"]] == "line") {

method = ’l’

} else {

method = ’p’

}

Create the plot

png(paste(RESULTS_DIR, "session", submitted.data[["sessionID"]], "-",

"image.png", sep = ""), width = 600, height = 600);

plot(data[, x_var], data[, y_var], type = method, xlab = x_var, ylab = y_var)

garbage <- dev.off()

Output an image tag which will be inserted into the web page.

cat("<imgTagContainer>\n");

cat("<img src=\"", WEB_PATH_RESULTS_DIR, "session", submitted.data[["sessionID"]],

"-image.png\" width=\"100%\" >\n", sep = "");

cat("</imgTagContainer>");

Evan L. Ray, Peter Krafft, John Staudenmayer 23

C. Set Up and Configuration

There are seven major tasks to do in order to start using WebDevelopR: (1) Install a Perl

interpreter and necessary Perl modules, (2) Install and configure a web server, (3) Install
WebDevelopR, (4) Copy files included with WebDevelopR to appropriate locations on your
server and set file permissions, (5) Edit configuration settings in CGI and Javascript files,
(6) Modify the provided index.html file to include form elements for site users to enter
input, and (7) Modify your R script to use submitted form data and provide output to site
users. Each of these tasks is discussed in a Subsection of this Appendix. Note that the
package has been tested with Linux and Windows; we expect that it would work with other
operating systems as well, but have not tested this.

C.1. Install a Perl interpreter and necessary Perl modules

Perl interpreters are included with a standard installation of most Unix-like operating systems.
If you do not have Perl, see your operating system documentation for instructions on how to
install it. For Windows, you’ll need to install an implementation of Perl such as Strawberry
Perl (http://strawberryperl.com/) or ActivePerl (http://www.activestate.com/activeperl).

You will also need to ensure that the following Perl Modules are installed (typically, they will
be by default):

• CGI

• Fcntl

• HTML::Entities

• Time::HiRes

• threads

You can check whether a Perl module is installed by entering perl -MMODULENAME -e 1

at a command prompt (with “MODULENAME” replaced by the name of the module you are
checking). For instance, to check whether the HTML::Entities module is installed, enter
perl -MHTML::Entities -e 1.

If you don’t see an error message in response to this command, the module is installed. If
you do see an error message, you’ll have to install the module. See the documentation at
http://www.cpan.org/misc/cpan-faq.html#How_install_Perl_modules for instructions.

C.2. Install and configure a web server

There are many options for which web server you want to use, and installation and configura-
tion details will vary with what solution you choose and which operating system you are using.
The Apache HTTP server is one common choice; we provide brief instructions for installing
and configuring it in a Windows environment here. Details for installation and configuration of
Apache in a Unix environment depend on the version of Unix you are using; see documentation
for your distribution for more guidance. Further documentation for Apache is also available
online at http://httpd.apache.org/docs/2.2/, and more detailed instructions for installa-
tion under Windows are at http://httpd.apache.org/docs/2.2/platform/windows.html.

24 WebDevelopR: A Website Development Package for R

Please note that these instructions are intended to get you “up and running” quickly. We
make no guarantees about the security of the configuration you’ll end up with by following
these instructions; you should read the documentation for more information.

Installation Instructions for Apache in a Windows Environment:

• First, download the software from http://httpd.apache.org/download.cgi In writ-
ing these instructions, I used the file “Win32 Binary without crypto (no mod ssl) (MSI
Installer): httpd-2.2.19-win32-x86-no_ssl.msi”; you could look for something sim-
ilar. When you’ve downloaded the file, verify its integrity by following the instructions
on the download page.

• Run the installation wizard and follow the prompts to complete the installation. In
this process, consider choosing a different location to install the program to, such as
C:\\Apache. This can prevent some problems with restrictive permissions that Windows
sets for files and folders under C:\\Program Files.

• Edit configuration settings to enable CGI scripts.

– Open the configuration file. In the Start Menu, find the “Apache HTTP Server
2.2” folder (the name may be slightly different), the “Configure Apache Server”
subfolder, and choose “Edit the Apache httpd.conf Configuration File”. You can
edit this configuration file in a text editor such as notepad.

– Make sure the line “LoadModule cgi_module modules/mod_cgi.so” appears in
this file and is not commented out (i.e., there is not a ‘#’ at the beginning of this
line).

– Make sure a line like “ScriptAlias /cgi-bin/ "C:/Apache/cgi-bin/"” appears
in the file and is not commented out (i.e., there is not a ‘#’ at the beginning of
this line).

– Note the locations of the DocumentRoot and the cgi-bin directory. You will copy
the necessary files to these locations when you install WebDevelopR (see Section
C.4 below).

– Note the port that the web server is listening on, specified by the Listen directive.
It is most convenient if this is set to 80.

– Make sure the web server is started by clicking the “Start Apache in Console”
shortcut in the Apache folder in the Start Menu. Then test it to make sure it is
working by opening a browser and going to http://localhost/. You should
see a default page provided by Apache. If you don’t, see the documentation
at http://httpd.apache.org/docs/2.2/platform/windows.html for a more de-
tailed installation guide to troubleshoot.

– Also test to make sure that your web server can run CGI scripts by going to
http://localhost/cgi-bin/printenv.pl. (You may have to edit the first line of
this script to point to the location of the Perl interpreter on your computer.) This
is a simple CGI script provided by the Apache server which prints the environment
variables. If you do not see any output from this script, see the documentation
at http://httpd.apache.org/docs/2.2/howto/cgi.html for troubleshooting in-
formation.

Evan L. Ray, Peter Krafft, John Staudenmayer 25

C.3. Install WebDevelopR

Installing the package can be done as usual, with one caveat: if your webserver will run with
a different username than yours (probably a good idea), you may need to install the package
to a site library to ensure that an instance of R created by your web server will have access
to the package. This can be achieved with the lib argument to install.packages. See
?libPaths and ?install.packages in R for more information.

C.4. Copy files and set file permissions

After you have installed WebDevelopR, you will need to copy several files from the installation
directory of the package to locations where the web server will access them. The files to copy
will be in either the turnkey or developer subdirectory of the package installtion directory,
depending on which version of the package you are using. Each of these directories contains
three subdirectories with files to copy: cgi-bin, system, and html.

cgi-bin folder: Copy the contents of the cgi-bin folder in the installation directory to
your web server’s cgi-bin folder. The files to copy depend on whether you are using the
turnkey version or the developer version of WebDevelopR.

For the turnkey version:

• displayResults.cgi

• preProcessForm.cgi

• processForm.cgi

• R.cgi

• statusCheck.cgi

• Also place R script(s) you want the website to run in the cgi-bin folder. To try out
our example, copy the file example-turnkey.R

For the developer version:

• WebDevelopR-dev.cgi

• Also place R script(s) you want the website to run in the cgi-bin folder. To try out
our example, copy the files example-dev1.R and example-dev2.R.

You can typically find the location of the cgi-bin folder in your web server’s configuration
file. For instance, in Apache, this folder is specified by the ScriptAlias directive in the
configuration file.

Set the permissions so that your web server can read and execute the files in the cgi-bin

directory. On a Unix-like system, if your web server runs under a different username than yours
the appropriate permissions are 755 for these files. For example, you can set the appropriate
permissions for the R.cgi file by entering chmod 755 R.cgi at a command prompt when you
are in the cgi-bin folder of your web server. In a Windows environment, these permissions

26 WebDevelopR: A Website Development Package for R

can be set in the dialog box brought up by right-clicking on the files and choosing“Properties”.
The specific permissions you need to choose depend on the version of Windows you are using,
but the idea is to allow the web server to have read and execute permissions for these files
while restricting other permissions as much as possible. On my version of Windows 7, that
means setting Write permissions to “Deny”.

On Unix-like systems, the permissions for the cgi-bin folder itself should be 711, so that the
web server can access files in it (but it does not need to be able to list files there or write to
the folder). On Windows 7, again we set Write permissions to “Deny”. Once you have made
these changes to the permissions, test running a CGI script such as printenv.pl (which is
included with Apache) to be sure that the web server can run CGI scripts.

system folder: Create a directory outside of your web server’s document root and the
cgi-bin where “system” files can be stored and copy the contents of the system folder in
the installation directory to it. Your web server should have read and write access to the
files in this directory and read, write, and execute permissions for the directory; on Unix-like
systems, this corresponds to permissions of 666 for the files and 777 for the directory.

html folder: If you are using the developer version of the package, you will be writing
your own HTML files, so you don’t need to copy any files here unless you want to view our
examples. If you want to try out the examples for the developer version of the package or
if you are using the turnkey version, copy the contents of the html folder in the appropriate
subdirectory of the installation directory of WebDevelopR to your web server’s html folder
(or equivalent – for the Apache server on Windows, this folder is named htdocs). You can
typically find the location of the html folder in your web server’s configuration file. In Apache,
this folder is specified by the DocumentRoot directive in the configuration file.

Set the permissions of the .html files in the html folder, the .jpg and .gif files in the
images subfolder, the .js files in the scripts subfolder, and the style.css file in the style
subfolder so that the web server has read access to them. On Unix-like operating systems, the
appropriate permissions for these files are given by 644. On Windows 7, set Write permissions
for these files to “Deny”. On Unix, the web server needs to have execute permissions for these
folders so that it can access files in them; the permissions for these folders should be set to
711. On Windows, deny write access to these folders.

If you are using the complete version of the package and your R script will be writing files for
the site user to view, such as images or .csv files, the web server should have write and execute
permissions for the results subfolder of the html folder. On Unix, the appropriate permis-
sions are given by 733, and on Windows 7 no changes should be made to the permissions. If
your script does not need to create output files, you can remove this folder.

C.5. Edit Configuration Settings

Configuration settings are located at the beginning of the .cgi files in the cgi-bin folder, and
(for the turnkey version of the package) in the JavaScript files formSubmitScript.js and
resultsScript.js in the html/scripts folder, as well as the index.html file in the html

folder. A list of all files in which configuration settings should be edited and the meaning
of those configuration settings is below. Note that many of these configuration settings have

Evan L. Ray, Peter Krafft, John Staudenmayer 27

default values that will work for most users, and therefore may not need to be edited. These
settings are indicated with a “(Default value OK)” flag.

For the developer version, all configuration settings are in the file WebDevelopR-dev.cgi in
the cgi-bin directory. The configuration settings in this file are:

• On the first line of the script, make sure the location of the Perl interpreter is specified
correctly. The format should be something like #! /usr/bin/perl -wT on Unix-like
operating systems, or #! c:/strawberryPerl/perl/bin/perl.exe -wT on Windows.

• $CGI::DISABLE_UPLOADS This setting determines whether file uploads are disabled (1)
or enabled (0). It is recommended that you disable uploads if they are not required for
your web application. This can prevent denial of service attacks on your server in which
many files are uploaded.

• $CGI::POST_MAX The size restriction (in bytes) for the total upload including any files
uploaded and other data entered or selections made in the web form.

• $system_path The full local server path to the directory where “system”files are stored.
The web server should have read/write access to this directory, but it should not be
viewable over the internet (i.e., it should be located outside the document root of your
web server).

• $R_path The full local server path to R, including the executable. On a Linux machine,
this might be something like /usr/bin/R

• $GS_path The full local server path to Ghostscript, including the executable. On a
Linux machine, this might be something like /usr/bin/gs

• $R_scripts The name of the R script(s) you want to run. If you want to run more than
one script, enter them in a string separated by commas (but no whitespace).

• $data_type The data type to be returned to the user’s browser. Should be "HTML",
"XML", or "JSON".

• $new_path The value the PATH environment variable will be set to before R is called
(this is done for security reasons). On Linux, this can be an empty string; on Windows,
it should include C:\\Windows\\system32.

For the turnkey version of the site, the same configuration settings for the CGI scripts often
appear in multiple files. The following table lists each configuration setting for the CGI scripts,
the files they appear in, and gives a description of the setting. In addition to these settings,
make sure the location of the Perl interpreter is specified correctly on the first line of each
script. The format should be something like #!c:/strawberryPerl/perl/bin/perl.exe -wT

on Windows, or #! /usr/bin/perl -wT on Unix-like operating systems.

28 WebDevelopR: A Website Development Package for R

Table 3: Configuration settings in CGI scripts for the com-
plete version of WebDevelopR

Variable Name Files to Edit Description of Setting

$CGI::DISABLE_UPLOADS preProcessForm.cgi

processForm.cgi

This setting determines whether
file uploads are disabled (1) or
enabled (0). It is recommended
that you disable uploads if they
are not required for your web ap-
plication. This can prevent de-
nial of service attacks on your
server in which many files are up-
loaded.

$CGI::POST_MAX preProcessForm.cgi

processForm.cgi

The size restriction (in bytes) for
the total upload including any
files uploaded and other data en-
tered or selections made in the
web form.

$GS_path processForm.cgi

R.cgi

The full local server path to
Ghostscript, including the exe-
cutable. On a Linux machine,
this might be something like
/usr/bin/gs

$new_path processForm.cgi

R.cgi

The value the PATH environment
variable will be set to before
R is called (this is done for
security reasons). On Linux,
this can be an empty string;
on Windows, it should include
C:\\Windows\\system32.

$page_header_text displayResults.cgi

processform.cgi

Header text for the web page –
appears in large lettering at the
top of the web page.

$R_path processForm.cgi

R.cgi

The full local server path to R,
including the executable. On
a Linux machine, this might be
something like /usr/bin/R

$R_script processForm.cgi

R.cgi

The name of the R script you
want to run.

$results_page_title displayResults.cgi

processform.cgi

The title of the web page – typ-
ically displayed in the bar at the
top of the user’s web browser.

$results_path processForm.cgi

R.cgi

The full local server path to the
results subfolder of the html di-
rectory.

Evan L. Ray, Peter Krafft, John Staudenmayer 29

Table 3: CGI script configuration settings (continued)

Variable Name Files to Edit Description of Setting

$system_path displayResults.cgi

preProcessForm.cgi

processForm.cgi

R.cgi

statusCheck.cgi

The full local server path to the
directory where “system”files are
stored, as created in Subsection
C.4 above.

$cgibin_web_path displayResults.cgi (Default value OK) The relative
web path to the cgi-bin directory,
where CGI scripts for the website
are stored – probably something
like /cgi-bin/

$images_web_path displayResults.cgi

processform.cgi

(Default value OK) The relative
web path to the images directory,
where image files for the website
are stored – probably something
like /images/

$results_web_path processForm.cgi

R.cgi

(Default value OK) The relative
web path to the results directory,
where any files you create for the
website user during your analy-
sis are stored (e.g. image and/or
.csv files) – probably something
like /results/

$scripts_web_path displayResults.cgi (Default value OK) The relative
web path to the style directory,
where .js javascript files for the
website are stored – probably
something like /scripts/

$style_web_path displayResults.cgi

processform.cgi

(Default value OK) The relative
web path to the style directory,
where .css style files for the web-
site are stored.

There are also some configuration settings in the JavaScript files in the html/scripts direc-
tory:

• formSubmitScript.js

– cgibinDir (Default value OK) The relative web path to the cgi-bin directory,
where CGI scripts for the website are stored – probably something like /cgi-bin/

• resultsScript.js

– statusCheckFrequency (Default value OK) The number of seconds to wait be-
tween polling the server for status updates.

30 WebDevelopR: A Website Development Package for R

– imagesDir (Default value OK) The relative web path to the images directory,
where image files for the website are stored – probably something like /images/

C.6. Edit/create HTML file(s)

The next step is to create the HTML pages for your site users to interact with your application.
For the turnkey version of the package, you can do this by modifying index.html to provide
the necessary form elements and instructions. This file has examples of all standard HTML
form elements for your reference. Setting up your document with a similar structure to the
example will allow predefined style rules to lay out the form consistently. Logically related
form elements should be contained within a <fieldset>...</fieldset> tag, instruction
text should be enclosed in a <p>...</p> tag, and each form element should consist of a
<label>...</label> tag and some sort of form input element, both enclosed within a <div

class="formItem">...</div> tag. For more thorough documentation and examples of form
input elements, see http://www.w3schools.com/html/html_forms.asp.

There are also several other aspects of the included index.html file to modify:

• On line 15, edit the title text. This text is typically displayed in the bar at the top of
the user’s web browser.

• (Default value OK) On line 21, if necessary, edit the relative web path for the style.css
file.

• (Default value OK) On lines 27 - 29, if necessary, edit the relative web paths for the
javascript files.

• On line 40, edit the header text. This text is displayed in large text near the top of the
web page.

• (Default value OK) On line 58, if necessary, edit the relative web path for the process-
Form.cgi script.

C.7. Modify your R script

You will need to update your R script in two ways.

First, you will want to make use of any data or options specified by the user in the web form.
You can access this information via the form.data and file.details functions, as discussed
in Section 3.1.1 above. Note that no checks have been done to ensure that form data exists or
is what you were expecting (e.g., that the user didn’t actually type letters into a field where
you expected them to enter a number). You should explicitly check this in your R script and
provide feedback to the user if something was entered incorrectly.

Second, you will typically want to display results of the analysis to the web site user. As
discussed above, the package provides some utility functions to make it easier to embed
images and links to data files in the web page, as well as to directly print R objects. In
addition to this, you can use the cat function to print text (including HTML tags) to the
user’s browser. To ensure that all browsers process your output correctly, be sure that your
HTML output is well-formed (i.e. that each opening tag has a matching closing tag and that

Evan L. Ray, Peter Krafft, John Staudenmayer 31

a tag that is opened inside of another tag is closed before the outer tag). See the example
script in Section 3.1.3 for how this works.

Your R script should be placed in the cgi-bin directory of your web server.

D. Utility Functions

We have provided a few utility functions that you can use in your R scripts to perform common
tasks. In this appendix we document these functions. See also Section 3.1.3 for an example
with some context. Note that these functions are only relevant to the “complete” version of
the package, since they rely on the structure of this particular web application. However, the
code may be useful as a reference to developers who encounter similar needs when using the
“core” version.

• status.update

Description

Used to provide status updates to the user.

Usage

status.update(status, append=FALSE)

Arguments

status The status message to be displayed to the site user.

append Should the status be added to previous status updates, or should it replace
previous status updates?

Details

This function writes status update text to the session-specific temporary file used for
storing status updates. These updates are automatically retrieved and displayed by the
user’s browser while the R script is running.

Value

None

Examples

status.update("Processing your submission - Stage 1")

status.update("Processing your submission - Stage 2", append=TRUE)

• web.jpeg and web.png

Description Used to create .png and .jpeg image files (respectively), and to embed
these images in the results page.

Usage

web.jpeg(file.name="image.jpeg", attributes.text="", centered=TRUE, ...)

web.png(file.name="image.png", attributes.text="", centered=TRUE, ...)

Arguments

32 WebDevelopR: A Website Development Package for R

file.name The name of the image file. Note that file.name will be pre-pended with
“session”, the session ID, and a dash. For example, if you call web.jpeg with the
default argument of file.name = "image.jpeg", and the session ID is 23, the file
name actually used for the image will be “session23-image.jpeg”.

attributes.text This text will be used for the attributes text of the HTML image tag.

centered Indicates whether the image should be centered when it is displayed to the
user in the results page.

... Arguments to jpeg or png, respectively.

Details

These functions are wrappers for jpeg and png. The functions store the image file in
the results directory on your web server (this directory is specified in the configuration
section at the top of the processForm.cgi and R.cgi CGI scripts). They also create
the necessary HTML tags to insert the image into the results page that is displayed to
the site user.

Note that in order to allow the web site user to access these files, they will not be deleted
automatically. You should periodically review files in the results directory and clear old
ones out.

Value

None

Examples

web.jpeg("plot.jpeg", attributes.text="alt=\"Your Plot\"", width=600,

height=300)

plot(x=rnorm(10), y=rnorm(10))

points(x=0, y=0, pch="+", col="red")

garbage <- dev.off() # capture the output from calling dev.off to keep

it from being displayed in the results page

web.png("plot.png", attributes.text="alt=\"Your Plot\"", width=600,

height=300)

plot(x=rnorm(10), y=rnorm(10))

points(x=0, y=0, pch="+", col="red")

garbage <- dev.off() # capture the output from calling dev.off to keep

it from being displayed in the results page

• web.print

Description

Prints objects embedded in a nicely formatted <pre> ... </pre> HTML environment
(similar to verbatim in LaTeX).

Usage

web.print(objects, width = 80, leading.spaces.num = 2,

continued.line.indent.num = 6)

Evan L. Ray, Peter Krafft, John Staudenmayer 33

Arguments

objects A list of objects to print. (Note that objects is iterated over and every com-
ponent is printed; if you don’t embed the objects you want to print in a list, this could
result in some funny behavior. This is done to allow you to print multiple objects within
the same shaded area on the results page.)

width Number of characters per line (not including leading.spaces.num but including
continued.line.indent.num).

leading.spaces.num Number of spaces to insert before each line. These spaces create
some padding in the user display.

continued.line.indent.num If a line of more than width characters is broken, the
number of extra spaces to insert before the continued line.

Details

web.print allows you to send the result of a call to the print function to the user’s
web browser. The output is embedded in a <pre> tag, which is displayed in the browser
with a fixed width font and a shaded background.

Value

None

Examples

data(iris)

web.print(iris$Petal.Length) #each vector element is on a separate line

web.print(list(iris$Petal.Length)) #probably want you wanted

fit <- lm(Petal.Length ~ Petal.Width + Sepal.Length, data=iris)

web.print(list(summary(fit), summary(fit)$cov.unscaled))

• web.table, web.csv, and web.csv2

Description

Prints a data frame or matrix to a .csv format file and inserts a link to the file in the
results page displayed to the website user.

Usage

web.table(x, file.name = "table.txt", before.link.text="Click ",

link.text="here",

after.link.text=" to download your file. (The link opens in a new

window or tab; alternatively, you can right-click or option-click on

the link and choose "Save As..." to download the file.)",

open.new.window=TRUE, attributes.text="", enclose.in.p = TRUE, ...)

web.csv(x, file.name = "table.csv", before.link.text="Click ",

link.text="here",

after.link.text=" to download your file. (The link opens in a new

window or tab; alternatively, you can right-click or option-click on

34 WebDevelopR: A Website Development Package for R

the link and choose "Save As..." to download the file.)",

open.new.window=TRUE, attributes.text="", enclose.in.p = TRUE, ...)

web.csv2(x, file.name = "table.csv", before.link.text="Click ",

link.text="here",

after.link.text=" to download your file. (The link opens in a new

window or tab; alternatively, you can right-click or option-click on

the link and choose "Save As..." to download the file.)",

open.new.window=TRUE, attributes.text="", enclose.in.p = TRUE, ...)

Arguments

x The object to be written to a file. This is passed on to the write.table, write.csv, or
write.csv2 function, which prefer that x be a matrix or data frame. If it is another data
type, an attempt is made to coerce x to a data frame.

file.name The name of the output file. Note that file.name will be pre-pended with
“session”, the session ID, and a dash. For example, if you call web.csv with the default
argument of file.name = "table.csv", and the session ID is 23, the file name actually
used for the image will be “session23-table.csv”.

before.link.text Text to be displayed in the results page immediately before the link.

link.text The clickable text displayed in the results page as a link to the output file.

after.link.text Text to be displayed in the results page immediately after the link.

open.new.window Indicates whether the link should be set to open in a new window.
The default is TRUE; this prevents users from accidentally opening the csv file in the
same screen and then having to re-submit their data for analysis to see other results.
Note that this option works by appending target="_blank" to the attributes text.

attributes.text Attributes text for the HTML link.

enclose.in.p If TRUE, before.link.text, the link, and after.link.text are all
placed within a paragraph HTML element. Otherwise, this text is not placed within a
block level HTML element.

... Arguments to write.table, write.csv, or write.csv2, respectively.

Details

These functions are wrappers for write.table, write.csv, and write.csv2, respec-
tively. The functions store the output file in the results directory on your web server (this
directory is specified in the configuration section at the top of the processForm.cgi

and R.cgi CGI scripts). They also create the necessary HTML tags to insert a link to
the output file into the results page that is displayed to the site user.

Note that these files will not be deleted automatically. You should periodically review
files in the results directory and clear old ones out.

Value

None

Examples

Evan L. Ray, Peter Krafft, John Staudenmayer 35

data(iris)

web.table(iris, "iris.txt")

web.csv(iris, "iris.csv")

web.csv2(iris, "iris2.csv")

E. Resources for Web Development

In this Appendix we list a few resources that we have found helpful in learning about web
development, although whatever is available at your local book store will probably suffice too.

The following websites cover web technologies like HTML, CSS, and JavaScript:

• http://www.webplatform.org/

• http://reference.sitepoint.com/css

There are also many JavaScript libraries that make developing web applications much easier.
One popular alternative is the jQuery library. Tutorials and documentation for jQuery are
online at http://jquery.com/. An extensive list of alternatives to jQuery is available on
Wikipedia at http://en.wikipedia.org/wiki/List_of_JavaScript_libraries.

We have found the books Web Design in a Nutshell (Robbins 2006) and CSS Web Site Design
(Meyer 2007) to be helpful in learning about HTML and CSS. JavaScript: The Definitive Guide
(Flanagan 2011) discusses JavaScript at an intermediate to advanced level. Ajax in Action
(Crane, Pascarello, and James 2006) discusses all aspects of AJAX, including what AJAX is,
what can be accomplished with it, how web applications using AJAX can be organized, an
introduction to JavaScript, and a discussion of server-side technologies.

The R packages R2HTML (Lecoutre 2003) and brew (Horner 2011) can be helpful in gener-
ating HTML from R.

Affiliation:

Evan L. Ray
Department of Mathematics and Statistics
University of Massachusetts, Amherst
Lederle Graduate Research Tower, 710 North Pleasant Street
Amherst, Massachusetts 01003, U.S.A.
E-mail: ray@math.umass.edu

mailto:ray@math.umass.edu

	Introduction
	Existing approaches and technical background
	New approach
	Turnkey version: For people with little experience as web programmers
	Overview
	Package Use and Installation
	Example

	Developer version: For more experienced web programmers
	Overview
	Package Use and Installation
	Example

	Some notes about security
	Conclusions
	R Code for Turnkey Example
	R Code for Developer Example
	Set Up and Configuration
	Install a Perl interpreter and necessary Perl modules
	Install and configure a web server
	Install WebDevelopR
	Copy files and set file permissions
	Edit Configuration Settings
	Edit/create HTML file(s)
	Modify your R script

	Utility Functions
	Resources for Web Development

