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Abstract

The paper considers smooth modelling of hazard functions, where dynamics is modelled in both, duration time and calendar time.7
The model is specified with time dynamic covariate effects to replace restrictive assumptions of proportional hazards. Additivity of
the time effects is assumed which allows for simple estimation in a backfitting style. Penalized splines are employed, which provide9
the welcome benefit of linking smoothing with mixed models. The model is applied to unemployment data taken from the German
socioeconomic panel. The hazard function, here the chance for finding reemployment, varies with duration as well as calendar time.11
© 2006 Published by Elsevier B.V.

Keywords: Generalized linear mixed models; Penalized spline smoothing; Survival time models; Two-way hazard models; Varying coefficient13
models

1. Introduction15

Survival time or duration time studies primarily focus on one time scale only, namely the time to an event of interest.
This is justifiable, if the individuals or subjects under investigation enter the study all at the same time point or at17
least in a short time interval. This implies that all subjects are under the same risk, modified by available covariates.
In some data situations, however, the risk does not only change with survival time, expressed in the hazard function,19
but also with calendar time. This is particularly the case if the duration time is long and subjects enter the study at
different timepoints. The example we consider in this paper are duration times of unemployment with data taken from21
the German socioeconomic panel (see www.diw.de). Subjects enter the state of unemployment at different timepoints
ranging over the years 1983–2000. Clearly, with this wide time range and the economic dynamics, the success rate23
of finding a new job has to be modelled to depend on calendar time. Hazard function models which incorporate both,
duration as well as calendar time, are known under the phrase two-way hazard models. A graphical representation of25
the survival data is available by a Lexis diagram, as shown in Fig. 1 for our data at hand (see also Keiding, 1990;
Francis and Pritchard, 1998). The event of interest is defined as full time reemployment, while any other termination27
of unemployment (retirement, retraining, half time job, etc.) is taken as censored information. Unemployment spells
longer than 36 months are truncated and taken as censored.29

Approaches to model the hazard function of duration time data in both, duration as well as calendar time trace back
to Cox (1972) and Cox and Farewell (1979), see also Anderson (1991). Recently, Efron (2002) shows that two-way31
hazard models can be fitted either by focussing on calendar time, or on duration time or on both at the same time, the
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Fig. 1. Lexis diagram for unemployment data. Shown are the time individuals spend in unemployment. Observations are censored at 36 months.

latter using a Poisson-type model. Our approach uses the Poisson approach as starting point, but instead of fitting a1
parametric or semiparametric model, like in Efron (2002), we choose a nonparametric or more suitably called smooth
model with both time scales entering the model in a smooth functional form. Additionally, we allow covariate effects to3
vary also with both, duration as well as calendar time. This leads to a complex varying coefficient model as introduced
in Hastie and Tibshirani (1993). For interpretational reasons, and in order to keep the numerical effort feasible, we5
assume additivity for our hazard function. This means, on a log scale, the functional effects of duration and calendar
time decompose additively. This leads to a generalized additive model in the style of Hastie and Tibshirani (1990) and7
allows with the backfitting principle a simple way of calculating the estimates.

As smoothing technique we employ penalized spline fitting as introduced as P-spline smoothing in Eilers and Marx9
(1996) (see also O’Sullivan, 1988). Spline-based approaches with penalized fitting in the context of survival time models
have been suggested before, with early references given by Zucker and Karr (1990), Gray (1992, 1994). Kooperberg11
et al. (1995) provide a general approach with flexible, low-dimensional splines while Fan et al. (1997) or Cai and Sun
(2003) use local techniques for smooth estimation. Recently Cai et al. (2002) propose P-spline smoothing for hazard13
modelling, which is further extended in Kauermann (2005) towards nonproportional hazard models. In all of the above
cited papers the nonparametric structure is either over duration time or over some other exogenous metrically scaled15
covariate. The nonparametric inclusion of calendar time besides of duration time as proposed in this paper is new to
our knowledge.17

Whenever smoothing techniques are applied for fitting, there is a tuning parameter, commonly called bandwidth or
smoothing parameter, to be chosen adequately. This should be done data driven based on some optimality criterion (see19
e.g. Hastie and Tibshirani, 1990). If P-spline smoothing is applied, the penalized estimation is found to be equivalent
to estimation and prediction in linear mixed models, as has been demonstrated in Wand (2003). This link has been21
further exploited in Ruppert et al. (2003) and Kauermann (2004). The same idea is also used in this paper, building
up a connection between P-spline fitting of a two-way hazard model and a generalized linear mixed model (GLMM).23
Smoothing parameter selection then corresponds to multivariate variance component estimation in a GLMM. This
has the important advantage that multidimensional smoothing parameter selection can be easily carried out without25
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complicated grid searching. This is an essential point for our model, since the number of smoothing parameters to be1
chosen is 2 for the baseline and for each covariate under investigation. Moreover, software developed for estimation
of GLMMs can be used for fitting our model. For details and listing of code we refer to Ngo and Wand (2004) who3
demonstrate the use of Splus, R and SAS. Their results are readily extendable to the model fitted here. We also refer to
Therneau et al. (2003) or Brezger et al. (2005) for software developments in a similar direction.5

This paper is organized as follows. In Section 2 we describe the model and how this is fitted. In particular, a penalized
backfitting is presented and linked to GLMM. Section 3 provides simulations and the data example. An outlook is given7
in Section 4.

2. Nonparametric two-way hazard model9

2.1. P-spline estimation of hazard function

Assume we collect survival data having survival time t and calendar time c as quantities of interest. For each individual,11
we have the independent data pairs (ti , ci , �i , xi) with ti the observed survival time, �i as censoring indicator and ci

denoting the timepoint of failure. With xi we denote a set of covariates. For simplicity of presentation, we omit13
covariates xi for the moment and present our approach first for pure hazard function modelling. Based on the data we
have bi = ci − ti as timepoint of “birth” and the hazard function is modelled as15

h(t, b) = exp {�0(t, b)} , (1)

with �0(.) as some smooth but otherwise unspecified function. Assuming additivity, we decompose �0(.) to �0(t, b) =17
�t0(t) + �b0(b). Based on hazard function (1) the log likelihood results to

n∑
i=1

[
�i {�t0 (ti) + �b0 (bi)} − exp {�b0 (bi)}

∫ ti

0
exp {�t0(u)} du

]
. (2)

19

In classical proportional hazard models one now replaces the cumulated hazard function, that is the last component
in (2), by a step function with steps at the observed timepoints and step heights as unknown parameters. This leads21
to Breslow’s (1972) estimate and justifies the partial likelihood introduced by Cox (1972) as principle likelihood. We
go a similar route, but replace the integral by a trapezia approximation with trapezoids constructed over the observed23
failure time points. Let therefore 0 = k0, k1, . . . , kK be the observed failure times and define Ji as the index defined
such that kJi

is the smallest knot larger than or equal to ti , that is kJi−1 < ti �kJi
. We then approximate25

∫ ti

0
exp {�t0(u) du} ≈ exp {�t0(0)} (k1 − k0) /2

+
Ji−1∑
j=1

exp
{
�t0

(
kj

)} (
kj+1 − kj−1

)
/2

+ exp
{
�t0

(
kJi

)} (
ti − kJi−1

)
/2

=
Ji∑

j=0

exp
{
�t0

(
kj

) + o
(i)
j

}
, (3)

where o
(i)
0 = log {(k1 − k0) /2}, o(i)

j = log
{(

kj+1 − kj−1
)
/2

}
for 1�j �Ji − 1 and o

(i)
Ji

= log
((

ti − kJi−1
)
/2

)
. Since27

usually no information is available prior to the first event, we can also set the early hazard to zero and start the trapezoid
integration at the first event time, that is, at k1 = min (ti , �i = 1). The number K of trapezoids used in approximation29
(3) clearly has an influence on the correctness of the fit, but if knots kl are placed at every observed failure time point,
we take saturated information of our data. This is in particular a reasonable strategy, if survival times are clustered31
or measured on a discrete grid, like in our example where duration times are given in a months. Inserting (3) in (2)
provides an approximation for the likelihood which should now be maximized with respect to both �t0(.) and �b0(.).33
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For fitting we replace the two functions by high-dimensional parametric curves, which are subsequently estimated1
in a penalized manner. This means we replace �t0(t) by

�t0(t) = Zt0(t)�t0 + Bt0(t)ut0,3

with Zt0(t) as a low-dimensional basis in t. In the application below we set Zt0(t) = (1, t). This means we allow for a
linear shape of the baseline hazard in an unpenalized form. In contrast, Bt0(t) is a high-dimensional spline basis built5

e.g. from truncated polynomials. In our example we use truncated lines, i.e. Bt0(t) =
((

t − �t1

)
+, . . . ,

(
t − �tm

)
+
)

with knots �t1 < · · · < �tm covering the range of observed failure times and (t)+ = t for t > 0 and zero otherwise. The7
number of knots m is chosen in a lush and generous way, but apparently m should be less than or equal to the number
of observed failure time points. A more thorough investigation of how knots should be chosen in general is found in9
Ruppert (2002). In our example we worked with 15–20 dimensional basis. In the same way we fit �b0(·) by setting

�b0(b) = Zb0(b)�b0 + Bb0(b)ub0.11

Again Zb(.) is low dimensional, where we set Zb(b) = b. This means we allow for a linear change in an unpenalized
form. Note that we attach the intercept to matrix Zt0(·) and leave therewith �b0(·) without intercept. The spline basis13
Bb0(.) is again chosen high dimensional. We employ truncated linear lines in the example below, that is, Bb0(b) =((

b − �b1

)
+, . . . ,

(
b − �bq

)
+
)

. Again, dimension q should be chosen generously and knots �bl
, l = 1, . . . , q, should15

cover the range of observed birth dates. In our example, we use like above a 15–20 dimensional basis of truncated lines.
The log likelihood (2) is now approximated by17

n∑
i=1

Ji∑
j=1

[
�ij

(
Zij0�0 + Bij0u0

) − exp
{
Zij0�0 + Bij0u0 + o

(i)
j

}]
, (4)

where Zij0 = (
Zt0

(
tij

)
, Zb0 (bi)

)
, where Bij0 = (

Bt0
(
tij

)
, Bb0 (bi)

)
and tij = kj for j = 1, . . . , Ji − 1 and tiJ i

= ti .19
Coefficients are stacked to �0 =(

�00, �t0, �b0
)

and u0 =(ut0, ub0) and the censoring indicator �ij takes values 1 if both,
j = Ji and �i = 1, while �ij equals 0 otherwise. Note that (4) is the likelihood for Poisson variables �ij with intensity21

�(t, b) = exp (�0 (t, b)) and given offset o
(i)
j . Model (2) is now extended to incorporate smooth covariate effects. Let

therefore Xi = (1, xi) = (
xi0, xi1, . . . , xip

)
denote the design matrix built from the intercept and p covariates. The23

hazard function is modelled additively as

h (t, b, xi) = exp {Xi [�t (t) + �b(b)]} ,25

where �t (t) = (
�t0(t), �t1(t), . . . , �tp(t)

)T contains the smooth baseline and time dynamic covariate effects and anal-

ogous decomposition for �b(b) = (
�b0(b), �b1(b), . . . , �bp(b)

)T compensating for calendar time effects. As before,27
�t0(·) and �b0(·) represent baseline smooth duration time and calendar time effects, respectively, while �t l (t) mirrors
the covariate effect of the lth covariate which varies with duration time, l = 1, . . . , p. Accordingly, �bl(·) expresses29
smooth dynamics with calendar time. Like above we replace the smooth components for estimation by spline functions.
This means we set31

�t l (t) = Ztl(t)�t l + Btl(t)utl .

Like above we assume a linear structure for Ztl(t)=(1, t) and let basis Btl(.) be constructed from truncated polynomials,33

in its most simple form resulting as truncated linear lines Btl(t) =
((

t − �t1

)
+, . . . ,

(
t − �tm

)
+
)

. Similarly, we replace

�bl(b) by �bl(b) = Zbl(b)�bl + Bbl(b)ubl where Zbl(.) is low dimensional and does not include the intercept, since35
this is contained in Ztl(.). In our application we chose Zbl(.) = b so that �bl(b) = b�bl + Bbl(b)ubl . If now ubl is set to
zero, a linear trend in time results, that is covariate effects vary linearly with calendar time. The complete model leads37
now to the log likelihood

l(�, u) =
n∑

i=1

Ji∑
j=1

�ij

{
Xi

[
Wt

(
tij

)
�t + Wb (bi) �b

]} − exp
{
Xi

[
Wt

(
tij

)
�t + Wb (bi) �b

] + o
(i)
j

}
, (5)

39
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where Wt (t) is a block diagonal matrix with row matrices
(
Ztl

(
tij

)
, Btl

(
tij

))
on its diagonal, l = 0, 1, . . . , p. Ac-1

cordingly Wb(b) is block diagonal with rows (Zbl (b) , Bbl (b)), l = 1, . . . , p, on the diagonal. Parameter vector �t

decomposes to elements �t =
(
�t0, ut0, �t1, ut1, . . . , �tp, utp

)T and �b=(
�b0, ub0, �b1, ub1, . . . , �bp, ubp

)T. It is worth3
pointing out that in principle trapezoid integration is not necessary if the integral in (2) can be calculated analytically.
This would be the case when replacing �t (·) by simple splines. Analytic integration has however to be bought for5
awkward and clumsy implementation and in fact the nice link to the Poisson model is lost. Since this link will be of
importance later on we do not pursue analytic integration further on.7

Direct maximization of (4) would provide unsatisfactory results �bp since the dimension of the basis matrices Bt(.)

and Bb(.) is large, which is necessary to capture the unknown underlying functional structure. The idea is now to penalize9
spline coefficients u so that smooth, unwiggled estimates result for �(.). This is achieved by penalizing coefficients utl

with 1
2�t lutlDt lutl , where Dt l is a penalty matrix chosen appropriately to spline basis Btl(.). For truncated polynomials11

a suitable choice for Dt l is the identity matrix, as suggested in Ruppert et al. (2003). After some calculation it can be
shown that this choice is similar to the difference based proposal by Eilers and Marx (1996). The parameter �t l steers13
the amount of penalty and is therewith playing the role of a smoothing parameter. Apparently, �t l should be chosen
adequately, which is discussed in the next section. Extending the idea to the remaining coefficients ubl, l =0, 1, . . . , p,15
we get the penalized likelihood written in matrix notation as

lp (�, u, �t , �b) = l(�, u) − 1
2�T

t �tDt�t − 1
2�T

b�bDb�b, (6)17

where Dt = diag (0, Dtl) and Db = diag (0, Dbl) and � = (�t l , �bl) , l = 1, . . . , p. Accordingly, �t is a diagonal matrix
containing the penalty parameters �t l in matching dimension to �t l , l = 0, 1, . . . , p. In the same way we construct �b.19

2.2. Penalized backfitting

In principle, estimation of (6) can be carried out in a straightforward manner by differentiating (6) with respect to21
� and u. This may however be numerically expensive, in particular if the number of covariates is large. We therefore
propose a backfitting routine as alternative. Assume first that �t (·) = Wt (·)�t is given and estimation is supposed to be23
carried out over �b(·) = Wb(·)�b only. Then, the penalized likelihood equals

lpb(�b, �b) =
n∑

i=1

�iXiWb (bi) �b − exp {XiWb (bi) �b + obi} − 1

2
�T
b�bDb�b, (7)

25

with obi = log
∑Ji

j=1 exp
{
XiWt

(
tij

)
�t + o

(i)
j

}
. Note that (7) equals a simple penalized likelihood for the n Poisson

data �i , i = 1, . . . , n. Differentiation with respect to �b provides the estimating equation27

0 = spb (�b, �b) =
n∑

i=1

WT
b (bi) XT

i {�i − exp (XiWb (bi) �b + obi)} − �bDb�b, (8)

and the Fisher-type matrix with respect to �b is defined through29

Ipb (�b, �b) =
n∑

i=1

WT
b (bi) XT

i XiWb(bi) exp (XiWb (bi) �b + obi) + �bDb. (9)

Solving (8) gives the first step in the backfitting procedure. Exchanging the role of �t (·) and �b(·) leads to the second31
backfitting step. We now consider �b(·) = Wb(·)�b as given leading to the penalized likelihood

lpt (�t , �t ) =
n∑

i=1

Ji∑
j=1

[
�ijXiWt

(
tij

)
�t − exp

{
XiWt

(
tij

)
�t + otij

}] − 1

2
�T
t �tDt�t , (10)

33
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with otij = XiWb (bi) �b + o
(i)
j . In this case, (10) is the penalized likelihood for Poisson data �ij with offset otij , j =1

1, . . . , Ji, i = 1, . . . , n. Estimating equations are found via

0 = spt (�t , �t ) =
n∑

i=1

Ji∑
j=1

WT
t

(
tij

)
XT

i

{
�ij − exp

(
XiWt

(
tij

)
�t + otij

)} − �tDt�t , (11)
3

with Fisher matrix

Ipt (�t , �t ) =
n∑

i=1

Ji∑
j=1

WT
t

(
tij

)
XT

i XiWt

(
tij

)
exp

(
XiWt

(
tij

)
�t + otij

) + �tDt .
5

The backfitting algorithm results now by solving (8) and (11) gradually. In particular, the procedure is as follows

(a) Start with an initial estimate for �t and �b, obtained e.g. by setting ut ≡ 0 and ub ≡ 0 and estimating �t and �b7

parametrically using a generalized linear model fitted to data �ij . We denote the resulting estimates by �̂
(0)

t and

�̂
(0)

b .9
(b) In the rth loop of the algorithm we update the estimate for �b by the one step Fisher scoring

�̂
(r)

b = �̂
(r−1)

b + I−1
pb

(
�̂
(r−1)

b , �b

)
spb

(
�̂
(r−1)

b , �b

)
,11

with offset obi in (8) calculated from �
(r−1)
t .

(c) Exchanging the roles of t and b we update �
(r−1)
t by13

�̂
(r)

t = �̂
(r−1)

t + I−1
pt

(
�̂
(r−1)

t , �t

)
spt

(
�̂
(r−1)

t , �t

)
,

where offset otij in (11) is now calculated from �
(r)
b .15

(d) Iterating between (b) and (c) leads to the backfitting routine.

For the final estimate we can calculate the variance of our fitted smooth curve in the following way. With standard17
asymptotic arguments, assuming the number of individuals to grow but leaving the number of knots to be finite, we
obtain the asymptotic behavior for �̂ as solution of (8) and (11) as19

�̂ − � ∼ N
(

0, Ip(�, �)−1Ip(�, � = 0)I−1
p (�, �)

)
, (12)

with Ip(�, �) is the joint Fisher matrix defined through21

Ip(�, �) =
n∑

i=1

Ji∑
j=1

WT
ijX

T
i XiWij exp

(
XiWij� + o

(i)
j

)
+ diag (�tDt , �bDb) ,

where Wij = (
Wt

(
tij

)
, Wb (bi)

)
and � = (�t , �b). Note that the variance in (12) can be rewritten as23

Var(�̂) = I−1
p (�, �) − I−1

p (�, �) diag (�tDt , �bDb) I−1
p (�, �).

Note that since we are interested in variance estimates for estimates �̂t l (.) or �̂bl(.) we are only interested in the two25
block diagonals of the Fisher matrix referring to elements in �t and �b. It is now a simple step to obtain pointwise
confidence intervals for �̂t l (t) via the variance estimate27

Var
(
�̂t l (t)

) = (Ztl(t), Btl(t))Var

((
�̂t l , ût l

)T
) (

ZT
t,l(t), B

T
t l (t)

)T
. (13)

In the same way we get the variance for �b(·).29
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2.3. Mixed model representation1

We can rewrite the penalized estimation above as prediction in a GLMM by formulating the penalty as a priori
distribution on the spline coefficients. This link has been worked out in Wand (2003) for normal response data, and3
has been explored further in Ruppert et al. (2003) (see also Kauermann, 2004). In particular, the connection between
smoothing and mixed models is advantageous, since the smoothing parameter is playing the role of a random effect5
variance in the mixed model formulation. This in turn allows for maximum likelihood estimation and a simple way to
obtain data-driven smoothing parameters. This approach is also employed here. Additionally, we use the backfitting7
idea to simplify the numerical effort. This means for fitting �b(.) we assume that �t (.) is given or fixed at its current
estimate. Assuming spline coefficients as given, the first component in the penalized likelihood (7) equals the likelihood9
for the mixed model

�i |ub, �t (·) ∼ Poisson (exp {XiW (bi) �b + obi}) .11

Assuming now that ub is random induces the penalty as a priori distribution

ubl ∼ N
(

0, �−1
bl D−

bl

)
, l = 0, . . . , p, (14)13

with D−
bl as the (generalized) inverse of Dbl . Following Breslow and Clayton (1993) we integrate out ub by Laplace

approximation leading to the marginal likelihood, here conditioned on �t (·). It is not difficult to see that this marginal15
likelihood resembles (7) and maximizing this with respect to �b and ub leads to the estimate defined as solution of (8).
The maximized approximate marginal likelihood, based on the Laplace approximation, results now to17

lmb|t (�b) ≈ − 1

2
log

∣∣∣�̃−1
b D̃−

b

∣∣∣ + lpb

(
�̂b, �b

)
− 1

2
log

∣∣∣∣∣∣−
�2lpb

(
�̂b, �b

)
�ub�uT

b

∣∣∣∣∣∣
= lpb

(
�̂b, �b

)
− 1

2
log

∣∣∣Ĩpb

(
�̂b, �b

)
�̃

−1
b D̃−

b

∣∣∣ , (15)

where �̂b is the maximizer of lpb (�b, �b) and D̃b taken those columns and rows of Db is the submatrix of Db with19
nonzero diagonal elements. Note that these are the elements matching to coefficients ub. Accordingly �̃b results as
submatrix of �b built from components �b. In the same way Ĩpb(.) is the submatrix of the Fisher matrix given in (9)21
with elements corresponding to ub. Observing the structure of �̃b, we can now maximize (15) to obtain an estimate
for the lth component of �b. Differentiation yields23

1

�̂bl

=
tr

{(
Ĩpb

(
�̂b, �b

)−1
)

ll

Dbl

}
+ ûT

blDblûbl

mbl

, (16)

with mbl as dimension of spline basis Bbl(·) and subscript ll indicating the lth block diagonal of the inverse Fisher25
matrix. Note that (16) is not an analytic solution by itself, since the right-hand side depends on �b as well, explicitly
through Ĩpb(·) as well as implicitly through �̂b. However, (16) can be used in an interactive manner keeping the27
components on the right-hand side as fixed and updating �̂bl on the left-hand side. It can be shown that this corresponds
to a Newton-type algorithm as motivated in Krivobokova and Kauermann (2005).29

In complete analogy we obtain a GLMM for �t (·), now keeping �b as fixed. This means, with the backfitting idea
we obtain the GLMM corresponding to (14) which is31

�ij

∣∣ut , �b(·) ∼ Poisson
(
exp

{
XiWt

(
tij

)
�t + otij

})
,

utl ∼ N
(

0, �−1
t l D−

t l

)
, l = 1, . . . , p. (17)
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Applying Laplace approximation we obtain the marginal likelihood1

lmt |b (�t ) ≈ lpt

(
�̂t , �t

)
− 1

2 log
∣∣∣Ĩpt

(
�̂t , �t

)
�̃t D̃t

∣∣∣ ,

with obvious definition for the tilde notation. Like above this suggests the approximate likelihood estimates3

1

�̂t l

=
tr

{(
Ĩpt

(
�̂t , �t

)−1
)

ll

Dtl

}
+ ûT

t lDtl ûtl

mtl

, (18)

with mtl as dimension of Btl(·). The backfitting algorithm from above can now be extended by updating the estimates5
for �t and �b in each step. This is achieved by supplementing (16) to step (b) and (16) to step (c).

3. Data example and simulations7

3.1. Simulation

We run a small simulation study to explore the performance of our routine. We therefore simulate survival data,9
where we use discrete survival times as they occur in our data example. Based on the Poisson-type model we simulate
data with hazard function exp {�t0(t) + �b0(b) + x (�t1(t) + �b1(b))}′ with x as a binary covariate with P(x =1)=0.711
and P(x =0)=0.3. The explicit functions are specified to �t0(t)=−2.5− t/30, �b0(b)=3(b/50)2 −2.5b/50, �t1(t)=
0.5 + (t/25)2, �b1(b) = −b/60, where t ranges from 1 to 30, with survival times beyond 30 taken as censored. The13
birth time is drawn uniform on [0, 50] and censoring is applied for survival times exceeding t > 30 and calender time
exceeding 80, that is if t + b > 80. We simulate n = 1000 observations and fit the model with the backfitting procedure15
described above. In each simulation, the smoothing parameter is chosen data driven exploiting the link to generalized
linear mixed models. Fig. 2 shows the true function and simulated coverage intervals showing pointwise, that is for each17
timepoint t and b, respectively, the 5%, 50% and 95% quantile of the simulated estimates based on 200 simulations.
These graphs suggest that in this example bias is not a serious problem. For each simulation we can calculate confidence19
bands based on (13) and corresponding formula of �bl(·). To assess the goodness of the variance estimate, we investigate
the simulated coverage probability of estimated confidence intervals. To do so we check in each simulation whether the21
estimated confidence interval covers the true underlying function. Fig. 3 shows the simulated coverage probability, that
is the proportion of simulation in which at a fixed point t or b, respectively, the estimated confidence interval contains23
the true function. The nominal value is 95% based on plus/minus two times the standard deviation. Overall, the variance
estimation seems acceptable, even though for �b0(·) there is undercoverage at for small values of b. We think that this25
is due to a small bias for small values of b occurring due to the spline basis used. We worked with truncated lines
while the function is quadratic. The functional shape of �b0(·) is however well captured so that we do feel not too27
discouraged by the poor performance of the variance estimates for �̂b0(·). Note also that �b0(0) = 0 by construction
and therewith Var

(
�̂b0(0)

) = 0. We also experimented with different functions for �b0(·) as well as different splines.29
We observed that the coverage probability of �bl(·) can be improved if the spline used naturally captures the true shape
of the function. This holds for �t l (·) as well, but by far weaker. Given the fact however that trends over calender time31
are usually less strong than trends over survival time, we still feel most comfortable with the truncated linear basis we
used, even though, of course, this issue can be further disputed.33

3.2. Unemployment data

We now analyze the unemployment data referred to in the introduction. Based on the German socio economic panel35
we consider unemployment spells from 4020 individuals who became unemployed between 1983 and 2000 and were
domiciled in West Germany. Generally, for individuals in the panel with more spell of unemployment we randomly37
chose one of their spells and ignored the others. This guarantees independence of our observations. The empirical
distribution of the beginning of unemployment is shown in Fig. 4. As covariates we consider

39
• x1: foreigner (1 for Foreigner, 0 for German);
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Fig. 2. Simulated confidence intervals with pointwise 5%, 50% and 95% quantiles based on 200 simulations. The function is shown as thick line.

• x2: female (1 for female, 0 for male);1
• x3: age�25 (1 if younger than 25, 0 otherwise when getting unemployed);
• x4: age�50 (1 if older than 50, 0 otherwise when getting unemployed);3
• x5: no education (1 if individual has no professional education, 0 otherwise);
• x6: higher education (1 if person has university or comparable degree, 0 otherwise).5

Based on coding of variables “no education” and “high education” the reference category are individuals with
apprenticeship or comparable education but without university degree. Unemployment duration is censored at 367
months which counts as threshold to long-term unemployment. Moreover, as event we count the return to full time
occupation while any other occupation (half-time, retirement, continuing education, etc.) is taken as censored. Our9
analysis pursues a macroeconomic viewpoint to investigate how conditions have changed with calendar time, that is
with different economic circumstances. Figs. 5 and 6 show baseline and covariate effects for the data at hand. The11
upper left plot in Fig. 5 shows the baseline �b0(t). Clearly, the chances of returning to professional life decrease with
duration of unemployment. Moreover, over the years, the chances reduce even though this effect does not occur to13
be significant. The effect of nationality varies with duration of unemployment, as can be seen from the plot in the
second row, first column in Fig. 5. In the first months of unemployment, Foreigners have lower probability of finding15
a new job. This effect vanishes however and changes signs, even though it does not show significant behavior later on.
Moreover, there is no evidence that the effect of nationality changes with calendar time. Looking now at gender we17
see that females generally have less chances of finding a new job, regardless of their unemployment duration. Hence,
gender has a proportional effect on the hazard. However, over the years, the negative effect of gender has reduced.19
Next we consider the effect of age. As can be seen, younger unemployed people have higher chances of finding a new
job while individuals aged 50 or higher reduce their chances. For young unemployed workers, the positive age effect21
increased in the eighties but decreased and changed sign in the nineties. The latter effect is however not significant.
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Fig. 4. Histogram for start of unemployment and Kaplan–Meier estimates for duration of unemployment grouped in three time intervals.

Moreover, for older individuals the chance for reemployment decreases over the years but in no significant manner.1
Finally, education has a positive effect on finding a new job regardless of the duration of unemployment. This can be
shown from the bottom left plots in Fig. 6. A significant variation with calendar time was not observed for the education3
effects. Overall, it seems necessary to allow the covariate effects to vary with calender time as well as duration time of
unemployment.5
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Fig. 5. Functional shape of �t l (·) (left-hand side) and �bl(·) (right-hand side) for unemployment data.
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Fig. 6. Continuation of Fig. 5.

4. Discussion1

The paper demonstrates how calendar time can be included in duration time modelling if the observed birth times
have a wide range compared to the duration time. The nonparametric approach based on penalized splines easily3
allows to fit such data with flexible smooth structures in both, calender time and survival time. The delicate issue of
smoothing parameter selection can be elegantly solved by linking penalized spline smoothing to mixed models. This5
shows advantageous given the number of smoothing parameters to be chosen. Fitting can numerically benefit from a
backfitting idea so that the model is fitted easily. The modelling exercise can be extended or tackled in various alternative7
ways. First, one can include interaction effects both, between categorical covariates as well as between duration time
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and calendar time. In the simplest case this can be done multiplicatively by including x · b, for instance, in the model.1
Alternatively, one could include b parametrically in the model and then check for interactions with duration time. Both
approaches are somewhat ad hoc and a more coherent modelling framework seems worthwhile to be developed.3
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