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TripleR1 provides functions with a simple, yet powerful interface to calculate
round robin analyses in R. We assume that you are already familiar with social
relations analyses. If not, a good starter would be David Kenny’s website2, or
some introductory articles (e.g., Back & Kenny, 2010; Kenny, Kashy, & Cook,
2006, especially Ch. 8; Kenny, 1994, for detailed description of the model and
the formulae).

If you have already done your round robin study, this document will explain
how to get your data into the right format, how to tell TripleR what analyses to
do, and how to work with the results. In social relations analyses (SRAs), two
notations for the different roles are common. If the investigated phenomenon
is a behavior, one usually speaks of actors and partners. If the investigated
phenomenon is interpersonal perception, one speaks of perceivers and targets.
Both groups of labels are interchangeable; in the remainder of this document,
we will generally call them perceivers and targets, as all demo data sets are
about interpersonal perceptions.

1 Installing R and TripleR

There are numerous tutorial on the web on how to install R and additional
packages in several operating systems. Hence, in this section we only provide a
very short introduction on how to do this.

1. Go to http://cran.r-project.org/ and download the R installer file for your
preferred operating system. Detailed instructions for installation can be
obtained from the R-Website (http://www.r-project.org).

2. TripleR is installed from within R. So launch the R console (which was in-
stalled in step 1). You can install the latest stable version of TripleR from
CRAN by typing install.packages("TripleR", dependencies=TRUE)

into the R console. TripleR depends on some other packages (reshape,
plyr, and ggplot2), which have to be installed on your system as well.
The parameter dependencies=TRUE in the install command forces R to
install these additional packages automatically. Please note, that the in-
stallation of some packages, for example ggplot2, may take several min-
utes in which the system seems to be unresponsive or crashed - please be
patient.

3. TripleR is loaded into R by typing library(TripleR). It is possible that R
prints following warning message when you load TripleR: The following

object(s) are masked from package:plyr:round_any. You can safely
ignore this warning. Typing ?TripleR opens the help file for TripleR, in
which you find a link to this pdf among other things. Typing ?RR opens the
help file for the function RR, which is used for performing social relations
analyses for Round Robin groups.

4. If you directly type your commands into the R console, it is not possible
to save these commands. Thus, it may be useful to open the R editor by

1When you use TripleR in your research, please cite it as Schmukle, S. C., Schönbrodt,
F. D., & Back, M. D. (2010). TripleR: A package for round robin analyses using R (version
1.1.0). Retrieved from http://www.persoc.net/ToolBox/TripleR.

2http://davidakenny.net/kenny.htm
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using ‘Menu -> File -> New script’. Code of the R editor can be saved
and marked commands can be copied into the R console by using Ctrl+R
(Cmd-R on Mac OS). If you use R more often, there are many more conve-
nient script editors or graphical user interfaces available that can be used
together with R (for an overview see: http://www.sciviews.org/ rgui/).

2 Getting the data into the right format

In dyadic data analyses, one often finds two data formats: either the “wide for-
mat”, in which each row is one participant, multiple variables or measurements
are stored in multiple columns. Concerning round robin data, this would lead to
a quadratic matrix with perceivers as rows and targets as columns. If we have
a group of 5 people who rate how much they like each other, the data matrix
would look like:

A B C D E
A NA 3 1 0 5
B 2 NA 5 4 1
C 4 1 NA 6 4
D 0 1 0 NA 4
E 2 2 5 3 NA

The most flexible data format, however is the “long format”. In this format
each observation is one row, which would look like:

actor.id partner.id value
1 A A NA
2 B A 2
3 C A 4
4 D A 0
5 E A 2
6 A B 3
7 B B NA
8 C B 1
9 D B 1
10 E B 2
11 A C 1
12 B C 5
13 C C NA
14 D C 0
15 E C 5
16 A D 0
17 B D 4
18 C D 6
19 D D NA
20 E D 3
21 A E 5
22 B E 1
23 C E 4
24 D E 4
25 E E NA

The long format has several advantages:

• Several variables can be stored in one data structure (instead of putting
each variable into another quadratic matrix)
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• Several groups can be stored in the same data structure by an column
indicating the group id

• Data input can be easier, as the order of rows in long format is arbitrary.
Each data row is uniquely identified by their perceiver ID and target ID,
hence it does not matter whether data entries are grouped along the target
id (as in the example above). You can also group them along the perceiver
id (which could be favorable, as for example the data from one perceiver
are typed in one block), or do not group them at all. If you find a lost
questionnaire, you can just append it at the end of the long format data
frame, regardless of what happend in between.

If the example data set from above would be extended to multiple groups
and multiple variables, it would look like:

actor.id partner.id value value2 group.id
1 A A NA 2 1
2 B A 2 6 1
3 C A 4 1 1
4 D A 0 4 1
5 E A 2 3 1
6 A B 3 2 1
7 B B NA 3 1
8 C B 1 5 1
9 D B 1 3 1
10 E B 2 3 1
11 A C 1 2 1
12 B C 5 6 1
13 C C NA 1 1
14 D C 0 4 1
15 E C 5 3 1
16 A D 0 2 1
17 B D 4 3 1
18 C D 6 5 1
19 D D NA 3 1
20 E D 3 3 1
21 A E 5 2 1
22 B E 1 6 1
23 C E 4 1 1
24 D E 4 4 1
25 E E NA 3 1
26 F F NA 2 2
27 G F 6 3 2
28 H F 2 5 2
29 I F 3 3 2
30 J F 5 3 2
31 F G 3 2 2
32 G G NA 6 2
33 H G 3 1 2
34 I G 6 4 2
35 J G 2 3 2
36 F H 5 2 2
37 G H 4 3 2
38 H H NA 5 2
39 I H 2 3 2
40 J H 0 3 2
41 F I 1 2 2
42 G I 6 6 2
43 H I 4 1 2
44 I I NA 4 2
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45 J I 5 3 2
46 F J 5 2 2
47 G J 1 3 2
48 H J 1 5 2
49 I J 6 3 2
50 J J NA 3 2

Note: The rows where perceivers == targets (which contain NAs in all
measured variables) could have been omitted in the long format. They are
only kept for illustration. Furthermore, if you assess self ratings (which would
naturally be stored in these fields) they can stay in the data set. These values
are automatically set to NA prior to performing the SRAs.

To summarize, for TripleR we need data in the long format. We need at
least 3 columns: the perceiver ID, the target ID, and the variable. If multiple
variables are assessed, they are coded in a separate column. If multiple groups
are assessed, the group id goes into another column. Actor and partner ids have
to be unique within each group (i.e., person in different groups can have the
same id. To avoid confusions, however, it might be preferable to assign person
ids which are unique for the whole data set). Throughout this documentation,
the column indicating the perceiver ID is called perceiver.id (the other id
columns respectively). Note, however, that you can assign any other name to
these columns.

If you have your data in wide format, it is relatively easy to convert this data
to long format. See section 9.3 for instructions on how to do this conversion.

3 Importing your data into R

There are may different ways to import your own data into R. One way is to
export your data from your statistic software (e.g. SPSS) as csv-file, and import
this csv-file into R. First, you should set the working directory of R to the folder
in which you have your data by typing:

> # of course you have to adjust the path
> setwd("C:/Data/RR-analyses")

Then you can import your csv-file by typing:

> owndata <- read.csv("owndata.csv")

If your csv-file uses a comma as decimal and a semicolon as separator (which
is the default in some countries) you may try:

> owndata <- read.csv2("owndata.csv")

In general, you can import data very flexibly with the commands read.csv
and read.table. You find more information about these commands by typing
?read.table.

It may also be possible to import your data directly by using the package
foreign. foreign is a recommended package and therefore already installed in
your R distribution. For example, you can open an SPSS-file directly by typing:

> library(foreign)
> # We would always recommend to set "to.data.frame" to TRUE,
> # as the resulting object is much more versatile ...
> dat <- read.spss("SPSSfile.sav", to.data.frame=TRUE)
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However, read.spss can only read save files from older SPSS versions (up
to version 15). Newer versions of SPSS (or PASW files) cannot be processed.
In this case, you need to export the data out of SPSS or PASW using the
csv-format, and re-import the csv-file into R using read.csv.

For introductions on how to import data from SPSS files and other formats,
or how to export data from SPSS or other programs into the widely used csv-
format, please consult one of the numerous tutorials on the web, for example:

• http://cran.r-project.org/doc/manuals/R-data.html

• http://stat.ethz.ch/R-manual/R-devel/library/foreign/html/read.spss.html

• http://www.statmethods.net/input/importingdata.html

If you have successfully imported your data into R, you can look at the data
by typing edit(owndata), print the first lines by typing head(owndata) and
get basic descriptive statistics by typing summary(owndata).

4 How to do the analyses

TripleR is capable of doing 4 different types of analyses3:

• Univariate manifest analyses (i.e., one measured variable)

• Univariate latent analyses, where two manifest variables are indicators for
one latent construct (in the current version, only two manifest variables
are possible. Future versions may be able to process an unlimited number
of indicators)

• Bivariate manifest analyses (i.e., two measured variables, which are corre-
lated within the SRM)

• Bivariate latent analyses, where each two manifest variables define one
latent construct

All of these analyses are possible in a single group (in this case, within
group tests for significance are employed), or with multiple groups (in this case,
between group t-tests, weighted for group size - 1, are employed).

In the following paragraphs, all four analyses will be shown. Therefore, we
load a built in data set from the package. This data set comes from the ‘Mainz
Freshman Study’, which assessed liking (‘How much do you like X?’) and meta-
liking (‘How much, do you think, does X like you?’) in a large single group of
54 freshmen, at zero acquaintance. As these analyses are about interpersonal
perceptions, we will ask TripleR to set labels to the ‘perceiver/target’-mode.
A convenient short cut to achieve this styling is the function RR.style. You
can call this function once at the beginning of your script, and all subsequent
analyses will be labelled accordingly. For details see ?RR.style.

3Please make sure that you use the most recent version of TripleR (this document was
built using TripleR 1.1.0). You can check the installed version using sessionInfo().
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> # load the package
> library(TripleR)
> RR.style("perception")
> # load a data set in long format
> data(likingLong)
> #inspect the data set
> head(likingLong, 15)

perceiver.id target.id liking_a liking_b metaliking_a metaliking_b
1 1 1 NA NA NA NA
2 2 1 4 5 3 2
3 3 1 4 4 4 4
4 4 1 3 3 3 3
5 5 1 5 5 3 3
6 6 1 3 4 4 3
7 7 1 5 4 3 3
8 8 1 4 3 3 3
9 9 1 3 4 3 3
10 10 1 3 3 2 2
11 11 1 3 3 3 3
12 12 1 3 3 3 3
13 13 1 3 3 3 3
14 14 1 5 4 3 3
15 15 1 4 3 3 3

As we can see, both liking and meta-liking have been assessed with two indi-
cators, which allows a latent analyses. But first let’s do an univariate analysis:

4.1 Univariate manifest analysis

All analyses can be run with one function: RR. For details, you definitely should
check the help entry for this function (type ?RR into the R console). Most
parameters of the function are specified via a formula interface. The formula
for univariate manifest analysis in a single group4 would be: liking_a ~per-

ceiver.id * target.id. The measured variables are defined in the left part
of the formula (left of the ˜sign). The right part defines, which columns in the
data frame indicate the perceiver, the target, and the group id. These three
variables are always given in this order. Actor and partner id are separated by
a *, which indicates that these factors are fully crossed (as in the lm notation).
The group id is separated by a |, as in the lattice notation.

After the formula, the data frame has to specified, on which the formula will
be applied. Unlike as in the lm notation, the data object has to be specified
explicitly by data=.... Hence, the final command for a univariate manifest
analysis is:

RR1 <- RR(liking_a ~perceiver.id * target.id, data=likingLong)

The <- operator assigns a value to a variable. In this case, we create a new
variable called RR1 (this is an arbitrary name, and could also have been called
xyz1 or PartyAnimal2000). The return value of the function call RR() then is
stored in this new variable.

Please note: all variable names in the formula (i.e., liking a, perceiver.id,
and target.id) refer to column names in the specified data frame. They do not

4All examples in the following four sections refer to single group analyses. To perform
analyses with multiple groups, please consult section 4.5
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have to be like this - if your data frame has other column names your formula
might look like DV ~a*p, or anything else.

When we run the command, an object of the class RR is returned. If we print
the object, a summary of the analysis is printed:

> RR.style("perception")
> RR1 <- RR(liking_a ~ perceiver.id * target.id, data=likingLong)
> RR1

[1] "Round-Robin object ('RR'), calculated by TripleR"
[1] "Univariate analysis of one round robin variable"
[1] "Univariate analyses for: liking_a"

estimate standardized se t.value p.value
perceiver variance 0.172 0.194 0.035 4.914 0.000
target variance 0.105 0.119 0.022 4.727 0.000
relationship variance 0.609 0.687 0.017 36.827 0.000
error variance NA NA NA NA NA
perceiver-target covariance 0.014 0.105 0.020 0.703 0.618
relationship covariance 0.080 0.131 0.017 4.809 0.000
[1] "Perceiver effect reliability: .937"
[1] "Target effect reliability: .901"

4.2 Univariate latent analyses

If you have two indicators to assess a latent construct, error variance can be
separated from relationship variance (in the univariate manifest case, error vari-
ance is mixed up in the relationship variance component). Two indicators for
one latent construct are separated by a /. In the current data set, we have two
indicators for liking, hence the analysis would look like:

> RR2 <- RR(liking_a/liking_b ~ perceiver.id * target.id, data=likingLong)
> RR2

[1] "Round-Robin object ('RR'), calculated by TripleR"
[1] "Latent construct analysis of one construct measured by two round robin variables"
[1] "Univariate analyses for: liking_a/liking_b"

estimate standardized se t.value p.value
perceiver variance 0.161 0.164 0.036 4.525 0.000
target variance 0.105 0.107 0.023 4.678 0.000
relationship variance 0.507 0.518 0.016 31.294 0.000
error variance 0.206 0.211 NA NA NA
perceiver-target covariance 0.012 0.094 0.021 0.573 0.672
relationship covariance 0.079 0.156 0.016 4.887 0.000
[1] "Perceiver effect reliability: .865"
[1] "Target effect reliability: .893"
[1] "Relationship effect reliability: .852"

As you can see, the error variance component changed from NA to a mean-
ingful value. For the error component no significance tests are provided5.

4.3 Bivariate manifest analysis

If you have two different variables (each assessing another construct), bivariate
SRAs can be performed. Two different variables are separated by a + on the

5Please note, that our definition of “error variance” differs from that from Kenny: error
variance in TripleR is the sum of all three unstable variances (unstable perceiver, unstable
target, and unstable relationship variance), while in the SOREMO manual only unstable
relationship variance is treated as error variance.
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left hand side of the formula. In the current example, we can examined the
relationship between liking and meta-liking, by typing:

> RR3 <- RR(liking_a+metaliking_a ~ perceiver.id * target.id, data=likingLong)
> RR3

[1] "Round-Robin object ('RR'), calculated by TripleR"
[1] "Bivariate analysis of two variables, each measured by one round robin variable"
[1] "Univariate analyses for: liking_a"

estimate standardized se t.value p.value
perceiver variance 0.172 0.194 0.035 4.914 0.000
target variance 0.105 0.119 0.022 4.727 0.000
relationship variance 0.609 0.687 0.017 36.827 0.000
error variance NA NA NA NA NA
perceiver-target covariance 0.014 0.105 0.020 0.703 0.618
relationship covariance 0.080 0.131 0.017 4.809 0.000
[1] "Perceiver effect reliability: .937"
[1] "Target effect reliability: .901"

[1] "Univariate analyses for: metaliking_a"
estimate standardized se t.value p.value

perceiver variance 0.140 0.233 0.028 4.953 0.000
target variance 0.027 0.044 0.007 4.005 0.000
relationship variance 0.436 0.723 0.012 36.767 0.000
error variance NA NA NA NA NA
perceiver-target covariance 0.002 0.031 0.010 0.195 0.779
relationship covariance 0.062 0.143 0.012 5.247 0.000
[1] "Perceiver effect reliability: .944"
[1] "Target effect reliability: .764"

[1] "Bivariate analyses:"
estimate standardized se t.value p.value

perceiver-perceiver covariance 0.072 0.462 0.025 2.900 0.015
target-target covariance 0.049 0.920 0.011 4.310 0.000
perceiver-target covariance 0.014 0.206 0.011 1.258 0.359
target-perceiver covariance 0.000 0.003 0.018 0.021 0.794
intrapersonal relationship covariance 0.289 0.560 0.011 25.498 0.000
interpersonal relationship covariance 0.067 0.129 0.011 5.893 0.000

In this case, we get three different outputs: univariate analyses for each of
the both variables, and a third section containing the bivariate analyses (i.e., all
possible covariances between the social relations effects from both variables).

4.4 Bivariate latent analysis

In this case, two latent constructs are measured by two indicators each. In the
current example, we have two indicators for liking and for metaliking. Applying
the same logic as before, the command now is:

> RR4 <- RR(liking_a/liking_b + metaliking_a/metaliking_b
+ ~ perceiver.id * target.id, data=likingLong)
> # if you type the formula *don't* type the '+' sign -
> # in the R print out it only indicates that the command continues in the second line
> RR4

[1] "Round-Robin object ('RR'), calculated by TripleR"
[1] "Bivariate analysis of two constructs, each measured by two round robin variables"
[1] "Univariate analyses for: liking_a/liking_b"

estimate standardized se t.value p.value
perceiver variance 0.161 0.164 0.036 4.525 0.000
target variance 0.105 0.107 0.023 4.678 0.000
relationship variance 0.507 0.518 0.016 31.294 0.000
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error variance 0.206 0.211 NA NA NA
perceiver-target covariance 0.012 0.094 0.021 0.573 0.672
relationship covariance 0.079 0.156 0.016 4.887 0.000
[1] "Perceiver effect reliability: .865"
[1] "Target effect reliability: .893"
[1] "Relationship effect reliability: .852"

[1] "Univariate analyses for: metaliking_a/metaliking_b"
estimate standardized se t.value p.value

perceiver variance 0.148 0.217 0.031 4.730 0.000
target variance 0.026 0.038 0.007 3.980 0.000
relationship variance 0.357 0.522 0.012 30.776 0.000
error variance 0.153 0.223 NA NA NA
perceiver-target covariance 0.000 0.002 0.011 0.014 0.794
relationship covariance 0.071 0.197 0.012 6.075 0.000
[1] "Perceiver effect reliability: .899"
[1] "Target effect reliability: .761"
[1] "Relationship effect reliability: .841"

[1] "Bivariate analyses:"
estimate standardized se t.value p.value

perceiver-perceiver covariance 0.092 0.593 0.027 3.370 0.004
target-target covariance 0.049 0.928 0.011 4.287 0.000
perceiver-target covariance 0.007 0.114 0.011 0.676 0.630
target-perceiver covariance 0.004 0.032 0.019 0.209 0.777
intrapersonal relationship covariance 0.330 0.774 0.012 28.570 0.000
interpersonal relationship covariance 0.075 0.177 0.012 6.532 0.000

Now we get a comparable output to the bivariate manifest analysis, only
that now the error variance can be separated from the relationship variance.

4.5 Multiple groups

Using the formula interface, analyses with multiple groups can be performed as
well. The only extension is, that the variable which identifies group membership
is specified at the end of the formula after a | sign. For example, we load another
built in data set which consists of 10 groups. Two variables are measured: ex is a
round robin extraversion rating, ne is a neuroticism rating (self ratings for both
variables also are included). As this data set contains missing values, we have
to specify that the routine for handling these missing values should be applied
by setting the parameter na.rm=TRUE (for more details on missing values, see
4.6).

> data(multiGroup)
> RR1m <- RR(ex~perceiver.id*target.id|group.id, data=multiGroup, na.rm=TRUE)
> RR1m

[1] "Round-Robin object ('RR'), calculated by TripleR"
[1] "Univariate analysis of one round robin variable in multiple groups"
[1] "Univariate analyses for: ex"
[1] "Group descriptives: n = 10 ; average group size = 21.7 ; range: 19 - 24"

estimate standardized se t.value p.value
perceiver variance 0.236 0.103 0.032 7.418 0.000
target variance 0.845 0.370 0.127 6.653 0.000
relationship variance 1.204 0.527 0.045 26.463 0.000
error variance NA NA NA NA NA
perceiver-target covariance -0.011 -0.024 0.050 -0.217 0.833
relationship covariance 0.106 0.088 0.037 2.881 0.018
[1] "Perceiver effect reliability: .801"
[1] "Target effect reliability: .935"
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Partial correlations with self ratings (controlled for group membership):
r t df p

self rating with Perceiver effect (assumed similarity) .307 4.634 206 .000
self rating with Target effect (self-other agreement) .609 11.012 206 .000

Any formula explained above can be extended by the multi group parameter.
Concerning the output, no differences can be seen (except the second line of the
output, which always displays the type of analysis: "Univariate analysis of

one round robin variable in multiple groups").
As already described, one computational difference is the usage of between

group t-tests, instead of the within group method. That means, SRAs are
computed within each single group. Variance components then are calculated
as the weighted average across groups (weighted with number of participants -
1 ) and tested against zero with an one-sample t-test.

Another difference is the results object: all univariate analyses are contained
(although, not displayed by the print function) in the results. More details on
the results object can be found in the section 4.7.

4.6 Missing values

Missing values can be handled in TripleR. Missing values are defined as non-
existing measurements outside of the diagonal (which is missing anyway). By
default, calculations are aborted if missing values are outside the diagonale of
the round robin matrix. To allow missing values, add the argument na.rm=TRUE
(see 4.5 for an example).

You can inspect the distribution of missing values by using the plot_missings
command (see Figure 1). It takes the same parameters as an univariate manifest
RR analysis; for details see the help files.

If missing values are allowed by setting na.rm=TRUE, TripleR performs fol-
lowing three steps:

• Participants which have too few data are removed both as perceivers and
targets. Completely missing rows occur if participants do not rate any-
body, for example because they were missing during data collection; miss-
ing columns might occur if participants cannot rate an unknown person.
With a parameter (minData), this step can be adjusted to be more or less
restrictive. minData defines the minimum of data points outside the diag-
onal which have to be present in each row or column. For example, one
can define that at least two measurements (minData=2) should be present
in each row or column.

• Missing values outside the diagonal are imputed as the average of the
corresponding row and column mean1. Based on these imputed matrices,
perceiver, target, and relationship effects are computed. Subsequently,
relationship effects which were missing in the original data set are set as
a missing value again.

• In the case of multiple variables (i.e., latent or bivariate analyses), partic-
ipants are excluded listwise to ensure that all analyses are based on the
same data set.
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> print(plot_missings(ex~perceiver.id*target.id|group.id, data=multiGroup, show.ids=FALSE))
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Figure 1: Plot of missing values
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Based on extensive simulations we tentatively conclude that relatively small
deviations from the true value can be expected if:

• For groups of 4 people <= 1 missing value

• For groups of 5 people <= 2 missing values

• For groups of 6 people <= 4 missing values

• For groups of 7 people <= 6 missing values

• For groups of 8 people <= 8 missing values

• For groups of 9 people <= 10 missing values

• Maximum 20% missing values for groups with 10 or more people

More information on the handling of missing data and simulation studies
can be found in Schönbrodt, Back, & Schmukle (2010): ‘TripleR: An R package
for advanced social relations analyses’ (manuscript in preparation).

As an example, we can analyze another built in data set with missing values:

> data(multiGroup)
> # by default, minData is set to 1
> # (i.e., at least one observation per row and column has to be present)
> RR1miss <- RR(ex~perceiver.id*target.id|group.id, data=multiGroup, na.rm=TRUE)
> # be more restrictive
> RR1miss <- RR(ex~perceiver.id*target.id|group.id, data=multiGroup, na.rm=TRUE, minData=10)

4.7 Inspecting the results object

When a round robin analysis is performed (and stored in an object), not all infor-
mation is displayed. When the object is printed (either by calling print(object),
e.g. print(RR1), or by simple writing the name of the object into the R prompt,
e.g. RR1), a custom print function is called, which displays the table of variance
components, effects reliability estimates, and some other information. During
the calculation, however, much more results are computed and stored in the
object.

To see the structure of the object type str(object):

> str(RR1)

List of 10
$ effects :'data.frame': 54 obs. of 3 variables:
..$ id : Factor w/ 54 levels "1","10","11",..: 1 2 3 4 5 6 7 8 9 10 ...
..$ liking_a.p: atomic [1:54] -0.477 -0.367 -0.406 0.152 0.663 ...
.. ..- attr(*, "type")= chr "actor"
.. ..- attr(*, "reliability")= num 0.937
..$ liking_a.t: atomic [1:54] 0.26389 0.07728 0.00107 -0.40349 -0.33725 ...
.. ..- attr(*, "type")= chr "partner"
.. ..- attr(*, "reliability")= num 0.901
$ effectsRel :'data.frame': 2862 obs. of 4 variables:
..$ actor.id : Factor w/ 54 levels "1","2","3","4",..: 10 11 10 12 10 13 10 14 10 15 ...
..$ partner.id : Factor w/ 54 levels "1","2","3","4",..: 11 10 12 10 13 10 14 10 15 10 ...
..$ dyad : Factor w/ 1431 levels "1_01","1_02",..: 1 1 2 2 3 3 4 4 5 5 ...
..$ relationship: num [1:2862] 1.186 1.149 0.591 0.591 -0.476 ...
$ effects.gm :'data.frame': 54 obs. of 3 variables:
..$ id : Factor w/ 54 levels "1","10","11",..: 1 2 3 4 5 6 7 8 9 10 ...
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..$ liking_a.p: atomic [1:54] 2.7 2.81 2.77 3.33 3.84 ...

.. ..- attr(*, "type")= chr "actor"

..$ liking_a.t: atomic [1:54] 3.44 3.26 3.18 2.78 2.84 ...

.. ..- attr(*, "type")= chr "partner"
$ varComp :'data.frame': 6 obs. of 6 variables:
..$ type : Factor w/ 6 levels "actor variance",..: 1 4 6 3 2 5
..$ estimate : num [1:6] 0.1717 0.1053 0.6088 NA 0.0141 ...
..$ standardized: num [1:6] 0.194 0.119 0.687 NA 0.105 ...
..$ se : num [1:6] 0.0349 0.0223 0.0165 NA 0.02 ...
..$ t.value : num [1:6] 4.914 4.727 36.827 NA 0.703 ...
..$ p.value : num [1:6] 1.57e-05 2.98e-05 1.35e-39 NA 6.18e-01 ...
$ relMat.av : num [1:54, 1:54] NA 0.0715 0.1292 -0.4478 -0.7362 ...
..- attr(*, "group.id")= chr "1"
..- attr(*, "varname")= chr "liking_a"
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:54] "1" "10" "11" "12" ...
.. ..$ : chr [1:54] "1" "10" "11" "12" ...
$ relMat.diff: num [1:54, 1:54] NA -0.296 -0.333 -0.296 -0.741 ...
..- attr(*, "group.id")= chr "1"
..- attr(*, "varname")= chr "liking_a"
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:54] "1" "10" "11" "12" ...
.. ..$ : chr [1:54] "1" "10" "11" "12" ...
$ group.size : int 54
$ latent : logi FALSE
$ anal.type : chr "Univariate analysis of one round robin variable"
$ n.NA : int 0
- attr(*, "class")= chr "RRuni"
- attr(*, "group.size")= int 54
- attr(*, "varname")= chr "liking_a"
- attr(*, "self")= logi FALSE

Multiple data structures are stored in the object in list mode. Some objects
are for internal use, others, however, are very important for subsequent analyses
(see section 7). You can access all stored objects via the $ operator. For example,
the perceiver and target effects are stored in the effects object:

> head(RR1$effects)

id liking_a.p liking_a.t
1 1 -0.4768519 0.263888889
10 10 -0.3671652 0.077279202
11 11 -0.4063390 0.001068376
12 12 0.1520655 -0.403490028
13 13 0.6627493 -0.337250712
14 14 0.4141738 0.488247863

Following data objects might be relevant for subsequent analyses:

effects The perceiver and target effects. You access each effect by another $

operator; the effects have the same name like the original variable with a
suffix for perceiver and target effect. Default suffixes are ‘.a’ for actor and
‘.p’ for partner effect (if RR.style is set to behavior), or ‘.p’ for perceiver
and ‘.t’ for target effect (if RR.style is set to perception). For example,
if your original variable is called liking, you can access the perceiver effect
by RR1$effects$liking.p. If self ratings are present in the data set, they
are also returned with the default suffix .s. You can inspect the effects
by typing str(RR1$effects). In latent analyses, effects are returned as
the average of the two underlying manifest effects.
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effects.gm Actor and partner effects with group mean added.

effectsRel A data frame in long format which corresponds to the n x n matrix
of relationship effects

varComp A data frame with the absolute and standardized variance compo-
nents and their respective significance tests (this object is printed int the
print function of an RR object).

group.var In the multi group case: display the group variance.

In section 7 (Subsequent Analyses) it is explained how follow up analyses
using the perceiver and target effects, and the variance components can be done.

5 Plots

Several plots can be made from the result objects. Simply type plot(RR_object)
to see the standard variance plot associated with each analysis. The main differ-
ence between plots is whether you have multiple groups or a single round robin
group.

> # see Figure 1
> plot(RR1)

> # see Figure 2
> plot(RR1m)

You can also try different parameters:

measure =behavior (default) or perception: changes the labels of the plots

geom (single groups) = bar (default) or pie: show variance components as
stacked bars or as a pie chart

geom (multiple groups) = scatter (default) or bar: show variance compo-
nents of all groups as scatter plots with confidence intervals or as a bar
charts

connect (multiple groups) = FALSE (default) or TRUE: connect the dots of
each group in the scatter plot (usually this looks very cluttered and should
not be turned on)

conf.level (multiple groups) (defaults to 0.95) defines the size of the confi-
dence interval in the scatter plot

Hence you can try several combinations of these parameters, e.g.:

> plot(RR1, measure="perception", geom="pie")

> plot(RR1, measure="behavior", geom="pie")

> plot(RR1m, measure="perception", geom="bar")

> plot(RR1m, conf.level=0.5, connect=TRUE)

The plot function returns a ggplot2 object, which in turn can be altered
(e.g., you can change the title, the axes labels, the colors, etc.). For more
information, please consult the ggplot2 documentation.
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Multiple round robin groups:
Absolute (co−)variance estimates
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Figure 3: Variance decomposition of multiple round robin groups, latent analysis
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6 Formatting the output

As mentioned above, two nomenclatures have been established, depending on
whether behaviors or interpersonal perceptions are assessed. While internally
always the labels actor and partner are used, the summary output can be cus-
tomized by specifying whether the measure is a behavior or a perception

(default is behavior). In bivariate analyses, both variables can be specified, e.g.
measure1=‘behavior’, measure2=‘perception’, or all other combinations.

Possible combinations are for the univariate case: measure=c(‘behavior’,
‘perception’); and for the bivariate case: measure1 = c(‘behavior’, ‘per-

ception’), measure2 = c(‘behavior’, ‘perception’), and the special case
measure1=‘perception’, measure2=‘metaperception’ (in the latter, special
labels are used for bivariate covariances, see output below).

> print(RR1, measure1="perception")

[1] "Round-Robin object ('RR'), calculated by TripleR"
[1] "Univariate analysis of one round robin variable"
[1] "Univariate analyses for: liking_a"

estimate standardized se t.value p.value
perceiver variance 0.172 0.194 0.035 4.914 0.000
target variance 0.105 0.119 0.022 4.727 0.000
relationship variance 0.609 0.687 0.017 36.827 0.000
error variance NA NA NA NA NA
perceiver-target covariance 0.014 0.105 0.020 0.703 0.618
relationship covariance 0.080 0.131 0.017 4.809 0.000
[1] "Perceiver effect reliability: .937"
[1] "Target effect reliability: .901"

> print(RR4, measure1="behavior", measure2="perception")

[1] "Round-Robin object ('RR'), calculated by TripleR"
[1] "Bivariate analysis of two constructs, each measured by two round robin variables"
[1] "Univariate analyses for: liking_a/liking_b"

estimate standardized se t.value p.value
actor variance 0.161 0.164 0.036 4.525 0.000
partner variance 0.105 0.107 0.023 4.678 0.000
relationship variance 0.507 0.518 0.016 31.294 0.000
error variance 0.206 0.211 NA NA NA
actor-partner covariance 0.012 0.094 0.021 0.573 0.672
relationship covariance 0.079 0.156 0.016 4.887 0.000
[1] "Actor effect reliability: .865"
[1] "Partner effect reliability: .893"
[1] "Relationship effect reliability: .852"

[1] "Univariate analyses for: metaliking_a/metaliking_b"
estimate standardized se t.value p.value

perceiver variance 0.148 0.217 0.031 4.730 0.000
target variance 0.026 0.038 0.007 3.980 0.000
relationship variance 0.357 0.522 0.012 30.776 0.000
error variance 0.153 0.223 NA NA NA
perceiver-target covariance 0.000 0.002 0.011 0.014 0.794
relationship covariance 0.071 0.197 0.012 6.075 0.000
[1] "Perceiver effect reliability: .899"
[1] "Target effect reliability: .761"
[1] "Relationship effect reliability: .841"

[1] "Bivariate analyses:"
estimate standardized se t.value p.value
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actor-perceiver covariance 0.092 0.593 0.027 3.370 0.004
partner-target covariance 0.049 0.928 0.011 4.287 0.000
actor-target covariance 0.007 0.114 0.011 0.676 0.630
partner-perceiver covariance 0.004 0.032 0.019 0.209 0.777
intrapersonal relationship covariance 0.330 0.774 0.012 28.570 0.000
interpersonal relationship covariance 0.075 0.177 0.012 6.532 0.000

> print(RR4, measure1="perception", measure2="metaperception")

[1] "Round-Robin object ('RR'), calculated by TripleR"
[1] "Bivariate analysis of two constructs, each measured by two round robin variables"
[1] "Univariate analyses for: liking_a/liking_b"

estimate standardized se t.value p.value
perceiver variance otherperception 0.161 0.164 0.036 4.525 0.000
target variance otherperception 0.105 0.107 0.023 4.678 0.000
relationship variance otherperception 0.507 0.518 0.016 31.294 0.000
error variance otherperception 0.206 0.211 NA NA NA
generalized reciprocity otherperception 0.012 0.094 0.021 0.573 0.672
dyadic reciprocity otherperception 0.079 0.156 0.016 4.887 0.000
[1] "Perceiver effect reliability: .865"
[1] "Target effect reliability: .893"
[1] "Relationship effect reliability: .852"

[1] "Univariate analyses for: metaliking_a/metaliking_b"
estimate standardized se t.value p.value

perceiver variance metaperception 0.148 0.217 0.031 4.730 0.000
target variance metaperception 0.026 0.038 0.007 3.980 0.000
relationship variance metaperception 0.357 0.522 0.012 30.776 0.000
error variance metaperception 0.153 0.223 NA NA NA
generalized reciprocity metaperception 0.000 0.002 0.011 0.014 0.794
dyadic reciprocity metaperception 0.071 0.197 0.012 6.075 0.000
[1] "Perceiver effect reliability: .899"
[1] "Target effect reliability: .761"
[1] "Relationship effect reliability: .841"

[1] "Bivariate analyses:"
estimate standardized se t.value p.value

Perceiver assumed reciprocity 0.092 0.593 0.027 3.370 0.004
Generalized assumed reciprocity 0.049 0.928 0.011 4.287 0.000
Perceiver meta-accuracy 0.007 0.114 0.011 0.676 0.630
Generalized meta-accuracy 0.004 0.032 0.019 0.209 0.777
Dyadic assumed reciprocity 0.330 0.774 0.012 28.570 0.000
Dyadic meta-accuracy 0.075 0.177 0.012 6.532 0.000

As you can see, typical labels from different research traditions, like ‘general-
ized reciprocity metaperception’ or ‘perceiver meta-accuracy’ are automatically
printed to ease interpretation of the results.

A convenient short cut to achieve this styling is the function RR.style. You
can call this function once at the beginning of your script, and all subsequent
analyses will be labelled accordingly. For details see ?RR.style.

7 Subsequent analyses

Usually one does not only want to know about the variance components and
the within-SRM correlations. Often, we want to correlate the perceiver and
target effects with the self-ratings, with external personality questionnaires, or
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demographic variables. To do this, we can extract the perceiver/ target effects
from the RR-object, combine them with the other data (e.g., questionnaire
scales) in another data frame, and do which ever analysis we like.

Be careful: in RR objects one cannot be sure about the order and the com-
pleteness of the effects. That means, perceivers can be reordered and their order
might be different from that in the original data set. Furthermore, if some par-
ticipants are only perceivers or only targets they are removed prior to to the
social relations analyses, and do not appear in the actor/ partner effects. Hence,
merging of RR effects and other data always has to be done using the merge

command. As non-round robin variables usually are assigned to the perceiver
ID, consequently merging should be done along the perceiver ID).

The data set multiGroup contains round robin ratings and self ratings of
extraversion, which will serve as an extended example:

> # calculate the SRM
> data(multiGroup)
> RR.style("perception")
> RR1m <- RR(ex~perceiver.id*target.id|group.id, data=multiGroup, na.rm=TRUE)
> # extract the effects
> eff <- RR1m$effects
> head(eff)

id group.id ex.p ex.t ex.s
1 90201 2 -0.59649123 0.6892231 1.1428571
2 90203 2 0.73934837 -0.5939850 1.1428571
3 90205 2 0.04511278 0.5213033 0.1428571
4 90206 2 -0.49373434 0.7443609 0.1428571
5 90207 2 0.03007519 -1.7794486 -1.8571429
6 90209 2 -0.16541353 2.3107769 2.1428571

As perceiver and target effects are corrected for group membership in g
groups, according to Kenny et al. (2006) partial correlations should be used
when these effects are correlated with external (non-SRM) variables (i.e. exter-
nal variables like self ratings also have to be controlled for group membership).
‘Controlling for group membership’ by g-1 dummy variables is equivalent to
group centering all measures. As the self ratings returned by RR$effects al-
ready are centered on group level, all variables (perceiver & target effects, self
ratings) already are controlled for group membership.

Correlations between group centered variables and partial correlations be-
tween their non-centered counterparts controlled for group membership are ex-
actly the same. However, when controlling for group membership, one loses g-1
degrees of freedom, hence their test of significance is more conservative.

For the calculation of these partial correlations, you can either export the
calculated effects to another software which can calculate partial correlations
(for export, see section 8), or you can calculate these partial correlations in R.

7.1 Assumed similarity and self-other agreement: Corre-
lations with self-ratings

In data sets where self ratings are provided (in the diagonal of the round-robin
matrix), the output prints correlations between self ratings and perceiver and
target effects (also see function selfCor). In the case of multiple groups, these
correlations are controlled for group membership, but are not disattenuated
for perceiver/target effect unreliability (for an example on how to disattenuate
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these correlations, see below). In the following you find an example of such an
analysis for the multiGroup data set:

> data(multiGroup)
> RR.style("p")
> # a single group
> RR1 <- RR(ex~perceiver.id*target.id|group.id,
+ data=multiGroup[multiGroup$group.id=="2", ], na.rm=TRUE)
> selfCor(RR1)

Correlations with self ratings:
r t df p

self rating with Perceiver effect (assumed similarity) .393 1.862 19 .078
self rating with Target effect (self-other agreement) .527 2.705 19 .014

> # multiple groups
> RR2 <- RR(ex~perceiver.id*target.id|group.id, data=multiGroup, na.rm=TRUE)
> c1 <- selfCor(RR2)

Partial correlations with self ratings (controlled for group membership):
r t df p

self rating with Perceiver effect (assumed similarity) .307 4.634 206 .000
self rating with Target effect (self-other agreement) .609 11.012 206 .000

In this analysis, we find a considerable self-other agreement of extraversion
ratings rex.target,ex.self = 0.609.

Correlations which are calculated by SOREMO.exe are by default disatten-
uated for perceiver and/or target effect unreliability. To replicate these results,
you have to disattenuate the obtained correlations by following formula:

rdisatt = rraw ∗ 1√
Reltargeteffect

Hence, the disattenuated correlation rex.target,ex.self would be 0.609∗ 1√
0.935

=
0.629.

7.2 Calculating partial correlations with external variables:
Treating groups as fixed effects

Probably, you have other external variables except the self rating. These are
variables which are not assessed with the round robin design, but rather indi-
vidual variables like self ratings of personality, or demographic variables. The
variable narc (= narcissism) in the data set multiNarc is such a variable: it
is a self rating of narcissism. The function parCor now helps to calculate the
partial correlation between an SRM effect and this external variable, controlled
for group membership:

> data(multiGroup)
> data(multiNarc)
> # show the first lines of multiNarc:
> head(multiNarc)

id narc
90201 90201 7
90205 90205 6
90207 90207 3
90209 90209 12
90210 90210 8
90212 90212 6

> RR.style("p")
> # calculate SRA effects for extraversion ratings
> RR1 <- RR(ex ~ perceiver.id * target.id | group.id, multiGroup, na.rm=TRUE)
> # merge variables
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> dat <- merge(RR1$effects, multiNarc, by="id")
> # parCor(x, y, z): partial correlation between x and y, controlled for group memberhsip z
> parCor(dat$ex.t, dat$narc, dat$group.id)

$par.cor
[1] 0.7620022

$t.value
[1] 15.91813

$df
[1] 183

$p
[1] 1.508861e-35

>

7.3 Calculating partial correlations with external variables:
Treating groups as random effects - the multilevel ap-
proach

Using the approach of group centering, groups are treated as fixed factors.
Both conceptually and by means of computations it might be preferable to
treat groups as random factors (which, however, requires a sufficient number of
groups). When using a multilevel approach, we would like to keep the group
variance in our dependent variable (as the multilevel modeling takes care of
this), hence we use the effects with group mean added (effects.gm) and the
raw self ratings. Using a multilevel modeling approach, the calculation would
look like the following:

> library(lme4)
> eff.gm <- RR1m$effects.gm
> # scale all continuous variables to obtain standardized estimates
> eff.gm[,3:5] <- apply(eff.gm[,3:5], 2, scale)
> # Allow the intercept to vary between groups
> # (this is equivalent to the fixed effects approach, only with random effects).
> # Additionally, allow slopes to vary:
> lmer(ex.s~ex.t + (ex.t|group.id), eff.gm)

Linear mixed model fit by REML
Formula: ex.s ~ ex.t + (ex.t | group.id)

Data: eff.gm
AIC BIC logLik deviance REMLdev

537.6 557.9 -262.8 517.6 525.6
Random effects:
Groups Name Variance Std.Dev. Corr
group.id (Intercept) 0.00000 0.0000

ex.t 0.00000 0.0000 NaN
Residual 0.64193 0.8012
Number of obs: 217, groups: group.id, 10

Fixed effects:
Estimate Std. Error t value

(Intercept) 7.893e-17 5.439e-02 0.00
ex.t 6.009e-01 5.452e-02 11.02

Correlation of Fixed Effects:
(Intr)

ex.t 0.000
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>

The multilevel analysis reveals a self-other agreement of extraversion ratings
βex.target,ex.self = .601. As there is no random variance of the group level in
this analysis (and also no random variance of the slopes), the result is virtually
the same as in the fixed effects analysis.

For principal reasons, the lme4 package does not report p values, as it is
not clear how to compute the degrees of freedoms in multilevel models6. For
practical reasons, however, with sufficient degrees of freedom the t distribu-
tion converges to the z distribution. Hence, the reported t value still can be
examined. Some authors argue that absolute t values > 2 can be judged as
significant, regardless of the actual df (e.g., Baayen, Davidson, & Bates, 2008;
Kliegl, Masson, & Richter, 2010).

7.4 Subsequent analyses of relationship effects

For subsequent analyses of relationship effects, please note that in contrast to
perceiver and target effects, relationship effects have another structure: they
are nested in each dyad. Hence, in this case a dyadic data analysis such as the
actor-partner interdendence model (APIM) has to be conducted (see Kenny,
Kashy & Cook, 2006, p. 210). Relationship effects are group centered and can
be retrieved from the RR object by typing RR1m$effectsRel.

Relationship effects are sorted according to each dyad:

> head(RR1m$effectsRel)

group.id perceiver.id target.id dyad relationship
1 2 90201 90203 2_01 0.9095238
2 2 90203 90201 2_01 0.2904762
3 2 90201 90205 2_02 0.7942356
4 2 90205 90201 2_02 0.9847118
5 2 90201 90206 2_03 -0.4288221
6 2 90206 90201 2_03 -0.4764411

8 Exporting results

If you like to process your SRA results with another software, you can easily
export any table-like data structure as a comma-separated-value file. Please
note that the RR results object is a complex structure with many nested objects.
hence, you have to export effects and variance components separately:

> RR1 <- RR(liking_a~perceiver.id*parter.id, data=liking_a)
> head(RR1$effects)
> write.csv(RR1$effects, file="RR1_effects.csv")
> write.csv(RR1$varComp, file="RR1_varComp.csv")

These csv files then can be imported to SPSS or other programs. You can
also export tab-delimited files (?write.table), or xlsx files with the package
dataframes2xls (?write.xlsx).

6https://stat.ethz.ch/pipermail/r-help/2006-May/094765.html, also see several lengthy
discussions on the R-sig-ME mailing list
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9 FAQ

9.1 This is an excellent introduction - but where can I get
more information or pose a question?

The best way is to join the tripler-info mailing list on RForge. Bug reports,
questions, or praise can be put on this list; important announcements (new
versions, functions, etc.) also are posted on this list:
http://lists.rforge.net/cgi-bin/mailman/listinfo/tripler-info

9.2 How can I calculate a bivariate analysis between one
manifest variable and a latent construct indicated by
two variables?

A natural application of the formula interface would be:

RR1 <- RR(liking_a + metaliking_a / metaliking_b ~perceiver.id *

target.id, data=likingLong)

This approach, however, does not work in the current version of TripleR.
However, you can do the analysis by first creating a new variable for the latent
construct by taking the mean of both indicators for metaliking. Then, you can
perform a normal bivariate manifest analysis:

RR1 <- RR(liking_a + metaliking_latent ~perceiver.id * target.id,

data=likingLong)

9.3 This long data format really sounds good. But un-
fortunately my data already are in the wide format -
how can I convert them into the long format?

Converting data from wide to long is relatively easy in R. If you have quadratic
matrices, TripleR provides a function which converts these data into long format.
For example, in the package is a built in data set (liking_a), which is in wide
format:

> data(liking_a)
> head(liking_a)

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22 V23 V24
1 NA 3 3 2 2 4 3 3 2 3 3 2 2 3 2 3 2 3 2 3 2 2 3 3
2 4 NA 3 4 3 4 3 2 2 3 2 3 3 3 4 3 2 3 3 4 4 4 3 4
3 4 3 NA 3 3 3 4 3 2 3 2 3 1 4 2 4 0 3 2 3 2 3 3 2
4 3 3 3 NA 4 2 1 2 3 2 2 4 2 3 2 3 2 4 4 3 3 3 2 2
5 5 4 4 4 NA 4 3 2 3 3 4 3 2 4 3 4 3 4 4 4 2 3 3 4
6 3 3 4 3 4 NA 5 5 3 4 5 4 4 5 4 5 4 4 5 5 4 5 4 3

V25 V26 V27 V28 V29 V30 V31 V32 V33 V34 V35 V36 V37 V38 V39 V40 V41 V42 V43 V44 V45 V46
1 3 3 3 3 3 2 2 3 1 3 3 3 2 2 3 3 3 3 3 3 2 3
2 3 4 4 3 4 4 4 4 4 4 4 2 3 4 4 4 4 4 4 3 4 3
3 1 2 3 2 3 2 4 2 4 4 3 2 3 3 3 2 4 3 2 4 3 2
4 3 3 3 3 3 3 2 3 4 3 3 3 2 4 3 3 3 3 3 4 3 2
5 3 4 4 4 3 3 3 4 4 2 4 4 4 4 3 3 4 4 4 3 3 3
6 3 4 5 5 4 4 5 4 3 5 4 5 5 4 4 4 5 4 4 5 3 4

V47 V48 V49 V50 V51 V52 V53 V54
1 3 3 3 3 3 3 3 3
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2 4 4 3 4 3 4 4 4
3 3 4 4 3 3 4 4 3
4 3 3 3 3 3 3 3 2
5 3 2 4 3 2 3 3 3
6 3 5 4 4 5 5 5 5

To convert this into long format you can use the function matrix2long:

> long <- matrix2long(liking_a)
> str(long)

'data.frame': 2916 obs. of 3 variables:
$ actor.id : int 1 2 3 4 5 6 7 8 9 10 ...
$ partner.id: int 1 1 1 1 1 1 1 1 1 1 ...
$ value : int NA 4 4 3 5 3 5 4 3 3 ...

Now you can run the SRAs as usual using the data frame long. If you
assessed multiple variables (and now have a separate matrix for each variable),
you have to get each variable into long format and then combine all long data
frames using merge (in the final data frame, each variable should be a separate
column):

> data(liking_a)
> data(liking_b)
> long_a <- matrix2long(liking_a, var.id="liking_a")
> long_b <- matrix2long(liking_b, var.id="liking_b")
> long <- merge(long_a, long_b, by=c("actor.id", "partner.id"))
> str(long)

'data.frame': 2916 obs. of 4 variables:
$ actor.id : int 1 1 1 1 1 1 1 1 1 1 ...
$ partner.id: int 1 10 11 12 13 14 15 16 17 18 ...
$ liking_a : int NA 3 3 2 2 3 2 3 2 3 ...
$ liking_b : int NA 2 2 1 2 3 3 3 2 3 ...

If you have multiple groups, all transformed long data frames are combined
row wise and an additional column is necessary to indicate the group id. In lack
of appropriate demo data, for the following example imagine that liking_a is
the liking rating in group A, and liking_b is the liking rating in another group
B. Hence, one would combine both as following:

> data(liking_a)
> data(liking_b)
> long_a <- matrix2long(liking_a, var.id="liking")
> long_b <- matrix2long(liking_b, var.id="liking")
> # add group id
> long_a$group.id <- 1
> long_b$group.id <- 2
> long2 <- rbind(long_a, long_b)
> str(long2)

'data.frame': 5832 obs. of 4 variables:
$ actor.id : int 1 2 3 4 5 6 7 8 9 10 ...
$ partner.id: int 1 1 1 1 1 1 1 1 1 1 ...
$ liking : int NA 4 4 3 5 3 5 4 3 3 ...
$ group.id : num 1 1 1 1 1 1 1 1 1 1 ...

Be careful: rbind only works if all column names are identical in the data
frames which are combined. Hence, you have to make sure that all long data
frames have the same structure before applying rbind to them. Furthermore,
you should note that performing RR in this last example is not overly sensible,
as running a between group t-test with only two groups is rather debatable.
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The function matrix2long essentially is a wrapper for the much more pow-
erful functions from the reshape package. If you do a lot of data manipulation
and conversions from wide to long format or vice versa, you definitely should
dig into this package.

9.4 I have to run many, many round robin analyses in a
huge data set. What is the most convenient way to
do this?

Imagine you assessed 50 variables in round robin style, and want to extract
the effects for all variables and to store them in a new data frame (e.g., for
subsequent analyses). Of course, you can type the RR command 50 times, but
there are more convenient ways to do this.

You can construct the formula by a loop, and iterate through all measured
variables, and combine the results at the end. As an example, let’s take the
likingLong data set, which has 4 round robin variables:

> data(likingLong)
> str(likingLong)

'data.frame': 2916 obs. of 6 variables:
$ perceiver.id: int 1 2 3 4 5 6 7 8 9 10 ...
$ target.id : int 1 1 1 1 1 1 1 1 1 1 ...
$ liking_a : int NA 4 4 3 5 3 5 4 3 3 ...
$ liking_b : int NA 5 4 3 5 4 4 3 4 3 ...
$ metaliking_a: int NA 3 4 3 3 4 3 3 3 2 ...
$ metaliking_b: int NA 2 4 3 3 3 3 3 3 2 ...

If we want to extract the effects for all 4 variables, we could either type:

> RR(liking_a~perceiver.id*target.id, data=likingLong)
> RR(liking_b~perceiver.id*target.id, data=likingLong)
> RR(metaliking_a~perceiver.id*target.id, data=likingLong)
> RR(metaliking_b~perceiver.id*target.id, data=likingLong)

Or, we do it in a loop, store the results and combine them at the end:

> varnames <- colnames(likingLong)[3:6]
> # run a RR analysis for each variable and store results in a list
> res_list <- list()
> for (v in 1:length(varnames)) {
+ f1 <- formula(paste(varnames[v], "~perceiver.id*target.id"))
+ RR1 <- RR(f1, data=likingLong)
+ res_list <- c(res_list, list(RR1$effects))
+ }
> # now combine all effects in a single data frame; merge by id
> library(reshape)
> res <- merge_recurse(res_list, by="id")

As you can see, there’s a new data frame with all perceiver and target effects.
On this data frame you can run subsequent analyses, for example correlations:

> str(res)

'data.frame': 54 obs. of 9 variables:
$ id : Factor w/ 54 levels "1","10","11",..: 1 2 3 4 5 6 7 8 9 10 ...
$ liking_a.p : num -0.477 -0.367 -0.406 0.152 0.663 ...
$ liking_a.t : num 0.26389 0.07728 0.00107 -0.40349 -0.33725 ...
$ liking_b.p : num -0.228 -0.265 -0.498 0.099 0.404 ...

27



$ liking_b.t : num 0.253 0.309 -0.016 -0.401 -0.244 ...
$ metaliking_a.p: num -0.251 -0.173 -0.478 0.348 1.085 ...
$ metaliking_a.t: num 0.00855 0.10434 -0.03348 -0.2443 -0.21154 ...
$ metaliking_b.p: num -0.0958 -0.338 -0.3219 0.0894 0.7098 ...
$ metaliking_b.t: num 0.0524 0.2176 0.067 -0.1328 -0.2532 ...

> round(cor(res[,2:9]), 2)

liking_a.p liking_a.t liking_b.p liking_b.t metaliking_a.p metaliking_a.t
liking_a.p 1.00 0.11 0.85 0.14 0.47 0.19
liking_a.t 0.11 1.00 0.04 0.95 0.01 0.85
liking_b.p 0.85 0.04 1.00 0.08 0.55 0.12
liking_b.t 0.14 0.95 0.08 1.00 0.03 0.88
metaliking_a.p 0.47 0.01 0.55 0.03 1.00 0.04
metaliking_a.t 0.19 0.85 0.12 0.88 0.04 1.00
metaliking_b.p 0.43 0.03 0.63 0.07 0.90 0.08
metaliking_b.t 0.10 0.77 0.01 0.84 -0.05 0.92

metaliking_b.p metaliking_b.t
liking_a.p 0.43 0.10
liking_a.t 0.03 0.77
liking_b.p 0.63 0.01
liking_b.t 0.07 0.84
metaliking_a.p 0.90 -0.05
metaliking_a.t 0.08 0.92
metaliking_b.p 1.00 -0.03
metaliking_b.t -0.03 1.00

For convenience, this short script is also implemented as a function in TripleR
(?getEffects), which reduces the code to one or two lines. The function works
both with single and multiple groups.

> res <- getEffects(~perceiver.id*target.id, data=likingLong,
+ varlist=c("liking_a", "liking_b", "metaliking_a", "metaliking_b"))

[1] "Calculate: liking_a"
[1] "Calculate: liking_b"
[1] "Calculate: metaliking_a"
[1] "Calculate: metaliking_b"

> str(res)

'data.frame': 54 obs. of 9 variables:
$ id : Factor w/ 54 levels "1","10","11",..: 1 2 3 4 5 6 7 8 9 10 ...
$ liking_a.p : num -0.477 -0.367 -0.406 0.152 0.663 ...
$ liking_a.t : num 0.26389 0.07728 0.00107 -0.40349 -0.33725 ...
$ liking_b.p : num -0.228 -0.265 -0.498 0.099 0.404 ...
$ liking_b.t : num 0.253 0.309 -0.016 -0.401 -0.244 ...
$ metaliking_a.p: num -0.251 -0.173 -0.478 0.348 1.085 ...
$ metaliking_a.t: num 0.00855 0.10434 -0.03348 -0.2443 -0.21154 ...
$ metaliking_b.p: num -0.0958 -0.338 -0.3219 0.0894 0.7098 ...
$ metaliking_b.t: num 0.0524 0.2176 0.067 -0.1328 -0.2532 ...

9.5 An error occurs: ‘Aggregation requires fun.aggregate:
length used as default’

This error most probably occurs when you specify a data set which has a multi
group structure, but you forgot to define the group id in the formula (i.e., the
| group.id part is missing).
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9.6 My original multi group data set has X participants -
the effects of the RR analysis, however, only have Y
(Y < X) rows!

This happens, whenever single groups are excluded from the SRA. SRAs need
a minimum group size of 4 participants. If your data set contains groups with 3
or fewer members, this group is excluded from the analyses, and no effects are
calculated. A warning message informs you which groups have been excluded.

9.7 A comparison with SOREMO.exe

David Kenny describes how to estimate SRMs with other software programs
(http://www.davidakenny.net/doc/srmsoftware.doc) and also provides a data
set. We can do the analysis in TripleR as well:

> library(TripleR)
> library(foreign)
> dat <- read.spss("http://www.davidakenny.net/doc/contribute.sav", to.data.frame=TRUE)
> RR.Kenny <- RR(l1~Actor*Partner|Group, data=dat)
> RR.Kenny

[1] "Round-Robin object ('RR'), calculated by TripleR"
[1] "Univariate analysis of one round robin variable in multiple groups"
[1] "Univariate analyses for: l1"
[1] "Group descriptives: n = 24 ; average group size = 4 ; range: 4 - 4"

estimate standardized se t.value p.value
perceiver variance 0.233 0.335 0.054 4.307 0.000
target variance 0.240 0.345 0.045 5.330 0.000
relationship variance 0.222 0.320 0.030 7.316 0.000
error variance NA NA NA NA NA
perceiver-target covariance 0.059 0.250 0.047 1.244 0.226
relationship covariance 0.014 0.063 0.034 0.414 0.682
[1] "Perceiver effect reliability: .732"
[1] "Target effect reliability: .738"

Group variance is not printed in the standard RR-output, but it can be ac-
cessed by:

> RR.Kenny$group.var

[1] -0.09060487

If you compare these results with Table 1 from the srmsoftware.doc docu-
ment, you will see that all results are identical to SOREMO.
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