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Introduction

The WeMix package fits a Weighted Mixed model, also known as a multilevel, mixed, or hierarchical linear
model (HLM). The weights could be inverse selection probabilities, such as those developed for an education
survey where schools are sampled probabilistically, and then students inside of those schools are sampled
probabilistically. Although mixed-effects models are already available in R, WeMix is unique in implementing
methods for mixed models using weights at multiple levels.

The package lme4 fits these models when there are no weights or weights only for first-level units (Bates,
Maechler, Bolker, & Walker, 2015) and is recommended for those situations—by default, WeMix uses the
lme4 results as a starting point. WeMix adds the ability to fit models with weights at every level of the model,
similar to GLLAMM (Rabe-Hesketh, Skrondal, & Pickles, 2002; Rabe-Hesketh, Skrondal, & Pickles, 2005;
Rabe-Hesketh & Skrondal, 2006) and maximizes the same likelihood function as GLLAMM. Because the
model applies weights at every level, the units must be nested in “levels”, so WeMix only fits models where
the units have a nested structure.

Installing and Loading WeMix

Inside R, run the following command to install WeMix:

install.packages("WeMix")

Once the package is successfully installed, WeMix can be loaded with the following command:

library(WeMix)

Specifying a Mixed-Effects Model

To illustrate the functionality of WeMix, we will use an example based on publicly available data from the
Programme for International Student Assessment (PISA) 2012 data from the United States (OECD, 2013).
PISA is a repeated multinational assessment of skills and attitudes of 15-year-olds, with students (the unit of
observation) probabilistically sampled within schools (the second-level unit) that are also probabilistically
sampled within the country. In the United States, there were 3,136 student observations in 157 schools. We
provide examples of a model with a random intercept and a model with both a random slope and intercept.

The first model can be specified as the math assessment predicted by a few variables chosen from the PISA
survey:

• Dependent variable: pv1math, a math assessment score
• Independent variables:

– escs: a continuous Socio-Economic Status index

∗This publication was prepared for NCES (National Center for Education Statistics) under Contract No. ED-IES-12-D-
0002 with American Institutes for Research. Mention of trade names, commercial products, or organizations does not imply
endorsement by the U.S. government.

†The authors would like to thank Mike Cohen and Dan Sherman for reviewing this document, and Yuqi Liao and Bitnara
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– sc14q02 school questionnaire item: “Is your school’s capacity to provide instruction hindered by
any of the following. . . A lack of qualified mathematics teachers.” (levels: “A lot”; “To some
extent”; “Very little”; “Not at all”, the reference gorup)

– st04q02 student gender (levels: “Male” and “Female”, the reference group)
– st29q03 student questionnaire item: “I look forward to math lessons” (levels: “Strongly agree”;

“Agree”; “Disagree”; “Strongly disagree”, the reference group)
• School level random effect: school intercept
• Student level weights: pwt1

• School level weights: pwt2

In the second model, a second random effect is added at the school level for the escs variable, but there is
no covariance between the two random effects.

Where estimation is done by quadrature, 27 quadrature points are used for the one random effect model and
13 for the two random effects model.

An appendix describes the transformation used to prepare the data for analysis.

The WeMix call for this model, using a data.frame containing the PISA 2012 data for the United States
and named “data”, would be:

# model with one random effect

mix(pv1math ~ st29q03 + sc14q02 +st04q01+escs+ (1|schoolid), data=data,

weights=c("pwt1", "pwt2"), nQuad=27, verbose=FALSE, fast=TRUE,run=TRUE)

# model with two random effects assuming zero correlation between the two

mix(pv1math ~ st29q03 + sc14q02 +st04q01+escs+ (1|schoolid)+ (0+escs|schoolid), data=data,

weights=c("pwt1", "pwt2"), nQuad=13, verbose=FALSE, fast=TRUE,run=TRUE)

Note that the syntax for the model formula is the same syntax one would use to specify a model using lme4.
Thus, in the random slope and intercept model, the slope and intercept are in separate terms in order to
constrain their covariance to be zero.

Comparison to Alternate Software

For readers familiar with specification of other software, this section shows results in comparison with those
from Stata, SAS, and HLM. When possible, the code specifies a random slope model and then a random
slope and intercept model with the covariance of slope and intercept fixed to be zero. The models are fitted
by maximum likelihood estimation and example code in Stata GLLAMM, Stata MIXED, SAS GLIMMIX,
and HLM are shown in the appendix.

Table 1 shows the results of the model with a single random effect where WeMix, GLLAMM, Stata MIXED,
and SAS show agreement on the likelihood, variance estimates of random effects, and fixed effects. HLM
normalizes the weights (for both students and schools) and so produces somewhat different results. Although
the estimates are very similar (as reported here to the fith digit), there are some differences in the standard
errors of the random effects. Most notably, Stata MIXED calculates a lower standard error for the random
intercept than other methods, and HLM does not calculate standard errors for random effects. All the
programs differ somewhat in the standard errors estimated for the fixed effects, and WeMix most closely
matches the results from GLLAMM.

Table 2 shows the results of the model with two random effects. Here the results are similar.WeMix, GLLAMM,
Stata MIXED, and SAS show agreement on the likelihood, variance term estimates of random effects, and
fixed effects. HLMs fit a different model and so get a different result. Similar to the one random effect
model, Stata MIXED reports a lower standard error for the random intercept. It is, however, noteworthy
that Stata MIXED reports a higher standard error for the random slope than the other methods. In terms of
the standard errors of the fixed effects, there are differences between the estimates of all the programs, and
WeMix again most closely matches GLLAMM.
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Table 1: Results for Random Intercept Model
WeMix Stata: GLLAMM Stata: MIXED SAS HLM1

Run Time 00:31 02:00 00:30 00:03 00:10
Log-Likelihood -2578035.4 -2578035.4 -2578035.4 -2578035.5 -17965.4

Random Effects
Var Random Intercept 1106.6 1106.6 1106.6 1106.6 1020.0
Var Residual 5109.5 5109.5 5109.5 5109.5 5061.1

Standard Error (SE) of Random Effects
SE Random Intercept 289.88 289.88 280.80 288.95 Not Calculated
SE Residual 202.53 202.53 201.88 201.88 Not Calculated

Fixed Effects
(Intercept) 494.73 494.73 494.73 494.73 494.47
st29q03: Agree -24.115 -24.115 -24.115 -24.115 -24.119
st29q03: Strongly disagree -54.678 -54.678 -54.678 -54.678 -54.788
st29q03: Disagree -26.040 -26.040 -26.040 -26.040 -26.109
sc14q02: A lot -24.507 -24.507 -24.507 -24.507 -24.504
sc14q02: To some extent -10.787 -10.787 -10.787 10.787 -10.362
sc14q02: Very little -18.035 -18.035 -18.035 -18.035 -19.505
st04q01: Male 12.127 12.127 12.127 12.127 12.164
escs 28.729 28.729 28.729 28.729 28.332

Standard Error of Fixed Effects
SE (Intercept) 7.1817 7.1818 7.0885 7.1586 8.6259
SE st29q03: Agree 7.2196 7.2196 7.2182 7.1966 7.1401
SE st29q03: Strongly disagree 12.234 12.2335 12.261 12.1945 12.108
SE st29q03: Disagree 6.3425 6.3425 6.3558 6.3223 6.2607
SE sc14q02: A lot 8.1732 8.1732 8.1871 8.1471 7.2026
SE sc14q02: To some extent 13.646 13.646 13.528 13.603 13.587
SE sc14q02: Very little 14.020 14.020 14.116 13.975 15.285
SE st04q01: Male 3.7203 3.7203 3.7305 3.7085 3.7008
SE escs 2.6071 2.6071 2.5621 2.5988 2.5249
1 HLM requires that the weights are normalized before they are fit so results do not match exactly.
Also, HLM cannot set slope and intercept covariance to 0 (Raudenbush, Bryk, Cheong, Congdon, & Toit, 2016).
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Table 2: Results for Random Intercept and Slope Model
WeMix Stata: GLLAMM Stata: MIXED SAS HLM1

Run Time 3:42 20:00 00:30 00:10 00:10
Log-Likelihood -25777729.6 -25777729.6 -25777729.6 -2577729.5 -17964.0

Random Effects
Var of Intercept 1075.1 1075.1 1075.1 1075.11 984.87
Var of Slope of escs 94.036 94.034 94.035 94.036 56.277
Var of Residual 5048.6 5048.6 5048.6 5048.6 5010.3

Standard Error (SE) of Random Effects
SE Random Intercept 271.05 271.06 265.38 270.19 Not Calculated
SE Slope of escs 80.129 80.130 82.31 79.873 Not Calculated
SE Residual 185.63 185.63 184.57 185.04 Not Calculated

Fixed Effects
(Intercept) 494.22 494.22 494.22 494.22 494.03
st29q03: Agree -23.993 -23.993 -23.993 -23.993 -24.012
st29q03: Strongly disagree -54.330 -54.330 -54.330 -54.330 -54.471
st29q03: Disagree -25.813 -25.813 -25.813 -25.813 -27.782
sc14q02: A lot -28.232 -28.232 -28.232 -28.232 -27.782
sc14q02: To some extent -11.680 -11.680 -11.680 -11.680 -11.048
sc14q02: Very little -18.076 -18.076 -18.075 -18.076 -19.513
st04q01: Male 12.230 12.230 12.230 12.230 12.252
escs 29.096 29.096 29.096 29.096 28.625

Standard Error of Fixed Effects
SE (Intercept) 7.1473 7.1473 7.0273 7.1243 7.1488
SE st29q03: Agree 7.2000 7.2000 7.1979 7.1770 7.1235
SE st29q03: Strongly disagree 12.324 12.434 12.340 12.395 12.179
SE st29q03: Disagree 6.3242 6.3242 6.2991 6.3040 7.3716
SE sc14q02: A lot 7.8182 7.8181 7.2185 7.7931 7.3716
SE sc14q02: To some extent 13.622 13.621 13.407 13.5782 13.497
SE sc14q02: Very little 13.728 13.728 13.835 13.6838 15.008
SE st04q01: Male 3.7252 3.7252 3.7381 3.7134 3.7084
SE escs 2.6056 2.6056 2.6763 2.5973 2.6105
1 HLM requires that the weights are normalized before they are fit, so results do not match exactly.
Also, HLM cannot set slope and intercept covariance to 0 (Raudenbush, Bryk, Cheong, Congdon, & Toit, 2016).
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Mathematical Specification

This section describes the mathematical methodology behind the estimation of Weighted Mixed models in
WeMix.

The simplest version of this model has two levels and is of the form

y = Xβ + Zu + ǫ , (1)

where y is the vector of outcomes, X is s a matrix of covariates associated with regressors that are assumed
to be fixed, β is the vector of fixed-effect regression coefficients, Z is a matrix of covariates associated with
regressors that are assumed to be random, and u is the vector of random effects. The meaning of u being
random is simply that a level is shared within a group and across groups u ∼ MV N(~0, Σ), where MV N(·, ·)
is the multivariate-normal distribution, ~0 is the mean vector of all zeros, and Σ is the covariance matrix of
the MVN.

Hierarchical Linear Models Notation

The models WeMix fits can also be called hierarchical linear model (HLMS; Radenbush & Bryk, 2002) where
the first level is of the form:

yij = β0j + Xβ1j + ǫij , (2)

So, the second level could then be, for a random slope and intercept model:

β0j = γ00 + δ0j (3)

β1j = γ01 + δ1j , (4)

where δ0j and δ1j are the error terms for the intercept and slope, respectively, and have variances of τ00 and
τ11, respectively, and δ0j and δ1j have covariance τ01.

This is just one example; many other models can also be fit in WeMix. WeMix can fit models that are stated
as an HLM or as a mixed model. For notational convenience for the rest of this document, we will use the
non-HLM mixed model notation.

Multiple Levels

When there are more than two levels, eq. 1 can be rewritten as

y = Xβ +

L
∑

l=2

Z(l)u(l) + ǫ (5)

where a superscript (l) is added to Z and u to indicate that they are at the lth level. Note: In the summation
above, l starts at l = 2 because there cannot be random effects at the lowest level of observation (l = 1).

Note that WeMix 2.0 does not support three or more levels. Three-level model fitting will be added to the
future WeMix 3.0.

Model Fitting

The central concern in WeMix is properly incorporating sampling weights into the mixed model. Because
each individual or group may have an unequal probability of selection into the sample, the estimate of the
distribution of the MVN must include those weights to correctly estimate the parameters of the distribution.
Also, except for trivial cases, the nested nature of the multilevel model creates a likelihood function that is
not analytically calculable.
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Table 1: Notation
θ vector of all of the fit model parameters fit, including, β and the

nonduplicated elements of the covariate matrices Σ(l). Because
they are integrated out, u is included in θ.

Σ(l) covariance matrix for level l

y response vector
X covariate matrix for fixed effects
β coefficients of the fixed effects

Z(l) covariate matrix for random effects at level l

Z covariate matrix for all random effects
u(l) vector of the random effects at level l

U (l) vector of the random effects at all levels l and higher, (ul, ..., uL)′

w(l) vector of the weights at level l

W matrix of the weights at all levels
kl number of random effects at level l

L number of levels in the model
i subscript denoting the individual
j subscript denoting group

j′ subscript denoting a group within j

L(l) likelihood function at level l

ℓ(l) log-likelihood function at level l

ǫ regression residuals, net of fixed and random effects

We consider the likelihood as a summation at each level, starting with the lowest level. The likelihood is
conditional on the random effects at each higher level and is scaled by the weights at the lowest level.

In the case of the normal distribution (the only link function currently implemented in WeMix), the likelihood
(L(1)) at the individual unit level is given by the equations below. Note that here the subscript i is used to
indicate that this is the the likelihood of the ith individual.

L(1)
i (θ; y, U (l), X, Z, W ) =

1

Σ(1)
φ

(

êi

Σ(1)

)

(6)

Where φ(·) is the standard normal density function and Σ(1) is the residual variance (a scalar). The residuals
vector ê represents the residuals êi for each individual, which is calculated as:

ê = y − Xβ̂ −
L
∑

l=2

Z(l)û(l) , (7)

The conditional likelihood at each higher level is then recursively defined, for the jth unit, at level l (L(l)
j ;

Rabe-Hesketh,Skrondal & Pickles, 2002, eq. 3):

L(l)
j (θ; y, X, Z, W |U (l+1)) =

∫

∞

−∞

...

∫

∞

−∞

g(l)(u(l))
∏

j′

[

L(l−1)
j′ (θ; y, X, Z, W |U (l))

]

w
(l−1)

j′

du
(l)
1 ...du

(l)
kl

(8)

where the subscript j′ that the product is indexed over indicates that the likelihood L(l−1)
j′ (·) is for the units

of level l − 1 nested in unit j. Additionally, g(u(l)) is the empirical Bayes “prior” probability density of the
random effects (at level l) having a value of u(l), so g(·) is a multivariate normal distribution parameterized
by a mean of 0 and variance Σ. The integrals are over the elements of u = (u1, ..., ukl

), where kl is the
number of random effects at level l. It is important to note that each L(l) is independent for each j′. This
allows us to integrate out the values of u for all groups simultaneously, which leaves us with a kl dimensional
integral and is essential to making this problem computationally feasible. At the highest level, the result is
not conditional on any u values, but is otherwise the same.
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For ease of computation and in order to avoid problems with accurate storage of extremely small numbers we
first take the log of the function before maximizing. The log-likelihood function is (Rabe-Hesketh 2006, eq.
1):

ℓ
(l)
j (θ; y, X, Z, W |U (l+1)) = ln







∫

...

∫

g(l−1)(u(l−1)) · exp





∑

j′

w
(l−1)
j′ ℓ

(l−l)
j′ (θ; y, X, Z, W |U (l))



 du
(l)
1 ...du

(l)
kl







(9)

where ℓ
(l)
j (·) is the log-likelihood function for the jth unit at level l.

Unfortunately, there is no closed-form expression for the integral in (10), and so we must evaluate the
likelihood numerically. This is possible in with adaptive Gauss-Hermite quadrature, which is a modification
of Gauss-Hermite quadrature.

First, to evaluate the integral at level l, we must evaluate the integral over kl random effects variables that
have a covariance matrix Σ(l). To avoid dependence, we use a change of variables to create independent and

standard normal distributed vectors v(l). Using the Cholesky decomposition Σ(l) = C(l)
(

C(l)
)T

, the value of

u(l) can then be calculated as u(l) = C(l)v(l).

Adaptive Gauss-Hermite Quadrature

Using the transformation of variables described above,

ℓ
(l)
j (·) =

∫

...

∫

g(l)(u(l)) · exp





∑

j′

w
(l−1)
j′ ℓ

(l−l)
j′ (θ; y, X, Z, W |U (l))



 du(l) (10)

=

∫

φ(v
(l)
kl

)...

∫

φ(v
(l)
1 ) · exp





∑

j′

w
(l−1)
j′ ℓ

(l−l)
j′ (θ; y, X, Z, W |U (l))



 du(l) , (11)

where u(l) is now a function of the v values and φ is the standard normal density.

Quadrature replaces integration with a summation over a finite set of points (known as quadrature points)
and weights so that the sum approximates the integral—we annotate the quadrature points with a tilde so
that, for example, u becomes ũ.

These equations come from Rabe-Hesketh et al. (2002, p.5 eq. 4) and follow from eq. 11.

ℓ
(l)
j (θ; y, X, Z, W |U (l+1))) =

R
∑

r1=1

p(l)
r1

...

R
∑

rkl
=1

p(l)
rkl

· exp





∑

j′

w
(l−1)
j′ ℓ

(l−l)
j′ (θ; y, X, Z, W |ũ(l), U (l+1))



 ,

(12)

where R is the number of quadrature points, p are the quadrature weights, ũ(l) = C(l)ṽ(l) are the quadrature
point locations for each of the random effect vectors. This results in a grid with R quadrature points per
element in u (and v), for a total of Rkl quadrature points, and the summation is over every point in that
grid. The quadrature points and weights come from the statsmod implementation of gaussian quadrature
(Smyth 1998).

While Gauss-Hermite quadrature centers the quadrature points on the prior distribution, adaptive Gauss-
Hermite quadrature (AGHQ) centers the quadrature points on either the likelihood surface or the posterior
distribution. We use the posterior maximum (the likelihood function of which , including g(·)), is detailed
below, but this section is general to AGHQ as detailed in Lui and Pierce 1994, and Hartzel, Agresti, and
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Caffo, 2001; we use notation similar to Hartzel et al., 2001, p.87. The goal of adaptive quadrature is to
reduce the number of quadrature points needed for an accurate evaluation of the integral by centering the
points closer to the bulk of the integral. The location of the points is scaled based on the values of the
likelihood function. To do this, the mode of the likelihood is used to center the points, and the dispersion is
the estimated standard deviation of the likelihood at that point (using the inverse second derivative).

ũ = ω̂j +
√

2Q̂
1/2
j ṽ (13)

where ũ
(l)
i are the quadrature points, ω̂i is a vector of locations for group j, and Q̂j is the matrix that is the

inverse numerical second derivative of the likelihood function evaluated at the unit normal iid points v.

We can then use the adapted quadrature points to calculate the log likelihood as:

ℓ
(l)
j (θ; y, X, Z, W |U (l+1)) =

R
∑

r1=1

p(l)
r1

...

R
∑

rkl
=1

p(l)
rkl

· exp





∑

j′

w
(l−1)
j′ ℓ

(l−1)
j′ (θ; y, XZ, W |ũr1 ...ũrkl

, U (l+1)) + g(ũ(l); Σ(l)) + vT v





(14)

This approximation of the likelihood can then be evaluated and minimized numerically. In this package, we
minimize the function using Newton’s method.

Calculation of Conditional Mode

AGHQ requires an estimated location (ω̂j) and variance Qj for each group. These are calculated by iteratively
finding the conditional mode of the random effects (to find ω̂j) and then using the inverse of the second
derivative of the likelihood surface as an estimate of Qj .

The conditional modes are identified by sequentially increasing levels of l; the software first identifies the
MAP at level 2, and then, using those estimates, uses AGHQ at level 2 to estimate conditional modes at
level 3, and so on.

For each group, the conditional mode is identified using Newton’s method on the likelihood for that unit

(ℓ
(l)
j (·)) at a particular level of u(l), called û, and conditional on an existing estimate of θ,

ℓ
(l)
j (û(l); y, X, Z, W |θ) = ln



g(l)(û(l))
∑

j′

w
(l−1)
j′ ℓ

(l−1)
j′ (θ; y, X, Z, W |û(l))



 (15)

where this formulation implicitly sets all values of U (l) to zero. Note that the values of ℓ
(l−l)
j′ still integrate

out the values of u for all levels below l.

Newton’s method requires a first and second derivative, and these are calculated with numerical derivatives
of the likelihood calculated using numerical quadrature.

Estimate of the Conditional Means

The conditional mean is estimated by simply taking the expected value of each parameter using

E (û|y, X, Z, W , θ) =

∫

∞

−∞
ũ(l−1) · ℓ

(l)
j (û; y, X, Z, W |θ)dû

∫

∞

−∞
ℓ

(l)
j (ũ(l−1); y, X, Z, W |θ)dû

(16)
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Variance Estimation of Random Effects: Sandwich Estimator

The variance estimator was calculated following the method of Rabe-Hesketh & Skrondal, 2006 . Thus, the
variance is expressed as:

var(u) = I−1JI−1 (17)

where I is the pseudo Fisher information and calculated by observing the Fisher information at the maximum
likelihood estimates. Given that the likelihood is twice differentiable, we estimate the Fisher information as
the second derivative (Hessian) of the likelihood evaluated at the maximum likelihood point.

I =
∂2L(·)

∂θ2
(18)

and

J is estimated as

J =
∑

L−1

nL−1

nL−1 − 1

∑

j′

∂LL
j (·)

∂θ
·
[

∂LL
j (·)

∂θ

]T

(19)

where nL−1 represents the number of observations in the (L − 1)th level (i.e., the second from the top level).
And the subscript L − 1 indicates that the outermost sum is over the units j′ in (L − 1)th level.

Here, the derivative of the likelihood function is calcuated numerically and evaluated at the maximum
likelihood point estimates.

Hierarchical Generalized Linear Models

If data comes in nested strucutre and the assumptions of linearity and normality cannot be met even
after applying transformations, Hierarchical Generalized Linear Models (HGLM) offer a possible solution.
There are three components of a HGLM model: a sampling model, a link function, and a structural model
(Raudenbush & Bryk, 2002). Currently WeMix 2.0 supports two models: Gaussian (or normal) sampling
model with identity link function (the default), and Binomial sampling model with logit link function (for
binary outcomes.) Different models can be specified using family argument in mix function. Note that the
first model (Gaussian with identity link) is the default so there is no need to specify family argument.

Binomial With Logit Link Function

This model is used when the data has binary outcomes (i.e. the number of successes in m trials). Here is an
example code using sleepstudy dataset in lme4 package:

library(lme4)

library(WeMix)

ss1 <- sleepstudy

doubles <- c(308, 309, 310) # subject with double obs

# Create weights

ss1$W1 <- ifelse(ss1$Subject %in% doubles, 2, 1)

ss1$W2 <- 1

# Create binary outcome variable called "over300"

ss1$over300 <- ifelse(sleepstudy$Reaction<300,0,1)
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# Run mixed model with random intercept and fixed slope

bi_1 <- mix(over300~ Days + (1|Subject),data=ss1,

family=binomial(link="logit"),verbose=FALSE,

weights=c("W1", "W2"),nQuad=13)

Table 3 shows the output comparison between WeMix and STATA GLLAMM.

Table 3: Results for Binomial Model with Logit Link
WeMix Stata: GLLAMM

Log-Likelihood -93.75179 93.751679
Random Effects

Var Random Intercept 4.127208 4.1335015
Standard Error (SE) of Random Effects

SE Random Intercept 2.966179 2.9815704
Fixed Effects

(Intercept) -3.34411 -3.344987
Days 0.59271 .5928508

Standard Error of Fixed Effects
SE (Intercept) 0.92390 .9250737
SE Days 0.12429 .1244216

Weight Adjustments

WeMix assumes that the weights are already scaled. However, for informational purposes, we describe here
two common methods of scaling.

If there were no total nonresponses at any level, the ideal weights would simply be the inverse selection
probabilities (Pfeffermann, Skinner, Holmes, Goldstein, & Rasbash, 1998). But, because the samples are
adjusted based on demographics, alternative weighting schemes are encouraged in the literature. Carle (2009)
and Rabe-Hesketh et al. (2002) recommend that sample weights be scaled; they cannot simply be the raw
inverse probability of selection because this fails to adequately prevent bias when cluster sizes differ. The
notation is consistent with Carle, 2009.

Method A:

w∗

ij = wij

(

nj
∑

i wij

)

, (20)

where wij are the full sample weights, i indexes the individuals, j indexes the groups, and nj represents the
number of observations in group j.

Method B:

w∗

ij = wij

(

∑

i wij
∑

i w2
ij

)

(21)

These w∗ are then used to scale the likelihood function.

Centering

WeMix 2.0 allows users to incorporate grand- or group-mean centering when fitting mixed-effects models.
In the group-mean centered model, the predictors are centered around the group-level mean. Compared to
Equation (2), the model can be expressed as follows:

yij = β0j + β1j(Xij − X.j) + ǫij , (22)
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and the intercept can be interpreted as the unadjusted mean for group j:

β0j = µYj
(23)

In the grand-mean centered model, the predictors are centered around the overall mean so the model can be
written as follows:

yij = β0j + β1j(Xij − X..) + ǫij , (24)

and the intercept can be interpreted as the adjusted mean for group j:

β0j = µYj
− β1j(Xij − X..) (25)

There are two main advantages of centering the predictors. First of all, centering makes estimates of level-1
coefficients (β0j) and other effects easier to interpret because it decomposes the relationship between predictors
and outcome into within-group and between-group components. Second, it removes high correlations between
the random intercept and slopes, as well as high correlations between first- and second-level predictors and
cross-level interactions (Kreft & de Leeuw, 1998).

The following example shows how to implement group or grand mean centering.

library(lme4) #to use example sleep study data

#create dummy weights

sleepstudy$weight1L1 <- 1

sleepstudy$weight1L2 <- 1

# Group mean centering of the variable Days within group Subject

group_center <- mix(Reaction ~ Days + (1|Subject), data=sleepstudy,

center_group=list("Subject"= ~Days),

weights=c("weight1L1", "weight1L2"), nQuad=13,

verbose=FALSE, fast=TRUE,run=TRUE)

# Grand mean centering of the variable Days

grand_center <- mix(Reaction ~ Days + (1|Subject), data=sleepstudy,

center_grand=~Days,weights=c("weight1L1", "weight1L2"),

nQuad=13, verbose=FALSE, fast=TRUE,run=TRUE)

Appendix: Alternative Software Specifications

For reference, these sections show the specification of the models in Stata’s GLLAMM, Stata’s MIXED, SAS
PROC GLIMMIX, and HLM.

Stata: GLLAMM

In Stata prior to version 14, weighted mixed-effects models could be estimated only with GLLAMM (Rabe-
Heskteh, Skrondal, & Pickles, 2004). The work of GLLAMM authors Rabe-Hesketh, Skrondal, and Pickles
provided the methods that we used in our implementation of weighted mixed models in WeMix.

import delimited "PISA2012_USA.csv"

generate intercept = 1

eq intercept: intercept

eq slope: escs
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tabulate st29q03, generate (st29q03d)

tabulate sc14q02, generate (sc14q02d)

tabulate st04q01, generate (st04q01d)

//Random intercept model

gllamm pv1math st29q03d1 st29q03d2 st29q03d4 sc14q02d1 sc14q02d3 sc14q02d4 st04q01d2

escs, i(schoolid) pweight(pwt) l(identity) f(gau) nip(27) nrf(1) eqs(intercept)

adapt nocorrel

//Random slope and intercept model

gllamm pv1math st29q03d1 st29q03d2 st29q03d4 sc14q02d1 sc14q02d3 sc14q02d4 st04q01d2

escs, i(schoolid) pweight(pwt) l(identity) f(gau) nip(13) nrf(2) eqs(intercept slope)

adapt nocorrel

Stata: MIXED

In Stata Version 14, the MIXED command includes the ability to fit models with survey weights (StataCorp,
2015).

import delimited "PISA2012_USA.csv"

tabulate st29q03, generate (st29q03d)

tabulate sc14q02, generate (sc14q02d)

tabulate st04q01, generate (st04q01d)

//Random intercept model

mixed pv1math st29q03d1 st29q03d2 st29q03d4 sc14q02d1 sc14q02d3 sc14q02d4 st04q01d2

escs [pw = pwt1] || schoolid: , pweight (pwt2)

//Random slope and intercept model

mixed pv1math st29q03d1 st29q03d2 st29q03d4 sc14q02d1 sc14q02d3 sc14q02d4 st04

q01d2 escs [pw = pwt1] || schoolid: escs, pweight (pwt2)

SAS

Model specification in SAS uses the GLIMMIX procedure. It is notable here that when fit with the default
optimization parameters, the model converged to a likelihood lower than the maximum likelihood estimate
found by other software. Decreasing the convergence parameter GCONV to E-10 was necessary to find the
same maximum likelihood as other software.

proc import datafile="PISA2012_USA.csv"

out=pisa_data

dbms=csv

replace;

run;

proc glimmix data=pisa_data method=quadrature(qpoints=27) empirical=classical NOREML;

nloptions GCONV=1E-10 technique=TRUREG;

class sc14q02(ref='Not at all') st04q01(ref='Female') st29q03(ref='Strongly agree');

model pv1math = escs sc14q02 st04q01 st29q03/ obsweight=pwt1 solution;

random INT/subject=schoolid weight=pwt2;

run;
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proc glimmix data=pisa_data method=quadrature(qpoints=13) empirical=classical NOREML;

nloptions GCONV=1E-10 technique=TRUREG;

class sc14q02(ref='Not at all') st04q01(ref='Female') st29q03(ref='Strongly agree');

model pv1math = escs sc14q02 st04q01 st29q03/ obsweight=pwt1 solution;

random intercept escs/subject=schoolid weight=pwt2;

run;

HLM

HLM is another software package for estimated mixed-effects models (Raudenbush, Bryk, Cheong, Congdon,
& Toit, 2016). It is important to note that HLM has two differences from the methods specified in other
softwares. HLM normalizes all weights (which other programs do not) and also does not allow the correlation
between slope and random effect to be fixed at 0. Using the “Diagonalize Tau” option reduces covariance, but
does not fix it at 0 (Raudenbush et al., 2016). In addition, HLM is entirely graphical user interface (GUI)
based. Specification of the HLM model for comparison here was done through the interface. The random
intercept model was specified as:

And the random slope and intercept model was specified as:
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Note: The specifications for the random intercept model and the random slope model are extremely similar;
in the second image for β1, the u1 is highlighted. This is how users in HLM add random effects.

Appendix: Example Data Preparation

Data are read in using the EdSurvey package to access the PISA data efficiently.

library(EdSurvey)

#read in data

cntl <- readPISA([path], countries = "USA")

om <- getAttributes(cntl, "omittedLevels")

data <- getData(cntl, c("schoolid","pv1math","st29q03","sc14q02","st04q01","escs","w_fschwt","w_fstuwt"),

#prepare weights

data$sqw <- data$w_fstuwt^2

sumsqw <- aggregate(sqw ~ schoolid, data = data, sum)

sumw <- aggregate(w_fstuwt ~ schoolid, data = data, sum)

data$sumsqw <- sapply(data$schoolid, function(s) sumsqw$sqw[sumsqw$schoolid == s])

data$sumw <- sapply(data$schoolid, function(s) sumw$w_fstuwt[sumw$schoolid == s])

data$pwt1 <- data$w_fstuwt * (data$sumw / data$sumsqw)

data$pwt2 <- data$w_fschwt

# Remove NA and omitted Levels

om <- c("Invalid","N/A","Missing","Miss",NA,"(Missing)")

for (i in 1:ncol(tempData)) {

tempData <- tempData[!tempData[,i] %in% om,]

}

#relevel factors for model

data$st29q03 <- relevel(data$st29q03,ref="Strongly agree")

data$sc14q02 <- relevel(data$sc14q02,ref="Not at all")
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