
WINRPACK: Convert WIN to R

Jonathan M. Lees
University of North Carolina, Chapel Hill

Department of Geological Sciences
CB #3315, Mitchell Hall

Chapel Hill, NC 27599-3315
email: jonathan.lees@unc.edu

ph: (919) 962-0695

MARCH, 2008

Abstract

Convert WIN format data from Japan to R

1 Getting started

Win format data consists of 3 files: a pick file that has infomation about the
arrival times and the phase arrival picks, and two files that store the waveform
data. These are a channel file and a digital waveform file. The channel file is
a meta-data file that has information on how the waveforms are stored, so they
can be extracted by the C-code programs.

First read in the pickfile:

> library(WINRPACK)

> winpick = "060413.021851.231"

> zip = get1WINPICK(winpick)

This is a list structure that consists of a copy of the pickfile in WIN format
and a break down of the pickfile after it has been parsed.

The structure is as follows:

> names(zip)

[1] "PF" "AC" "LOC" "MC" "REFT" "STA" "LIP" "E"
[9] "infile" "winID1" "LEVEL" "PICKER"

The documentation call will show how this data is stored in R, for example,
help(get1WINPICK), which will show the list structure of the data collected by
the conversion program.

1

PF: original pick file

AC: event card (a-card)

LOC: location

yr: year

jd: julian day

mo: month

dom: day or month

hr: hour

mi: minute

sec: sec

lat: lat

lon: lon

z: depth (km)

mag: magnitude

MC: focal mechanism card

REFT: Reference time for phase arrivals

yr: year

jd: julian day

mo: month

dom: day or month

hr: hour

mi: minute

sec: sec

STA: List of stations

tag: id tag for station

name: station name

comp: component

c3: other id tag

ppol: polarity

parr: p-aarival time relative to reference

pflg: flag

perr: p-error

pres: p-residual

sarr: s-arrival time relative to reference

sflg: flag

serr: s-error

sres: s-residual

LIP: error ellipse

E: simple error card

infile: input file name

winID1: WIN ID number

LEVEL: level

PICKER: name of picker

In WIN format the pcikfile contains information on where to extract the
waveforms. To read in the waveforms one must first get information on the
channels stored in the binary file. On my computer the waveforms and the
pickfiles are stored in different directories. This information must be indicated
to the calling program, of course. The channel file contains information about
the stations and their arrangement in the waveform file. For this example we

2

have stored the pickfile in the local directory but typically these will be stored
on disk in the a remote directory. The full path name to the pickfile and the
waveform file directories must be supplied to the conversion programs.

Once we read in the pickfile, we extract the waveform ID from the pickfile
and use that to find the correct associated waveform file.

As an example, we next read in the channel file to set the LAT-LON coor-
dinates of the stations recorded on the waveform file. The program readwinch
is later called again from the program XWINdata, so this step can often be
skipped.

> fn = zip$winID1

> chans = readwinch(fn)

> m1 = match(zipSTAname, chans$sta)

> zipSTAlat = chans$lat[m1]

> zipSTAlon = chans$lon[m1]

> zipSTAz = chans$z[m1]

The next program actually reads in the channel file and then extracts the
infromation from waveform data file.

> JH = XWINdata(fn, stasel = NULL, PLOT = FALSE)

> L = length(JH)

The argument stasel allows one to select only a subset of traces from the
WIN data file.

The data is now in memory and it can be used for plotting and other analysis.
For example, suppose I want to view one of the traces in the structure.

The structure JH has 80 elements or 80 traces. Lets consider the first one.
To see the meta data structure, we print the names of the list:

> names(JH[[1]])

[1] "fn" "sta" "comp" "dt" "DATTIM" "N" "units" "amp"

We see that the structure has the meta data and the trace data (the wave-
form) in it. To plot the first trace, we can very simply try:

> y = JH[[1]]$amp

> x = seq(from = 0, by = JH[[1]]$dt, length = length(y))

> plot(x, y, type = "l", xlab = "sec", ylab = "amplitude", main = paste(JH[[1]]$sta,

+ JH[[1]]$comp, sep = " "))

The user can make a function to plot part or all of the traces or do other
analysis.

More commonly the pickfiles may be stored in some remote directory, for
example:

3

pickdir = '/data/gauss/sake/Fuji/Picks/2001'

wigdir = '/data/gauss/sake/Fuji/Wigs/2001'

The waveforms are further broken down into directories by month:

% ls /data/gauss/sake/Fuji/Wigs/2001

01 02 03 04 05 06 07 08 09 10 11 12

So to extract the correct file name associated with a pickfile, we must make sure
we are pointing to the correct directory. The zip list has this information in it:

> wigdir = paste(sep = "/", "/data/gauss/sake/Fuji/Wigs", zipLOCyr,

+ formatC(zipLOCmo, width = 2, flag = "0"))

> testfn = paste(sep = "/", wigdir, zip$winID1)

which can be used to replace the file name “fn” in the examples above.
To use the RSEIS software, first convert this structure with a program to

reformat the list into a seismic structure:

> require(RSEIS)

> KH = prepSEIS(JH)

All this does is reorganize the data into a structure used by this package.
Now the data can be plotted and analyzed with all the power in the RSEIS
package.

> w1 = which(KH$COMPS == "V")

> PICK.GEN(KH, sel = w1, SHOWONLY = TRUE)

4

X107.2 HKNH U 1
X138.9 FJN U 2
X122.9 FJNB U 3
X501 FJY U 4
X51.25 FJYB U 5
X318.3 FJS U 6
X9.455 FJSB U 7
X627.8 FJH U 8
X63.41 FJHB U 9
X212.4 FJ5 U 10

X332.5 FJ6 U 12
X84.48 FY1 U 13
X534.5 FJYS U 14
X250.3 YMKH U 15
X244.6 MNZH U 16
X139.9 ASGH U 17
X442.5 SMBH U 18

−1e−04−5e−0505e−051e−04 TR2H U 19
X401.8 NRYH U 20
X167.5 ITOH U 21
X61.48 SSNH U 22
X3391 NMZH U 23
X193.7 FJMH U 24
X180.3 NSHH U 25
X237.0 ODWH U 26
X211.4 KKKH U 27
X312.1 TRUH U 28
X41.36 FJ2B U 29

0 10 20 30 40 50 60 70 80 90 100

Time (s)

2006:103:02:18:22:000

2006:103:02:18:22:000

Not all the traces have associated phase picks. We can select off the ones
that do and plot them according to arrival time. To sort these according to the
times of the first arrivals one may do something like this:

> match(zipSTAname, KH$STNS[w1])

> w2 = w1[match(zipSTAname, KH$STNS[w1])]

> B = order(zipSTAparr)

> PICK.GEN(KH, sel = w2[B], SHOWONLY = TRUE)

5

X250.3 YMKH U 1
X237.0 ODWH U 2
X244.6 MNZH U 3
X312.1 TRUH U 4
X139.9 ASGH U 5
X107.2 HKNH U 6

−1e−04−5e−0505e−051e−04 TR2H U 7
X167.5 ITOH U 8
X318.3 FJS U 9
X401.8 NRYH U 10
X84.48 FY1 U 11
X180.3 NSHH U 12
X332.5 FJ6 U 13
X138.9 FJN U 14
X501 FJY U 15
X212.4 FJ5 U 16
X211.4 KKKH U 17
X627.8 FJH U 18
X442.5 SMBH U 19

0 10 20 30 40 50 60 70 80 90 100

Time (s)

2006:103:02:18:22:000

2006:103:02:18:22:000

Finally, to analyze the data using the full power of RSEIS, remove the
SHOWONLY argument (or set to false) so that the program enters interac-
tive mode. Buttons can be accessed this way, but I recommend looking over the
documentation of RSEIS before proceeding.

To see a plot of the station configuration that recorded the event:

> plot(zipSTAlon, zipSTAlat, pch = 6, xlab = "LON", ylab = "LAT",

+ main = zip$winID1)

> segments(zipSTAlon, zipSTAlat, zipLOClon, zipLOClat,

+ col = "red")

> text(zipSTAlon, zipSTAlat, labels = zipSTAname, pos = 3)

6

138.5 138.6 138.7 138.8 138.9 139.0 139.1

35
.0

35
.2

35
.4

35
.6

060413.021852

LON

LA
T

YMKH

ODWH

MNZH

TRUH

ASGH

HKNH

TR2H

ITOH

FJS

NRYH

FY1

NSHH

FJ6

FJN

FJY

FJ5

KKKH

FJH

SMBH

7

