
Analyzing and Visualizing State Sequences in R

with TraMineR

Alexis Gabadinho
University of Geneva

Gilbert Ritschard
University of Geneva

Nicolas S. Müller
University of Geneva

Matthias Studer
University of Geneva

Abstract

This article describes the many capabilities offered by the TraMineR toolbox for cat-
egorical sequence data. It focuses more specifically on the analysis and rendering of state
sequences. Addressed features include the description of sets of sequences by means of
transversal aggregated views, the computation of longitudinal characteristics of individ-
ual sequences and the measure of pairwise dissimilarities. Special emphasis is put on the
multiple ways of visualizing sequences. The core element of the package is the state se-
quence object in which we store the set of sequences together with attributes such as the
alphabet, state labels and the color palette. The functions can then easily retrieve this
information to ensure presentation homogeneity across all printed and graphical displays.
The article also demonstrates how TraMineR’s outcomes give access to advanced analyses
such as clustering and statistical modeling of sequence data.

Keywords: state sequences, categorical sequences, sequence visualization, sequence complexity,
dissimilarities, optimal matching, representative sequences, R.

This vignette is distributed with the R package TraMineR. Please cite as:

Gabadinho, A., G. Ritschard, N.S. Müller and M. Studer (2011). “Analyzing and Visualizing State
Sequences in R with TraMineR.” Journal of Statistical Software, 40(4), 1–37. URL http://www.

jstatsoft.org/v40/i04

1. Introduction

This article is concerned with categorical sequence data and more specifically with state
sequences, where the position of each successive state receives a meaningful interpretation
in terms of age, date, or more generally of elapsed time or distance from the beginning of
the sequence. Its aim is to examine a series of questions about such state sequences and to
present the various solutions that we implemented in the R (R Development Core Team 2011)
package TraMineR for answering them.

The addressed methods are for sets of sequences and most of them are holistic (Billari 2001b) in
that they consider each sequence as a whole; i.e., as a conceptual unit. The discussion is mainly
oriented towards the analysis of sequences describing individual life courses. Nevertheless,
most of the discussed concepts and tools should be applicable in other domains such as text,
biology, quality control or web logs analysis, to cite just a few.

Sequences are complex objects, and we need special tools for describing and displaying them.
We consider, therefore, questions regarding the exploration and description of sets of sequences
such as:

❼ Which characteristics of sequences are we interested in?

http://www.jstatsoft.org/v40/i04
http://www.jstatsoft.org/v40/i04

2 Analyzing and Visualizing State Sequences in R with TraMineR

❼ What kind of indicators can we compute for a sequence set?

❼ What are suited plots for rendering sequences?

❼ How can we measure similarity between sequences?

With a more analytical or explanatory concern, we also consider issues such as:

❼ How can we identify groups with similar patterns and build typologies of sequences?

❼ How can we analyze the relationship of sequences with covariates?

In the social sciences, state sequences are of interest for studying life trajectories such as
occupational histories, professional careers or cohabitational life courses. Some of the typical
questions arising in this area are:

❼ Do life courses obey some social norm? Which are the standard trajectories? What
kind of departures do we observe from these standards ? How do life course patterns
evolve over time ?

❼ Why are some people more at risk to follow a chaotic trajectory or to stay stuck in a
state? How does the trajectory complexity evolve across birth cohorts?

❼ How is the life trajectory related to sex, social origin and other cultural factors?

Empirical answers to such questions require us to consider collections of life sequences, to
examine them from both a transversal and a longitudinal perspective, and to study their
relationships with covariates.

The primary objective of sequence methods is then to extract simplified workable informa-
tion from sequential data sets; that is, to efficiently summarize and render these sets and
to categorize the sequential patterns into a limited number of groups. This is essentially an
exploratory task that consists of computing summary indicators, as well as sorting, group-
ing and comparing sequences. The resulting groups and real-value indicators may then be
submitted to classical inferential methods and serve, for instance, as response variables or
explanatory factors for regression-like models.

A common approach for categorizing patterns consists of computing pairwise distances be-
tween them by means of sequence alignment algorithms (such as optimal matching) or other
suitable metrics and using this information for clustering the sequences. This method has
been applied to various data since the pioneering work of Abbott and Forrest (1986). A re-
view can be found in Abbott and Tsay (2000). The expected outcome of such a strategy is a
typology, with each cluster grouping cases with similar trajectories. Through binary logistic
regression or classification trees, for example, we can then study how each cluster membership
is related to covariates.

A more recent complementary approach considered in the literature (Elzinga and Liefbroer
2007; Widmer and Ritschard 2009) is to focus on sequence indicators measuring for instance
the longitudinal diversity and complexity of the sequences and to analyze them by means of
conventional statistical tools for real-value variables.

With a somewhat more aggregated point of view, an approach considered, for instance, by
Billari (2001a) consists of looking at the sequence of transversal characteristics measured at

Alexis Gabadinho, Gilbert Ritschard, Nicolas S. Müller, Matthias Studer 3

each position, such as the diversity of states observed at each given age. Comparing the
evolution of such transversal characteristics for different groups defined by birth cohorts or
sex, for instance, provides instructive insights (Widmer and Ritschard 2009). However, when
working with transversal indicators we lose the specific information on individual follow-ups.

We may indeed imagine many other ways of looking at categorical sequences such as corre-
spondence analysis of the states (Deville and Saporta 1983) or advanced Markov modeling
(Berchtold and Raftery 2002); i.e., the study of how the probability of a given state depends on
the previously observed states. Transforming state sequences into event sequences and resort-
ing to tools for mining frequent subsequences permits us to gain interesting knowledge about
the typical sequencing of states or events (Billari, Frnkranz, and Prskawetz 2006; Ritschard,
Gabadinho, Müller, and Studer 2008). A very common approach in the life course literature
is event history or survival analysis (Mayer and Tuma 1990; Yamaguchi 1991; Hosmer and
Lemeshow 1999; Blossfeld, Golsch, and Rohwer 2007) which focuses on the occurrence of a
specific event or somewhat equivalently on the duration—time to event—until a given state
transition. Though not addressed here, all these techniques may usefully complement the
considered state sequence techniques.

The TraMineR R package is available from the Comprehensive R Archive Network at http:
//CRAN.R-project.org/package=TraMineR and offers many analysis and visualization tools
for either state or event sequences. These tools include already known methods, as well as new
developments. We focus in this article on the functions intended for state sequence analysis.
The paper is organized as follows. In Section 2, we introduce the TraMineR library, describe
the mvad data set used for illustration and give a first example of analysis that can be run
with TraMineR. Section 3 defines the different forms of sequential data that are supported by
the package. In Section 4, we introduce the central concept of state sequence object. Section 5
introduces two basic visualization tools and describes the general plotting principles used
by the package. Section 6 is devoted to the summarization and visual rendering of sets of
sequences, while Section 7 is concerned with individual sequence indicators. In Section 8,
we present the metrics that were implemented for measuring pairwise dissimilarities between
sequences. In Section 9, we illustrate how dissimilarities measures can be used for further
statistical analysis. Finally, we make some concluding remarks in Section 10.

2. The TraMineR R package

TraMineR (Gabadinho, Ritschard, Studer, and Müller 2009) is a package for mining and
visualizing sequences of categorical data describing life courses in R (R Development Core
Team 2011), the name TraMineR being a contraction of Life Trajectory Miner for R. It puts
together most of the features proposed separately by other software for sequential data and
offers many original tools for managing, analyzing and rendering categorical sequences.

Other statistical programs that can handle state sequences include Abbott (1997)’s no-longer-
maintained Optimize program, TDA (Rohwer and Ptter 2002), which is freely available at
http://www.stat.ruhr-uni-bochum.de/tda.html, the add-on for Stata by Brzinsky-Fay,
Kohler, and Luniak (2006), which is freely available for licensed Stata users, and the dedicated
CHESA program by Elzinga (2007a), available from http://home.fsw.vu.nl/ch.elzinga/.
They all compute the optimal-matching edit distance between pairs of sequences and each
of them offers specific useful facilities for describing sets of sequences. TraMineR is, to our

http: //CRAN.R-project.org/package=TraMineR
http: //CRAN.R-project.org/package=TraMineR
http://www.stat.ruhr-uni-bochum.de/tda.html
http://home.fsw.vu.nl/ch.elzinga/

4 Analyzing and Visualizing State Sequences in R with TraMineR

knowledge, the first such toolbox for the free R statistical and graphical environment. Its
salient characteristics are:

❼ R and TraMineR are free and open source;

❼ Since TraMineR is developed in R, it takes advantage of many already optimized pro-
cedures of R as well as of its powerful graphical capabilities;

❼ R runs under several OS including Linux, MacOS X, Unix and Windows; any R script
with TraMineR functions runs unmodified under all operating systems;

❼ Specific TraMineR functions can be combined in the same script with any of the nu-
merous basic statistical procedures of R as well as with those of any other R-package.

TraMineR is readily installed from within R via install.packages("TraMineR"). It features
a unique set of procedures for analyzing and visualizing state sequence data, such as:

❼ Handling a large number of state sequence representations with simple functions for
transforming to and from different formats;

❼ A whole series of easy to use plot functions for rendering sets of sequences (density plot,
frequency plot, index plot, representative sequence plot and more);

❼ Individual longitudinal characteristics of sequences (length, time in each state, longitu-
dinal entropy, complexity, turbulence and more);

❼ Sequence of transversal characteristics by position (transversal state distribution, transver-
sal entropy, modal state);

❼ Other aggregated characteristics (transition rates, average duration in each state, se-
quence frequency);

❼ A choice of metrics for evaluating distances between sequences.

Table 1 gives an overview of the key functions for analyzing state sequences that will be de-
scribed in the remainder of the article. It is worth mentioning that the package provides also
tools for event sequences such as finding the most frequent and most discriminating subse-
quences and extracting association rules between subsequences, as well as tools for ANOVA-
like analyses of sequences (Studer, Ritschard, Gabadinho, and Müller 2011) that will not be
discussed here. See the User’s guide (Gabadinho et al. 2009) for a detailed description of the
package usage.

A first glance at TraMineR

To illustrate how easy it is to work with TraMineR we consider the mvad example data set.
This data frame is distributed with the library and will serve throughout the article. It
contains the data used by McVicar and Anyadike-Danes (2002) for studying the school-to-
work transition in Northern Ireland. The figures cover 712 individuals, the sequences being
their monthly follow-up over the course of 6 years starting in the month where they were
first eligible to leave compulsory education (July 1993). Each individual is characterized by a

Alexis Gabadinho, Gilbert Ritschard, Nicolas S. Müller, Matthias Studer 5

Type Function
Graphical
function

Description

Data seqformat() Translating between sequence formats
handling
(Section 3)

seqconc(),

seqdecomp()

Converting between character string and
matrix representations of sequences

State seqdef() Creating state sequence objects
sequence alphabet() Setting and retrieving the alphabet
objects cpal() Setting and retrieving the color palette
(Section 4) stlab() Setting and retrieving the state labels

Individual
sequences

print() seqiplot(),

seqIplot()

Displaying and plotting individual
sequences

(Section 5) seqtab() seqfplot() Sequence frequencies

Global and seqstatd() seqdplot(), Transversal state distributions and
transversal seqHtplot() transversal entropies
descriptive seqmeant() seqmtplot() Mean durations in states of the alphabet
statistics seqmodst() seqmsplot() Sequence of modal states
(Section 6) seqtrate() Transitions rates

Sequence seqlength() Sequence lengths
characteristics seqdss() Distinct successive states by sequences
(Section 7) seqdur() Durations of the distinct successive states

seqsubsn() Number of subsequences by sequence
seqistatd() Within sequence state distributions
seqient() Within sequence entropies
seqST() Within sequence turbulences
seqici() Within sequence complexity indexes

Sequence seqsubm() Creating a substitution cost matrix
dissimilarities
(Section 8)

seqdist() Pairwise distances or distances to a
baseline sequence

seqdistmc() Multichannel distances
seqrep() seqrplot() Extracting sets of non-redundant

representative sequences

Table 1: TraMineR’s key functions.

unique identifier, 13 covariates and 72 monthly activity state variables from July 1993 to June
1999. Since the first two months of the follow-up are summer holidays, we look hereafter at
trajectories from September 1993 yielding sequences of 70 monthly statuses. The states are
school, FE (further education), employment, training, joblessness, and HE (higher education).
See Table 2 for a description of the variables in mvad.

We first show how to build a typology of the observed school-to-work trajectories by clustering
the sequences. This is done with the following few steps:

1. Load the library, retrieve the mvad data and create a state sequence object from the
status variables (columns 17 to 86):

6 Analyzing and Visualizing State Sequences in R with TraMineR

id Unique individual identifier
weight Sample weights
male Binary dummy for gender; 1 = male
catholic Binary dummy for community; 1 = Catholic

Belfast Binary dummies for location of school, one of five Education and Library
Board areas

N.Eastern see Belfast
Southern see Belfast
S.Eastern see Belfast
Western see Belfast

Grammar Binary dummy indicating type of secondary education; 1 = grammar school
funemp Binary dummy indicating father’s employment status at time of survey; 1 =

father unemployed
gcse5eq Binary dummy indicating qualifications gained by the end of compulsory

education; 1 = 5 or more GCSEs at grades A-C, or equivalent
fmpr Binary dummy indicating SOC code of father’s current or most recent job;

1 = SOC1 (professional, managerial or related)
livboth Binary dummy indicating living arrangements at time of first sweep of

survey (June 1995); 1 = living with both parents

jul93 Monthly activity variables coded 1-6; 1 = school, 2 = FE, 3 = employment,
4 = training, 5 = joblessness, 6=HE

...
...

jun99 see jul93

Table 2: List of variables in the mvad data set.

R> library("TraMineR")

R> data("mvad")

R> mvad.alphab <- c("employment", "FE", "HE", "joblessness",

+ "school", "training")

R> mvad.seq <- seqdef(mvad, 17:86, xtstep = 6, alphabet = mvad.alphab)

2. Compute pairwise optimal matching (OM) distances between sequences with an in-
sertion/deletion cost of 1 and a substitution cost matrix based on observed transition
rates:

R> mvad.om <- seqdist(mvad.seq, method = "OM", indel = 1, sm = "TRATE")

3. Proceed to an agglomerative hierarchical clustering using the obtained distance matrix,
select the four-clusters solution and express it as a factor:

R> library("cluster")

R> clusterward <- agnes(mvad.om, diss = TRUE, method = "ward")

R> mvad.cl4 <- cutree(clusterward, k = 4)

R> cl4.lab <- factor(mvad.cl4, labels = paste("Cluster", 1:4))

Alexis Gabadinho, Gilbert Ritschard, Nicolas S. Müller, Matthias Studer 7

Cluster 1

F
re

q.
 (

n=
26

5)

Sep.93 Mar.95 Sep.96 Mar.98

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cluster 2

F
re

q.
 (

n=
15

3)

Sep.93 Mar.95 Sep.96 Mar.98

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cluster 3

F
re

q.
 (

n=
19

4)

Sep.93 Mar.95 Sep.96 Mar.98

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cluster 4

F
re

q.
 (

n=
10

0)

Sep.93 Mar.95 Sep.96 Mar.98

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

employment
FE

HE
joblessness

school
training

Figure 1: State distribution plots by cluster.

4. Visualize the cluster patterns by plotting their transversal state distributions:

R> seqdplot(mvad.seq, group = cl4.lab, border = NA)

We see in Figure 1 that the first cluster is formed essentially by the youngsters who join
the workforce soon after ending compulsory school, while those who pursue education are
in the second (higher education) and third clusters. The last cluster groups less successful
transitions from school to work with long spells of joblessness or training.

To continue, we examine how the diversity of states within each sequence is related to sex, to
whether the father is unemployed and to whether the qualification grade at end of compulsory
school was good. We compute the longitudinal entropy and regress it on the covariates:

R> entropies <- seqient(mvad.seq)

R> lm.ent <- lm(entropies ~ male + funemp + gcse5eq, mvad)

8 Analyzing and Visualizing State Sequences in R with TraMineR

Estimate Std error t value Pr(> |t|)

(Intercept) 0.39 0.01 32.73 0.00
Male -0.04 0.01 -3.03 0.00

Father unemployed 0.03 0.02 1.67 0.10
Good end compulsory school grade 0.07 0.01 4.90 0.00

Table 3: Regressing entropies on a selection of covariates.

Results show that males experience less diverse states and that youngsters with good grades
at the end of compulsory school experience more diverse states. Whether the father is unem-
ployed does not have a significant effect.

3. Sequence representations

State sequences can be represented in many different ways, depending on the data source and
on how the information is organized. Data organization and conversion between formats is
discussed in detail in Ritschard, Gabadinho, Studer, and Müller (2009), where an ontology of
longitudinal data presentations is given that may help identify the kind of data at hand. Here,
we limit the discussion to the sequence data representations that TraMineR can handle and
import. Those formats are listed in Table 4 together with the conversions that can currently
be done with the provided seqformat() function.

3.1. State sequences

We consider sequences of discrete or categorical data. Formally, we define a state sequence of
length ℓ as an ordered list of ℓ elements successively chosen from a finite set A of size a = |A|
that is called the alphabet. A natural way of representing a sequence x is by listing the
successive elements that form the sequence x = (x1, x2, . . . , xℓ), with xj ∈ A. With reference
to this expanded form of sequences, state sequences are characterized by two properties.
Firstly, they are formed by elements that are states; i.e., something that can last as opposed,
for instance, to events that occur at given time points. Secondly, the position of each element
conveys meaningful information in terms of age, date or, more generally, elapsed time or
distance from the beginning of the sequence. Position indexes providing time information
may be either absolute calendar values (day, year, month, ...) or relative process time (age,
process duration, ...).

In TraMineR, the expanded form is called STate-Sequence (STS) format. In this format, the
successive states (statuses) of an individual are given either in consecutive columns, or as a
character string with states separated by a given symbol such as ‘-’ or ‘/’, the former being
the default separator. Each position (column) is supposed to correspond to a predetermined
time unit.

3.2. Other sequence representations

Sequence data can be represented in more compact ways than STS essentially by giving only
one of several same successive states. In that case, we have to explicitly stamp the successive
distinct states with their starting position or duration. Table 4 displays the same example

Alexis Gabadinho, Gilbert Ritschard, Nicolas S. Müller, Matthias Studer 9

Code Conversion Example

STS from/to
Id 18 19 20 21 22 23 24 25 26 27
101 S S S M M MC MC MC MC D
102 S S S MC MC MC MC MC MC MC

SPS from/to
Id 1 2 3 4
101 (S,3) (M,2) (MC,4) (D,1)
102 (S,3) (MC,7)

DSS to
Id 1 2 3 4
101 S M MC D
102 S MC

SPELL from

Id Index From To State
101 1 18 20 S (single)
101 2 21 22 M (married)
101 3 23 26 MC (married with children)
101 4 27 27 D (divorced)
102 1 18 20 S (single)
102 2 21 27 MC (married with children)

Table 4: Sequence data representations; some formats handled by the seqformat() function.

of two sequences in the different formats. The two considered sequences describe family
formation histories of two individuals, the states being single (S), married (M), married with
children (MC) and divorced (D).

A first efficient way of representing a state sequence is by listing the distinct successive states
with their associated durations. We get thus a sequence of couples (xj , tj) where xj is a state
and tj its duration; i.e., the number of times it is repeated. This is the State-Permanence-
Sequence (SPS) format (Aassve, Billari, and Piccarreta 2007). By considering only the distinct
successive states without their associated durations, we get the Distinct-Successive-States
(DSS) sequence format. This DSS form holds the basic state sequencing information, but
loses all time (tj) and, more generally, alignment data.

In the SPELL format there is one line for each spell. Each spell is characterized by the state
(supposed constant during the spell) and the spell start and end times. STS sequences can
easily be derived from such representation.

4. State sequence objects

The general philosophy of the library is to ensure that the various results and plots outputted
for a same set of sequence data use the same state labels and colors. Likewise, any information
on case weights and possible missing information about some positions in sequences should
be treated the same way throughout the analysis. To achieve this goal, the TraMineR func-
tions for state sequence analysis require as an argument a state sequence object that includes
both the sequential data and its attributes. Thus, the first step when using TraMineR for
state sequence analysis is to create a state sequence object. This is done with the seqdef()

function from data organized in either of the STS, SPS or SPELL forms described in the
previous section. We show below how to create a state sequence object from the mvad data

10 Analyzing and Visualizing State Sequences in R with TraMineR

Attribute Description Argument Default Retrieve/set

alphabet List of states states From input data alphabet()

cpal Color palette cpal RColorBrewer palette cpal()

labels Long state labels labels From input data stlab()

cnames Position names cnames From input data names()

row.names Row (sequence) labels id From input data rownames()

weights Optional case weights weights NULL

Table 5: Main sequence object attributes.

set introduced in Section 2. The main attributes are listed in Table 5, together with their
default values and the dedicated functions to retrieve or set them.

4.1. Creating state sequence objects

In the mvad data set, the retained activity status variables are stored in columns 17 to 86. We
display these statuses for the first six considered months (September 1993 to February 1994)
of the first two records:

R> mvad[1:2, 17:22]

Sep.93 Oct.93 Nov.93 Dec.93 Jan.94 Feb.94

1 employment employment employment employment training training

2 FE FE FE FE FE FE

The default input format for the seqdef() function is STS, which is appropriate for the
mvad data set. If the input data is in another format it must be specified with the informat
argument and seqdef() will automatically make the required conversion.

Alphabet and state labels

The alphabet is the list of states allowed in the sequences. Both short and long labels of the
states forming the alphabet are attached to the object. Long labels serve mainly for color
legends in plots, while short state names are primarily used in printed outputs. Shorter names
produce cleaner and shorter output when printing the sequences.

By default, the sorted list of the distinct states found in the input data (as returned by the
seqstatl() function) defines the alphabet and is used as state names and labels. This can
be changed with optional arguments, which is necessary, for example, when the alphabet
contains states that do not appear in the retained sequences.

Below we specify short state names with the states argument and long state labels with
labels. These arguments expect vectors of names or labels that are ordered conformably
with the alphabet. The alphabet argument can be used to change the order of the states, in
which case the vectors passed with the states and labels arguments should conform to the
newly defined order.

Alexis Gabadinho, Gilbert Ritschard, Nicolas S. Müller, Matthias Studer 11

R> mvad.lab <- c("Employment", "Further education", "Higher education",

+ "Joblessness", "School", "Training")

R> mvad.scode <- c("EM", "FE", "HE", "JL", "SC", "TR")

R> mvad.seq <- seqdef(mvad, 17:86, alphabet = mvad.alphab, states = mvad.scode,

+ labels = mvad.lab, xtstep = 6)

Now the sequences are stored in the mvad.seq sequence object. We can display them in the
concise SPS representation with:

R> print(mvad.seq[1:5,], format = "SPS")

Sequence

[1] (EM,4)-(TR,2)-(EM,64)

[2] (FE,36)-(HE,34)

[3] (TR,24)-(FE,34)-(EM,10)-(JL,2)

[4] (TR,47)-(EM,14)-(JL,9)

[5] (FE,25)-(HE,45)

4.2. Other important attributes and properties

We briefly comment here upon some other important attributes that will be used in conjunc-
tion with the alphabet and state labels by TraMineR’s functions.

State colors and position names

The sequence plot functions provided by the library need a distinct color for each state.
A color palette is therefore attached to the sequence object. A default color palette from
RColorBrewer (Neuwirth 2007) is automatically selected as long as the alphabet size does
not exceed 12. Position names serving mainly for labeling the ticks of the x-axis but that are
also useful for increasing readability of tabulated output are also an attribute of the object.
If left unspecified, position names are taken from the corresponding column names of the
original data frame. The interval between the x-axis tick-marks is an additional attribute
that can be set (xtstep argument) for optimizing rendering.

Case weights

Survey data often come with case weights that account for the sampling scheme and unit non-
responses. Using such case weights is important to compensate for sampling bias and thus
get results that are more realistic. When weights are attached to the state sequence object,
the TraMineR functions that can handle weights automatically produce weighted results. To
disable the use of weights, add option weighted=FALSE to the function.

The weight variable in mvad contains case weights that account for the selective attrition
during the survey and we attach them to the sequence object as shown below. Unless otherwise
specified, we will use this weighted sequence object from here on.

R> mvad.seq <- seqdef(mvad, 17:86, alphabet = mvad.alphab, states = mvad.scode,

+ labels = mvad.lab, weights = mvad$weight, xtstep = 6)

12 Analyzing and Visualizing State Sequences in R with TraMineR

Missing values

Missing values in the expanded (STS) form of a sequence occur, for example, when:

❼ Sequences do not start on the same date while using a calendar time axis;

❼ The follow-up time is shorter for some individuals than for others yielding sequences
that do not end up at the same position;

❼ The observation at some positions is missing due to nonresponse, yielding internal gaps
in the sequences.

The way missing values should be handled may be different for each of these situations. In
the first case, we may want to maintain explicitly the starting missing values to preserve
alignment across sequences or possibly left-align sequences by switching to a process time
axis. In the second case, the ending missing terms could just be ignored.

To allow such differentiated treatments, TraMineR distinguishes left, in-between and right
missing values. We can specify how each of the missing types should be encoded with the
left, gaps and right arguments. By default, gaps and left-missing states are coded as
explicit missing values while all missing values encountered after the last valid (rightmost)
state in a sequence are considered void elements; i.e., the sequence is considered to end after
the last valid state.

The specific treatment of each type of missing value will depend upon whether the analysis
method envisaged supports missing values; and, if yes, which kind it supports. Most of
the proposed functions, such as seqdist() for computing distances between sequences, have
optional arguments for dealing with missing states.

Subsets and attributes inheritance

Subsets of sequence objects can be defined by specifying row and column indexes (or names)
as for R matrices and data frames. Every subset of a state sequence object inherits its ‘parent’
attributes. The alphabet and color palette, for instance, remain the same for all subsets. This
is of particular importance when comparing graphics that render different subsets of a same
sequence object.

5. Visualizing individual state sequences

State sequence visualization is one of the most important features of the package. This section
introduces two basic plotting functions, namely the index plot intended to render a set or
subset of individual state sequences and the frequency plot that visualizes them according
to their frequencies. We explain also the common design of most of TraMineR’s plotting
functions.

5.1. Sequence index plots

A sequence index plot (Figure 2) individually renders the selected state sequences. Each of
them is represented by horizontally stacked boxes that are colored according to the state at
the successive positions. The resulting bars are put above each other to vertically align the

Alexis Gabadinho, Gilbert Ritschard, Nicolas S. Müller, Matthias Studer 13

10
 s

eq
. (

w
ei

gh
te

d
n=

71
1.

57
)

Sep.93 Sep.94 Sep.95 Sep.96 Sep.97 Sep.98

1
3

4
5

6
7

8
9

10

Employment
Further education
Higher education
Joblessness
School
Training

Figure 2: Sequence index plot of sequences 1 to 10.

positions. We thus visualize, for each case, the individual longitudinal succession of states as
well as, through the length of each color segment, the duration spent in each successive state.
The alignment also permits easy transversal comparisons at each position. The sequence index
plot shown in Figure 2 was obtained with the command below:1

R> seqiplot(mvad.seq, border = NA, with.legend = "right")

Since we have attached case weights to the mvad.seq sequence object, the width of the bar
representing each sequence is proportional to its weight. This default behavior could be
changed with the weighted=FALSE argument. The plotted sequences are selected with the
idxs argument by providing either a vector of indexes, or 0 for requesting all the sequences.
The default value is 1:10 and Figure 2 displays therefore only the first 10 sequences of
mvad.seq.

The seqIplot() alias produces full index plots that display all the sequences in the set without
spaces between sequences and without borders around unit states. The usefulness of such plots
has, for instance, been stressed by Scherer (2001) and Brzinsky-Fay et al. (2006). However,
when the number of displayed sequences is large, they may produce burden pictures that are
often hard to interpret.2 We can partially overcome this drawback by sorting the sequences
according to the values of a suitably chosen covariate—passed with the sortv argument.
Good choices are, for instance, the distance to the most frequent sequence or the scores of a
multidimensional scaling analysis3 of the dissimilarities between sequences (Figure 3). Both
solutions suppose that we can compute such dissimilarities; this will be addressed in Section 8.

1seqiplot(), as most other plotting functions described in this paper, is just an alias for calling a generic
seqplot() state sequence plot function with the appropriate type argument and suitable default option values.
The border=NA option suppresses the border that surrounds, by default, each unit state in the sequence.

2When plotting several hundred of sequences, saving index plots may also produce heavy files in vectorial
formats such as PostScript and PDF; generating plots in bitmap formats such as PNG or JPEG is recommended
in such cases.

3The scores are obtained from the dissimilarity matrix with the cmdscale() function.

14 Analyzing and Visualizing State Sequences in R with TraMineR

Figure 3: Unsorted and sorted full-sequence index plots.

5.2. Sequence frequencies

The seqtab() function returns a table with the counts and percent frequencies of the se-
quences sorted in decreasing order of their frequencies. In the next example, we request the
four most frequent sequences of mvad.seq with idxs=1:4. In the printed outcome, sequences
are displayed in the shorter and more readable SPS format:

R> seqtab(mvad.seq, idxs = 1:4)

Freq Percent

SC/24-HE/46 33 4.7

SC/25-HE/45 25 3.5

TR/22-EM/48 18 2.5

EM/70 15 2.1

The most frequent sequence in the mvad.seq object is a spell of two years of school followed
by 46 months of higher education. It accounts, however, for only 4.7% of the total weights
of the 712 cases considered. The second most frequent sequence, which concerns 3.5% of the
weighted individuals, is indeed very similar to the previous one.

Sequence frequency plots

A graphical view of the sequence frequency table where bar widths are proportional to the
frequencies is obtained with the seqfplot() function. Figure 4 shows the plot of the weighted
and unweighted frequencies4 obtained with:

4Remember that we attached case weights to our sequences; the frequencies are thus weighted by default.
Since we have to issue two separate seqfplot() commands, we use par(mfrow=...) for arranging the plots
and, therefore, we deactivate the automatic display of the legend that is not compatible with it (see below).

Alexis Gabadinho, Gilbert Ritschard, Nicolas S. Müller, Matthias Studer 15

Weighted frequencies

C
um

. %
 fr

eq
. (

w
ei

gh
te

d
n=

71
1.

57
)

Sep.93 Mar.95 Sep.96 Mar.98

0%

20%

Unweighted frequencies

C
um

. %
 fr

eq
. (

n=
71

2)

Sep.93 Mar.95 Sep.96 Mar.98

0%

20.8%

Figure 4: Weighted and unweighted sequence frequency plots.

R> par(mfrow = c(1, 2))

R> seqfplot(mvad.seq, border = NA, with.legend = FALSE,

+ main = "Weighted frequencies")

R> seqfplot(mvad.seq, weighted = FALSE, border = NA,

+ with.legend = FALSE, main = "Unweighted frequencies")

By default, only the 10 most frequent sequences are shown. The y-axis indicates the cu-
mulative percentage of the represented sequences. If we look at the unweighted results, the
most frequent sequence is to stay employed during the entire follow-up period (be in state
EM during 70 months). This sequence, which was the fourth most frequent in the weighted
frequency table with 2.5% of the total weight, accounts for 7% of the 712 cases considered.

The probability for two individuals to follow exactly the same 70-month trajectory is small,
yielding a large number of different patterns. The 10 most frequent sequences account for
only about 20% of all the trajectories, which reflects this high diversity.

5.3. Reading and controlling state sequence plots

The way index plots render individual state sequences with horizontally stacked boxes is
common to other functions of the library that visualize specific state sequences. The position
in the sequence is read on the x-axis. The first value on this axis is the selected origin. The
sequence is read from left to right in the same way as printed outputs. Tick labels for the
x-axis are retrieved, by default, from the plotted sequence object.

The values on the y-axis are the indexes of the plotted sequences. The index refers to the
considered ranking of the sequences. For instance, in sequence index plots, the default order
is that in the state sequence object unless a specific sort variable is provided with the sortv
argument. In sequence frequency plots, sequences are sorted according to their frequency in the
data set, while in representative sequence plots (Section 9.1), sequences are sorted according
to their representativeness score.

16 Analyzing and Visualizing State Sequences in R with TraMineR

The indexes on the y-axis—and hence the sequences—are displayed bottom-up. Thus, when
sequences are sorted, the first ranked one is at the bottom of the plot.5 This respects the usual
standard for y-axes. It may, however, be confusing when compared with the corresponding
printed outputs where sequences are displayed top-down.

Other aspects of the graphic (title, font size, axes display, axis label, state legend, ...) can be
controlled with dedicated options described in detail in the reference manual. There is also
an option to produce separate plots by levels of a covariate.

6. Computing and plotting overall and transversal statistics

We now turn to the facilities offered by TraMineR for visualizing and computing overall
and transversal descriptive statistics of a set of sequences. The functions discussed here all
require a state sequence object as main argument and admit a series of optional parameters.
We illustrate with the mvad.seq weighted sequence object created on page 11.

6.1. Overall statistical characteristics

We consider, first, global synthesized information that is based neither on individual longitu-
dinal characteristics nor on transversal characteristics by position. More specifically, we focus
on the overall state distribution and transition rates between states.

Mean time spent in each state

A first synthetic information is given by the mean—not necessarily consecutive—time spent
in the different states; that is, the mean number of times each state is observed in a sequence.
This characterizes the overall state distribution. As an example, we plot the mean times for
two subsets defined by the funemp covariate that indicates whether the respondent’s father
was unemployed at the time of the survey (Figure 5). The graphic with the distinct plots
by levels of the funemp covariate is obtained by passing funemp as group argument to the
plotting function. This option is common to all the plotting functions presented in this article.

R> seqmtplot(mvad.seq, group = mvad$funemp, ylim = c(0, 30))

We can see that the mean time spent in joblessness and training is higher for interviewees
with unemployed fathers, while the time they spent in ‘school’, ‘further education’ and ‘higher
education’, is lower.

Mean time values are obtained with the seqmeant() function.6 However, unlike for graphical
displays, functions returning statistics and sequence characteristics do not have a group argu-
ment. We can retrieve the values by levels of a covariate with the row indexing mechanism7

or with the by() function:

R> by(mvad.seq, mvad$funemp, seqmeant)

5This can be changed by with the idxs argument.
6Individual time spent in each state can be obtained with seqistatd().
7 seqmeant(mvad.seq[mvad$funemp=="yes",]) and seqmeant(mvad.seq[mvad$funemp=="no",]).

Alexis Gabadinho, Gilbert Ritschard, Nicolas S. Müller, Matthias Studer 17

EM FE HE JL SC TR

no

M
ea

n
tim

e
(w

ei
gh

te
d

n=
59

4.
27

)

0
6

12
18

24
30

EM FE HE JL SC TR

yes

M
ea

n
tim

e
(w

ei
gh

te
d

n=
11

7.
3)

0
6

12
18

24
30

Employment
Further education

Higher education
Joblessness

School
Training

Figure 5: Mean time spent in each state by father’s unemployment status.

Transition rates

Another interesting information about a set of sequences is the transition rate between each
couple of states (si, sj); i.e., the probability to switch at a given position from state si to
state sj . Let nt(si) be the number of sequences that do not end in t with state si at position
t and let nt,t+1(si, sj) be the number of sequences with state si at position t and state sj at
position t+ 1. The transition rate p(sj | si) between states si and sj is obtained as

p(sj | si) =

∑L−1

t=1
nt,t+1(si, sj)

∑L−1

t=1
nt(si)

.

with L the maximal observed sequence length.

The seqtrate() function returns the matrix of transition rates for the provided sequence
object. By default, the rates are assumed position-independent; i.e., the same whatever t.
The outcome is a single matrix where each row i gives a transition distribution from the
originating state si in t to the states in t + 1; that is, each row total equals one. Hence,
transition rates provide information about the most frequent state changes observed in the
data together with, on the diagonal, an assessment of the stability of each state.

In the following example we compute the transition rate matrix for the mvad.seq sequence
object:

R> mvad.trate <- seqtrate(mvad.seq)

R> round(mvad.trate, 2)

18 Analyzing and Visualizing State Sequences in R with TraMineR

[-> EM] [-> FE] [-> HE] [-> JL] [-> SC] [-> TR]

[EM ->] 0.99 0.00 0.00 0.01 0.00 0.00

[FE ->] 0.03 0.95 0.01 0.01 0.00 0.00

[HE ->] 0.01 0.00 0.99 0.00 0.00 0.00

[JL ->] 0.04 0.01 0.00 0.94 0.00 0.01

[SC ->] 0.01 0.01 0.02 0.01 0.95 0.00

[TR ->] 0.04 0.00 0.00 0.01 0.00 0.94

We learn from this outcome that the highest transition rates (0.04) are observed between
states JL (joblessness) and EM (employment), and between states TR (training) and EM.
Moreover, states JL and TR are the most unstable with a probability of 0.06 (1.0− 0.94) to
leave the state at each position t.

Time-varying transition rates can be obtained with option time.varying=TRUE, in which
case a 3-dimensional array with a distinct transition rate matrix for each of the positions
t = 1, 2, . . . , L− 1 is returned. The matrix for position t is computed by considering only the
states at t and t+ 1. The third dimension of the array corresponds to the position t index.

6.2. Transversal state distributions

Time varying transition rates are transversal characteristics computed at the successive con-
sidered positions. In the same vein, it is of interest to look at the transversal distribution of
the states at each position of the considered sequences. The seqstatd() function returns a
a×L table containing in each column the distribution among the a states of the alphabet at
the corresponding position in the sequence. The output of this function for the first height
months in mvad.seq is shown below:

R> seqstatd(mvad.seq[, 1:8])

[State frequencies]

Sep.93 Oct.93 Nov.93 Dec.93 Jan.94 Feb.94 Mar.94 Apr.94

EM 0.034 0.036 0.044 0.051 0.055 0.058 0.066 0.067

FE 0.223 0.217 0.215 0.215 0.209 0.206 0.204 0.200

HE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

JL 0.048 0.055 0.051 0.050 0.058 0.068 0.064 0.067

SC 0.472 0.466 0.464 0.461 0.451 0.451 0.446 0.446

TR 0.223 0.227 0.226 0.223 0.227 0.218 0.221 0.220

[Valid states]

Sep.93 Oct.93 Nov.93 Dec.93 Jan.94 Feb.94 Mar.94 Apr.94

N 712 712 712 712 712 712 712 712

[Entropy index]

Sep.93 Oct.93 Nov.93 Dec.93 Jan.94 Feb.94 Mar.94 Apr.94

H 0.72 0.73 0.73 0.74 0.75 0.76 0.77 0.77

Alexis Gabadinho, Gilbert Ritschard, Nicolas S. Müller, Matthias Studer 19

State distribution plot

The seqdplot() function generates a graphical view of the (weighted) state distributions.
We illustrate by generating plots by values of the gcse5eq (qualification gained at end of
compulsory school) covariate:

R> seqdplot(mvad.seq, group = mvad$gcse5eq, border = NA)

<5 GCSEs

F
re

q.
 (

w
ei

gh
te

d
n=

42
9.

56
)

Sep.93 Sep.94 Sep.95 Sep.96 Sep.97 Sep.98

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

>=5 GCSEs

F
re

q.
 (

w
ei

gh
te

d
n=

28
2.

01
)

Sep.93 Sep.94 Sep.95 Sep.96 Sep.97 Sep.98

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Employment
Further education

Higher education
Joblessness

School
Training

Figure 6: Transversal state distributions by end of compulsory school qualification group.

The result shown in Figure 6 exhibits significant jumps in the sequence of state distribu-
tions. As commented by McVicar and Anyadike-Danes (2002), they correspond mainly to the
beginning and ending of education cycles.

A state distribution plot, as produced by seqdplot(), displays the general pattern of the
whole set of trajectories. When interpreting such graphics, one must remember that, unlike
sequence index plots and sequence frequency plots, they do not render individual sequences
or individual follow-ups. They provide aggregated views made of successive slices, each of
which represents transversal characteristics.

Sequence of modal states

An interesting summary that can be derived from the state distributions is the sequence made
of the most frequent state at each position. It is obtained with the seqmodst() function and
plotted with seqmsplot(). Figure 7 shows how such modal state sequences are displayed.
The height of the bar at each position is proportional to the frequency of the displayed state
at that position. The number of occurrences of the modal state sequence is also displayed.
Since the shown sequences of modal states do not belong to the sequence dataset, the number
of occurrences is 0 for both considered groups.

20 Analyzing and Visualizing State Sequences in R with TraMineR

<5 GCSEs

S
ta

te
 fr

eq
. (

w
ei

gh
te

d
n=

42
9.

56
)

Modal state sequence (0 occurrences, freq=0%)

Sep.93 Sep.94 Sep.95 Sep.96 Sep.97 Sep.98

0

0.25

.5

0.75

1

>=5 GCSEs

S
ta

te
 fr

eq
. (

w
ei

gh
te

d
n=

28
2.

01
)

Modal state sequence (0 occurrences, freq=0%)

Sep.93 Sep.94 Sep.95 Sep.96 Sep.97 Sep.98

0

0.25

.5

0.75

1

Employment
Further education

Higher education
Joblessness

School
Training

Figure 7: Modal state sequence by end of compulsory school qualification group.

Transversal entropy of state distributions

In addition to the state distribution, the seqstatd() function provides for each position in
the sequence the number of valid states and the Shannon entropy of the transversal state
distribution. Shannon’s entropy, also known as the entropy index, has been applied to so-
cial science data by, for instance, Billari (2001a) and Fussell (2005). Letting pi denote the
proportion of cases in state i at the considered position, the entropy is

h(p1, . . . , pa) = −
a

∑

i=1

pi log(pi)

where a is the size of the alphabet. The entropy is 0 when all cases are in the same state
and is maximal when we have the same proportion of cases in each state. The entropy can
be seen as a measure of the diversity of states observed at the considered position.

Plotting the transversal entropies can be useful to find out how the diversity of states evolves
along the time axis. We plot transversal entropies with seqHtplot(). Figure 8 shows the
curves by end of compulsory school qualification group. For the first group, the entropy of
the state distributions noticeably decreases at the end of the follow-up period. This is a con-
sequence of the increasing proportion of youngsters entering into full employment (Figure 6).
For the second group, the entropy index slightly increases at the end of the considered period,
which may be explained by the emergence of two balanced subgroups, namely those who
continue higher education and those who enter into employment.

7. Individual sequence characteristics

Alexis Gabadinho, Gilbert Ritschard, Nicolas S. Müller, Matthias Studer 21

<5 GCSEs

Index

E
nt

ro
py

 in
de

x
(w

ei
gh

te
d

n=
42

9.
56

)

Sep.93 Sep.94 Sep.95 Sep.96 Sep.97 Sep.98

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

>=5 GCSEs

Index
E

nt
ro

py
 in

de
x

(w
ei

gh
te

d
n=

28
2.

01
)

Sep.93 Sep.94 Sep.95 Sep.96 Sep.97 Sep.98

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 8: Transversal entropy by end of compulsory school qualification group.

We focus now on the characterization and summarization of longitudinal characteristics of
individual sequences. Essentially, the aim is to define measures that inform on how each
sequence is constituted; i.e., on whether it takes a simple or more complex form.

The interpretation of complexity indexes will depend indeed on the context. Consider for
instance the number of transitions—changes of state—in a sequence. When looking at work
trajectories, for example, sequences with numerous transitions may correspond to unusual
disrupted trajectories. In other contexts such as family formation, sequences with fewer
transitions may indicate that an individual failed to pass through the usual stages of the
family formation (leaving the parental home, cohabitation with a partner, birth of one or
more children, etc...).

In the SPS form (see Section 3) a state sequence is represented as an ordered list of successive
distinct states with their associated durations; i.e., as a sequence of couples (xj , tj) where xj
is a state and tj its duration. This suggests that we can distinguish characteristics of the
state sequencing—the distinct successive states (DSS)—from those of the durations.8 We
first examine two indicators of the state sequencing and one based on the durations. More
synthetic measures are addressed in Section 7.2.

7.1. Unidimensional indicators

Number of transitions

Perhaps the simplest indicator is the number of transitions in the sequence; i.e., the number
of state changes. The number of transitions in a sequence x is readily obtained from the
length ℓd(x) of its DSS sequence. It is ℓd(x) − 1. We get the number of transitions for each
sequence of state sequence object with seqtransn().

Number of subsequences

8The two pieces of information can be extracted separately with seqdss() and seqdur().

22 Analyzing and Visualizing State Sequences in R with TraMineR

Example sequences

9
se

q.
 (

n=
9)

T1 T3 T5 T7 T9 T11

1
2

3
4

5
6

7
8

9

[1
]

[2
]

[3
]

[4
]

[5
]

[6
]

[7
]

[8
]

[9
]

Longitudinal characteristics

0.0 0.2 0.4 0.6 0.8 1.0

Transitions
Entropy
Turbulence
Complexity

Figure 9: Example sequences (ℓ = 12, a = 4) and normalized values of complexity measures.

The number φ(x) of subsequences that can be extracted from the DSS sequence provides
also useful information on the sequencing of the states. This measure is returned by the
seqsubsn() function. It is used in the turbulence measure presented below. A subsequence
y of x is composed of elements of x occurring in the same order than in x.

The maximal number of subsequences is reached only for a sequence made of the repetition
of the alphabet. In Figure 9, for example, sequences 5 and 9 have the maximal number of
transitions, while the number of subsequences is maximal for sequence 9 only.

Within sequence entropy

Regarding the durations, we consider the total time spent in each state; i.e., in case of multiple
spells in a same state, the sum of the lengths of these spells. For example, in (EM,4)-(TR,2)-
(EM,64), the first sequence in the object mvad.seq, there are two spells in state EM with
respective durations 4 and 64. Hence, the time spent in state EM is 68 months, as shown by
the output of the seqistatd() function:

R> seqistatd(mvad.seq[1:4,])

EM FE HE JL SC TR

1 68 0 0 0 0 2

2 0 36 34 0 0 0

3 10 34 0 2 0 24

4 14 0 0 9 0 47

Alexis Gabadinho, Gilbert Ritschard, Nicolas S. Müller, Matthias Studer 23

The total time spent in each state characterizes the state distribution within a sequence. The
entropy of this distribution can be seen as a measure of the diversity of its states. We call
it within or longitudinal entropy to distinguish from the transversal entropy considered in
Section 6.2 on page 20.

The seqient() function returns the longitudinal Shannon entropies; i.e., for each sequence
the value of

h(π1, . . . , πa) = −

a
∑

i=1

πi log πi

where a is the size of the alphabet and πi the proportion of occurrences of the ith state in
the considered sequence. When the state remains the same during the whole sequence, the
entropy equals 0, while the maximum entropy is reached when the same time is spent inside
the sequence in each possible element of the alphabet. By default the entropy is normalized
by dividing the value of h(π1, . . . , πs) by its theoretical maximum, log a.9 Figure 9 helps to
get a more concrete idea of what the entropy measures. We see that the within-sequence
entropy does not account for the state order in the sequence. For instance, sequences 7 and
9 have the same maximal normalized entropy of 1.

7.2. Composite complexity measures

The previous measures are based either on the sequencing or on the durations. We look now
at composite measures that account simultaneously for those two aspects.

Turbulence

The turbulence T (x) of a sequence x is a composite measure proposed by Elzinga (Elzinga
and Liefbroer 2007) that accounts for the number φ(x) of distinct subsequences of the DSS
sequence and the variance s2t (x) of the consecutive times tj spent in the ℓd(x) distinct states.
The formula is

T (x) = log2

(

φ(x)
s2t,max(x) + 1

s2t (x) + 1

)

where s2t,max(x) is the maximum value that s2t (x) can take given the total duration ℓ(x) =
∑

j tj of that sequence. This maximum is s2t,max(x) =
(

ℓd(x)− 1
)(

1− t̄(x)
)2

where t̄(x) is the
mean consecutive time spent in the distinct states.

From a prediction point of view, the higher the differences in state durations and hence the
higher their variance, the less uncertain the sequence. In that sense, small duration variance
indicates high complexity.

The vector containing the turbulences of the sequences in a sequence object is obtained with
the seqST() function.

Complexity index

The complexity index, introduced in Gabadinho, Ritschard, Studer, and Müller (2010), is a
composite measure that combines the number of transitions in the sequence with the longi-

9The latter is indeed an upper bound for the maximal entropy. It is exactly the maximal possible entropy
only when the sequence length is a multiple of the alphabet size. Use norm=FALSE to disable normalization.

24 Analyzing and Visualizing State Sequences in R with TraMineR

tudinal entropy. It reads

C(x) =

√

ℓd(x)

ℓ(x)

h(x)

hmax

where hmax is the theoretical maximum value of the entropy given the alphabet; i.e., hmax =
log a. We get the vector of complexity indexes with the seqici() function.

The minimum value of 0 can only be reached by a sequence with a single distinct state; i.e.,
with no transition and an entropy of 0. C(x) reaches its maximum 1 if and only if the sequence
x is such that i) x contains each of the states in the alphabet, ii) the same time ℓ(x)/a is
spent in each state, and iii) the number of transitions is ℓ(x)− 1.

Complexity index versus turbulence

It is instructive to look at how the turbulence and complexity indexes behave for the examples
in Figure 9. The turbulence produces significantly higher values for sequences 3 and 4,
which have a rather low ‘sequencing’ complexity but a null variance of their state durations.
Indeed, this variance does not account for states that are not visited, which tends to give
high turbulence values to seemingly simple sequences such as sequence 3 with two spells of
same length and hence a null variance of their durations. Similarly, the turbulence exceeds
the complexity index for sequences 3, 4, 5, and 7, which all have a zero variance in duration
and, hence, a relatively high turbulence value. The longitudinal entropy that intervenes in
the complexity index is another way of looking at the time spent in the states. It accounts,
on its side, for all states, including the nonvisited ones, and, therefore, discriminates clearly
between the sequences with zero duration variance.

8. Measuring sequence (dis)similarity

We examine now how we can measure the dissimilarity between two state sequences. As we
will see in Section 9, once we have pairwise dissimilarities we will be able to run many types
of powerful classical and specific statistical analysis methods on sequence data.

Many sequence dissimilarity measures have been proposed in the literature, of which the
most popular in social sciences is the optimal matching (OM) edit distance. TraMineR offers
a general seqdist() function that can compute the OM dissimilarity as well as a set of other
dissimilarity measures. Table 6 lists the available methods and their required parameters.
The seqdist() function can output the matrix of pairwise dissimilarities or the vector of
distances to a provided reference sequence. We can also compute multichannel dissimilarities
(Pollock 2007) with the seqdistmc() function.

Dissimilarity measures can be classified into measures based on the count of matching at-
tributes and those defined as the (minimal) cost of transforming one sequence into the other.
Another interesting distinction is between those that make position-wise comparisons; i.e.,
that do not allow shifting a sequence or part of it, and those accounting for similar shifted
patterns (see Table 6). Without shift, x = ABAB and y = BABA are very distant, while
they are quite similar if we shift y by just one position.

Alexis Gabadinho, Gilbert Ritschard, Nicolas S. Müller, Matthias Studer 25

Distance Method Position-
wise

Additional arguments

Count of common attributes
Simple Hamming HAM Yes
Longest Common Prefix LCP Yes
Longest Common Suffix RLCP Yes
Longest Common Subsequence LCS No

Edit distances
Optimal Matching OM No Insertion/deletion costs (indel)

and substitution costs matrix (sm)
Hamming HAM Yes substitution costs matrix (sm)
Dynamic Hamming DHD Yes substitution costs matrix (sm)

Table 6: List of available metrics for computing distances with the seqdist() function.

8.1. Dissimilarities based on counts of common attributes

Let A(x, y) be a count of common attributes between sequences x and y. It is a proximity
measure since the higher the counts, the closer the sequences. We derive a dissimilarity
measure from it through the following general formula

d(x, y) = A(x, x) +A(y, y)− 2A(x, y) (1)

where d(x, y) is the distance between objects x and y. The dissimilarity is maximal when
A(x, y) = 0; i.e., when the two sequences have no common attribute. It is zero when the
sequences are identical, in which case we have A(x, y) = A(x, x) = A(y, y). Let us briefly
describe the implemented count-based dissimilarity measures.

The simple Hamming distance (Hamming 1950) is the number of positions at which two
sequences of equal length differ. It can equivalently be defined as ℓ−AH(x, y), with ℓ = |x| =
|y| the common sequence length and AH(x, y) the number of matching positions.10 We get
the Hamming distance with Equation (1) by using AH(x, y)/2 as proximity measure.

We obtain another simple distance measure by using the length AP (x, y) of the longest com-
mon prefix (LCP) between two sequences; i.e., by counting the number of successive common
positions starting from the beginning of the sequences11 (see for instance Elzinga 2007b). The
reversed longest common prefix (RLCP) or longest common suffix is similar to the LCP but
looks for the common elements from the end rather than from the beginning of the sequences.

Another implemented metric is based on the length AS(x, y) of the longest common subse-
quence (LCS).12 Notice that consecutive states in the common subsequence are not neces-
sarily consecutive in the compared sequences. For example, the length of the LCS between
sequences 1 and 3 of mvad.seq (see page 11 and Figure 2 on page 13) is 12 and we get 59
between sequences 2 and 5.

Quite obviously, we can only have AS(x, y) ≥ AP (x, y); i.e., the length of the LCS cannot
be smaller than the length of the LCP, and hence the LCS distance cannot be greater than

10This latter quantity is returned by the seqmpos() function.
11This length is returned by the seqLLCP() function.
12The length of the LCS is returned by the seqLLCS() function.

26 Analyzing and Visualizing State Sequences in R with TraMineR

the LCP distance. We have also AS(x, y) ≥ AH(x, y). When compared with metrics based
on position-wise counts such as the simple Hamming and the LCP distances, the LCS metric
reduces distances by accounting for non-aligned matches; i.e., position-shifted similarities.

8.2. Edit distances

An edit distance is defined as the minimal cost of transforming one sequence into the other.
This cost depends, indeed, on the allowed transforming operations and their individual costs.
Basically, two types of operations are considered: i) the substitution of one element by an
other one, and ii) the indel ; i.e., the insertion or deletion of an element, which generates a one-
position shift of all the elements on its right. The generalized Hamming (HAM) and dynamic
Hamming distances (DHD) (Lesnard 2006) accept only substitutions and hence no shift. The
former assumes position-independent substitution costs while the second allows for position-
dependent costs. The Optimal Matching (OM) distance, first considered by Levenshtein
(1966) and popularized in the social sciences by Abbott (Abbott and Forrest 1986), accounts
for both operations.

Setting indels and substitution costs

Usually the indel cost is set as a constant independent of the concerned position and state.
Setting a high indel cost relatively to substitution costs favors substitutions while low values
favor indels. We can prohibit shifts by setting the indel cost sufficiently high.13

Substitution costs are generally organized in matrix form. A three-dimensional matrix is
necessary in the case of position varying costs as used, for instance, by the DHD metric.
In the time invariant case, the substitution-cost matrix is a square symmetrical matrix of
dimension a× a, where a is the number of distinct states in the alphabet. The element (i, j)
in the matrix is the cost of substituting state si with state sj . The user can either specify
its own substitution-cost matrix,14 or compute one by means of the seqsubm() function with
option method = "CONSTANT" or method = "TRATE". With "CONSTANT", all costs are set as
the user provided cval constant (2 by default). With "TRATE", the costs are determined from
the estimated transition rates as

2− p(si | sj)− p(sj | si)

where p(si | sj) is the probability of observing state si at time t + 1 given that state sj has
been observed at time t (see page 17). The idea is to set a high cost when changes between
si and sj are seldom observed and lower cost when they are frequent.

Here is how we get the time-invariant transition-rate-based substitution cost matrix for the
mvad data:

R> scost <- seqsubm(mvad.seq, method = "TRATE")

R> round(scost, 3)

13It is sufficient, for prohibiting indels, to set the indel cost higher than ℓ

2
×max(sm), where ℓ is the common

sequence length and max(sm) is the highest substitution cost.
14When this substitution-cost matrix does not respect the triangle inequality, dissimilarities based on it may

also fail to respect this inequality (see Studer et al. 2011).

Alexis Gabadinho, Gilbert Ritschard, Nicolas S. Müller, Matthias Studer 27

EM-> FE-> HE-> JL-> SC-> TR->

EM-> 0.000 1.971 1.987 1.957 1.988 1.961

FE-> 1.971 0.000 1.993 1.977 1.991 1.993

HE-> 1.987 1.993 0.000 1.997 1.981 1.999

JL-> 1.957 1.977 1.997 0.000 1.992 1.976

SC-> 1.988 1.991 1.981 1.992 0.000 1.995

TR-> 1.961 1.993 1.999 1.976 1.995 0.000

The minimum cost is 0 for the substitution of each state by itself, and the maximum is
less than 2; i.e., the value that we would get for a transition not observed in the data. In
accordance with what we observed in the transition rate matrix (page 18), we get the lowest
costs for substituting EM (employment) to JL (joblessness) or TR (training). Remember,
however, that—unlike transition rates—the substitution costs are symmetric and hence we
have the lowest cost for changing JL or TR into EM.

Implemented edit distances

Generalized Hamming (HAM) and Dynamic Hamming (DHD) dissimilarities are intended
for sequences of equal lengths only. The former generalizes the basic Hamming distance by
allowing for state dependent substitution costs. Indeed, the count of nonmatching positions
is the cost of substituting a state at each position when all costs are set to 1. DHD is the
extension proposed by Lesnard (2006) to account for time-varying costs. For the mvad data
set, the flexibility in substitution costs allowed by the DHD metric has only a limited impact
as can be seen in Figure 10.

In addition to substitutions, Optimal Matching (OM) allows also insertions/deletions. It thus
applies to sequences of unequal lengths. Since the cost of the transformation may vary with
the order of the successive indels and substitutions, OM is defined as the minimal cost—
in terms of insertions, deletions and substitutions—of transforming one sequence into the
other one. The cost minimization is achieved through dynamic programming, the algorithm
implemented in TraMineR being essentially that of Needleman and Wunsch (1970) with
standard optimizations.

The 712× 712 pairwise distance matrix for our mvad data computed by using the transition-
rate-based costs and an indel cost of 1 is obtained with the command:

R> mvad.om <- seqdist(mvad.seq, method = "OM", indel = 1, sm = scost)

The mvad.om distance matrix requires only 3.87 megabytes memory space. However the
number n of sequences in the data can be an important issue when computing dissimilarity
matrices since both the computing time and the size of the resulting matrix increase exponen-
tially with n. If necessary, we can divide the size by 2 by requesting only the upper triangle
of the matrix with the full.matrix=FALSE argument. Most R functions accept the resulting
upper-triangle objects as dissimilarity argument.

Comparing dissimilarity measures

Choosing a dissimilarity measure and setting substitution and indel costs is an important step
in sequence analysis. Though popular in social sciences, distances based on such costs have

28 Analyzing and Visualizing State Sequences in R with TraMineR

LCP

0 40 80 140

●● ●●● ●●●●

●

●

●

●

●●

●●

●●●●●●

●

●
●

●

●●●

●● ●

●

●● ●

●
●

●

●●

●● ●

●

●

●

●

●●

●●

●●●

●

●●●●●

●

●●●

●

●●●●

●

●●

●

●●●

●●

●●● ●●●●●●
●

●●●●●●●

●

●

●

●

●

●●●●

●●

●●●● ●●● ●●●●●●●●●●●●●●● ●●

●

●●●

●

●●●●●

●

●

● ●●●

●

●●●●●●●●● ●●●● ●●●●●●●● ●●●●● ●● ●●●● ●●●●●●●● ●●●●

●

●

●

●● ●●●●

●

●●

●

●

● ●

●●●●●●● ●●

●

● ●● ●●●●●

●

●● ●●●

●

●

●

●

●

● ●●● ●●●● ●

●●

●

●●●●●

●

●●● ●

●●●●●●●●● ●●●

● ●

●●●
●

●

●●

●

●

●●● ●●●●●●●● ●●●

●

●●● ●●●●●●

●

●●● ●●●●

●●●

●

●

●●

●

● ●●●

●

●

●●

●

●

●●

●

●●●

●

●●●

●

●●●●

●

●●●●●●●●

●

●

●●●●●

●

●

●

●● ●●●●●●● ●●● ●●●●●● ●●●●

●

● ●●●●●●

●

●
●

●

●

●●

●

●●●●

●

● ●●●●●

●

● ●●●

●

● ●●●●●●●●●●● ●●

●

●●●●●●●● ●●●

●●●●

●

●

●

●

●●●

●●

● ●●●●

●

●●●●●●

●

●●

●

●●

●

●●●●

●

●

●

●●

●

● ● ●●●●●

●

●●●●●

●●

●● ●●●● ●●●●● ●●●

●

●

●●●●●●●●●● ●● ●●●●● ●●● ●●

●

●●

●

●●●

●

●

●● ●● ● ●

●

●● ●●●

●

●●●●●●● ●●

●

●●●●●● ●

●

●●●

●

●●●

●●

●

●

●●●●●

●

● ●●

●

●●

● ●

●

●

●

●

●●●

●●

●

●●

●

●

●

●●●●●●●●●

●●

●

●●●●

●

●●

●

●●

●

●

●

●

●

● ●●

●

●

●

●●

●●

●

●●●●

●

●●●

●

●●●●●●

●

●●●

●

●●●

●

●
●

●●●

●

●

●

●●●●●●●●●●●●

●
●

● ●

●

●● ●● ●●● ●●●●

●

●

●

●

●●

●●

●●●●●●

●

●
●

●

●●●

●● ●

●

●● ●

●
●

●

●●

●● ●

●

●

●

●

●●

●●

●●●

●

●●●●●

●

●●●

●

●●●●

●

●●

●

●●●

●●

●●● ●●●●●●
●

●●●●●●●

●

●

●

●

●

●●●●

●●

●●●● ●●● ●●●●●●●●●●●●●●● ●●

●

●●●

●

●●●●●

●

●

● ●●●

●

●●●●●●●●● ●●●● ●●●●●●●● ●●●●● ●● ●●●● ●●●●●●●● ●●●●

●

●

●

●● ●●●●

●

●●

●

●

● ●

●●●●●●● ●●

●

● ●● ●●●●●

●

●● ●●●

●

●

●

●

●

● ●●● ●●●● ●

●●

●

●●●●●

●

●●● ●

●●●●●●●●● ●●●

● ●

●●●
●

●

●●

●

●

●●● ●●●●●●●● ●●●

●

●●● ●●●●●●

●

●●● ●●●●

●●●

●

●

●●

●

● ●●●

●

●

●●

●

●

●●

●

●●●

●

●●●

●

●●●●

●

●●●●●●●●

●

●

●●●●●

●

●

●

●● ●●●●●●● ●●● ●●●●●● ●●●●

●

● ●●●●●●

●

●
●

●

●

●●

●

●●●●

●

● ●●●●●

●

● ●●●

●

● ●●●●●●●●●●● ●●

●

●●●●●●●● ●●●

●●●●

●

●

●

●

●●●

●●

● ●●●●

●

●●●●●●

●

●●

●

●●

●

●●●●

●

●

●

●●

●

● ● ●●●●●

●

●●●●●

●●

●● ●●●● ●●●●● ●●●

●

●

●●●●●●●●●● ●● ● ●●●● ●●● ●●

●

●●

●

●●●

●

●

●● ●● ● ●

●

●● ●●●

●

●●●●●●● ●●

●

●●●●●● ●

●

●●●

●

●●●

●●

●

●

●●●●●

●

● ●●

●

●●

● ●

●

●

●

●

●●●

●●

●

●●

●

●

●

●●●●●●●●●

●●

●

●●●●

●

●●

●

●●

●

●

●

●

●

● ●●

●

●

●

●●

●●

●

●●●●

●

●●●

●

●●●●●●

●

●●●

●

●●●

●

●
●

●●●

●

●

●

●●●●●●●●●●●●

●
●

● ●

●

●●

0 20 40 60

●● ●●● ●●●●

●

●

●

●

●●

●●

●●●●●●

●

●
●

●

●●●

●● ●

●

●● ●

●
●

●

●●

●● ●

●

●

●

●

●●

●●

●●●

●

●●●●●

●

●●●

●

●●●●

●

●●

●

●●●

●●

●●● ●●●●●●
●

●●●●●●●

●

●

●

●

●

●●●●

●●

●●●● ●●● ●●●●●●●●●●●●●●● ●●

●

●●●

●

●●●●●

●

●

● ●●●

●

●●●●●●●●● ●●●● ●●●●●●●● ●●●●● ●● ●●●● ●●●●●●●● ●●●●

●

●

●

●● ●●●●

●

●●

●

●

● ●

●●●●●●● ●●

●

● ●● ●●●●●

●

●● ●●●

●

●

●

●

●

● ●●● ●●●● ●

●●

●

●●●●●

●

●●● ●

●●●●●●●●● ●●●

● ●

●●●
●

●

●●

●

●

●●● ●●●●●●●● ●●●

●

●●● ●●●●●●

●

●●● ●●●●

●●●

●

●

●●

●

● ●●●

●

●

●●

●

●

●●

●

●●●

●

●●●

●

●●●●

●

●●●●●●●●

●

●

●●●●●

●

●

●

●● ●●●●●●● ●●● ●●●●●● ●●●●

●

● ●●●●●●

●

●
●

●

●

●●

●

●●●●

●

● ●●●●●

●

● ●●●

●

● ●●●●●●●●●●● ●●

●

●●●●●●●● ●●●

●●●●

●

●

●

●

●●●

●●

● ●●●●

●

●●●●●●

●

●●

●

●●

●

●●●●

●

●

●

●●

●

● ● ●●●●●

●

●●●●●

●●

●● ●●●● ●●●●● ●●●

●

●

●●●●●●●●●● ●● ● ●●●● ●●● ●●

●

●●

●

●●●

●

●

●● ●● ● ●

●

●● ●●●

●

●●●●●●● ●●

●

●●●●●● ●

●

●●●

●

●●●

●●

●

●

●●●●●

●

● ●●

●

●●

● ●

●

●

●

●

●●●

●●

●

●●

●

●

●

●●●●●●●●●

●●

●

●●●●

●

●●

●

●●

●

●

●

●

●

● ●●

●

●

●

●●

●●

●

●●●●

●

●●●

●

●●●●●●

●

●●●

●

●●●

●

●
●

●●●

●

●

●

●●●●●●●●●●●●

●
●

● ●

●

●●

0
40

80
14

0

●● ●●● ●●●●

●

●

●

●

●●

●●

●●●●●●

●

●
●

●

●●●

●● ●

●

●● ●

●
●

●

●●

●● ●

●

●

●

●

●●

●●

●●●

●

●●●●●

●

●●●

●

●●●●

●

●●

●

●●●

●●

●●● ●●●●●●
●

●●●●●●●

●

●

●

●

●

●●●●

●●

●●●● ●●● ●●●●●●●●●●●●●●● ●●

●

●●●

●

●●●●●

●

●

● ●●●

●

●●●●●●●●● ●●●● ●●●●●●●● ●●●●● ●● ●●●● ●●●●●●●● ●●●●

●

●

●

●● ●●●●

●

●●

●

●

● ●

●●●●●●● ●●

●

● ●● ●●●●●

●

●● ●●●

●

●

●

●

●

● ●●● ●●●● ●

●●

●

●●●●●

●

●●● ●

●●●●●●●●● ●●●

● ●

●●●
●

●

●●

●

●

●●● ●●●●●●●● ●●●

●

●●● ●●●●●●

●

●●● ●●●●

●●●

●

●

●●

●

● ●●●

●

●

●●

●

●

●●

●

●●●

●

●●●

●

●●●●

●

●●●●●●●●

●

●

●●●●●

●

●

●

●● ●●●●●●● ●●● ●●●●●● ●●●●

●

● ●●●●●●

●

●
●

●

●

●●

●

●●●●

●

● ●●●●●

●

● ●●●

●

● ●●●●●●●●●●● ●●

●

●●●●●●●● ●●●

●●●●

●

●

●

●

●●●

●●

● ●●●●

●

●●●●●●

●

●●

●

●●

●

●●●●

●

●

●

●●

●

● ● ●●●●●

●

●●●●●

●●

●● ●●●● ●●●●● ●●●

●

●

●●●●●●●●●● ●● ● ●●●● ●●● ●●

●

●●

●

●●●

●

●

●● ●● ● ●

●

●● ●●●

●

●●●●●●● ●●

●

●●●●●● ●

●

●●●

●

●●●

●●

●

●

●●●●●

●

● ●●

●

●●

● ●

●

●

●

●

●●●

●●

●

●●

●

●

●

●●●●●●●●●

●●

●

●●●●

●

●●

●

●●

●

●

●

●

●

● ●●

●

●

●

●●

●●

●

●●●●

●

●●●

●

●●●●●●

●

●●●

●

●●●

●

●
●

●●●

●

●

●

●●●●●●●●●●●●

●
●

● ●

●

●●

0
40

80
14

0

●

●

●●

●

●●●●

● ●

●

●

●●

●●

●●●●●●

●

●

●

●

●●●

●

●

●

● ●●

●

●
●

●

●●

●

●

●

●

●

● ●●●

●

●

●●●

●

●●●●●

●

●●●

●

●●●●

●

●●

●

●●●

●●

●●

●

●●●●●●
●

●●●●●●●

●

●

●

●

●

●●●●

●●

●●●

●

●●

●

●●●●●●●●●●●●●

●●

●●

●

●●●

●

●●●●

●

●
●

●
●●●

●

●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●●

●

●

●

●●●

●

●●●●●●●

●

●●●●

●

●

●

●

●

●●●●

●

●●

●

●
●

●

●●●●●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●●

●

●●●●●

●

●

●●

●

●●●●●●●●

●

●●●

●

●

●●●
●

●

●●

●

●

●

●

●

●●●●●●●

●

●●●

●

●●

●

●●●●●●

●

●●

●

●●●●

●●●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●●●●

●

●●●●●●●●

● ●

●●●●●

●

●

●

●

●

●●●●●●

●

●●

●

●
●●
●
●

●

●●●●

●

●

●
●
●●●

●
●

●
●

●

●

●●

●

●●●●

● ●

●●●●●

●

●

●●●

●

●

●●●●●●●●●●

●

●●

●

●●●●●●●

●

●●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●

●●

●

●

●

●●●

●

●●●●

●

●●●

●

●

●●●●●●●●●

●

●

●

●
●●●

●

●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●

●

●●

●

●●●●●

●

●

●

●●●

●

●●●

●

●

●

●

●●●●●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●●

●

●●

●

●
●

●●●●●●●●●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●●

●

●●●

●

●●●●●●

●

●●●

●

●●●

●

●

●
●●●

●

●●

●●●●●●●●●●●●

●
●

●

●

●

●●

LCS

●

●

●●

●

●●●●

●●

●

●

●●

●●

●●●●●●

●

●

●

●

●●●

●

●

●

●●●

●

●
●

●

●●

●

●

●

●

●

●●●●

●

●

●●●

●

●●●●●

●

●●●

●

●●●●

●

●●

●

●●●

●●

●●

●

●●●●●●
●

●●●●●●●

●

●

●

●

●

●●●●

●●

●●●

●

●●

●

●●●●●●●●●●●●●

●●

●●

●

●●●

●

●●●●

●

●
●

●
●●●

●

●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●●

●

●

●

●●●

●

●●●●●●●

●

●●●●

●

●

●

●

●

●●●●

●

●●

●

●
●

●

●●●●●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●●

●

●●●●●

●

●

●●

●

●●●●●●●●

●

●●●

●

●

●●●
●

●

●●

●

●

●

●

●

●●●●●●●

●

●●●

●

●●

●

●●●●●●

●

●●

●

●●●●

●●●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●●●●

●

●●●●●●●●

●●

●●●●●

●

●

●

●

●

●●●●●●

●

●●

●

●
●●

●
●

●

●●●●

●

●

●
●
●●●

●
●

●
●

●

●

●●

●

●●●●

●●

●●●●●

●

●

●●●

●

●

●●●●●●●●●●

●

●●

●

●●●●●●●

●

●●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●

●●

●

●

●

●●●

●

●●●●

●

●●●

●

●

●●●●●●●●●

●

●

●

●
●●●

●

●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●

●

●●

●

●●●●●

●

●

●

●●●

●

●●●

●

●

●

●

●●●●●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●●

●

●●

●

●
●

●●●●●●●●●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●●

●

●●●

●

●●●●●●

●

●●●

●

●●●

●

●

●
●●●

●

●●

●●●●●●●●●●●●

●
●

●

●

●

●● ●

●

●●

●

●●●●

●●

●

●

●●

●●

●●●●●●

●

●

●

●

●●●

●

●

●

●●●

●

●
●

●

●●

●

●

●

●

●

●●●●

●

●

●●●

●

●●●●●

●

●●●

●

●●●●

●

●●

●

●●●

●●

●●

●

●●●●●●
●

●●●●●●●

●

●

●

●

●

●●●●

●●

●●●

●

●●

●

●●●●●●●●●●●●●

●●

●●

●

●●●

●

●●●●

●

●
●

●
●●●

●

●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●●

●

●

●

●●●

●

●●●●●●●

●

●●●●

●

●

●

●

●

●●●●

●

●●

●

●
●

●

●●●●●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●●

●

●●●●●

●

●

●●

●

●●●●●●●●

●

●●●

●

●

●●●
●

●

●●

●

●

●

●

●

●●●●●●●

●

●●●

●

●●

●

●●●●●●

●

●●

●

●●●●

●●●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●●●●

●

●●●●●●●●

●●

●●●●●

●

●

●

●

●

●●●●●●

●

●●

●

●
●●

●
●

●

●●●●

●

●

●
●
●●●

●
●

●
●

●

●

●●

●

●●●●

●●

●●●●●

●

●

●●●

●

●

●●●●●●●●●●

●

●●

●

●●●●●●●

●

●●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●

●●

●

●

●

●●●

●

●●●●

●

●●●

●

●

●●●●●●●●●

●

●

●

●
●●●

●

●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●

●

●●

●

●●●●●

●

●

●

●●●

●

●●●

●

●

●

●

●●●●●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●●

●

●●

●

●
●

●●●●●●●●●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●●

●

●●●

●

●●●●●●

●

●●●

●

●●●

●

●

●
●●●

●

●●

●●●●●●●●●●●●

●
●

●

●

●

●● ●

●

●●

●

●●●●

●●

●

●

●●

●●

●●●●●●

●

●

●

●

●●●

●

●

●

●●●

●

●
●

●

●●

●

●

●

●

●

●●●●

●

●

●●●

●

●●●●●

●

●●●

●

●●●●

●

●●

●

●●●

●●

●●

●

●●●●●●
●

●●●●●●●

●

●

●

●

●

●●●●

●●

●●●

●

●●

●

●●●●●●●●●●●●●

●●

●●

●

●●●

●

●●●●

●

●
●

●
●●●

●

●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●●

●

●

●

●●●

●

●●●●●●●

●

●●●●

●

●

●

●

●

●●●●

●

●●

●

●
●

●

●●●●●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●●

●

●●●●●

●

●

●●

●

●●●●●●●●

●

●●●

●

●

●●●
●

●

●●

●

●

●

●

●

●●●●●●●

●

●●●

●

●●

●

●●●●●●

●

●●

●

●●●●

●●●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●●●●

●

●●●●●●●●

●●

●●●●●

●

●

●

●

●

●●●●●●

●

●●

●

●
●●

●
●

●

●●●●

●

●

●
●
●●●

●
●

●
●

●

●

●●

●

●●●●

●●

●●●●●

●

●

●●●

●

●

●●●●●●●●●●

●

●●

●

●●●●●●●

●

●●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●

●●

●

●

●

●●●

●

●●●●

●

●●●

●

●

●●●●●●●●●

●

●

●

●
●●●

●

●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●

●

●●

●

●●●●●

●

●

●

●●●

●

●●●

●

●

●

●

●●●●●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●●

●

●●

●

●
●

●●●●●●●●●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●●

●

●●●

●

●●●●●●

●

●●●

●

●●●

●

●

●
●●●

●

●●

●●●●●●●●●●●●

●
●

●

●

●

●●

●

●

●●

●

●●●●

● ●

●

●

●●

●●

●●●●●●

●

●

●

●

●●●

●

●

●

● ●●

●

●
●

●

●●

●

●

●

●

●

● ●●●

●

●

●●●

●

●●●●●

●

●●●

●

●●●●

●

●●

●

●●●

●●

●●

●

●●●●●●
●

●●●●●●●

●

●

●

●

●

●●●●

●●

●●●

●

●●

●

●●●●●●●●●●●●●

●●

●●

●

●●●

●

●●●●

●

●
●

●
●●●

●

●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●●

●

●

●

●●●

●

●●●●●●●

●

●●●●

●

●

●

●

●

●●●●

●

●●

●

●
●

●

●●●●●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●●

●

●●●●●

●

●

●●

●

●●●●●●●●

●

●●●

●

●

●●●●

●

●●

●

●

●

●

●

●●●●●●●

●

●●●

●

●●

●

●●●●●●

●

●●

●

●●●●

●●●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●●●●

●

●●●●●●●●

● ●

●●●●●

●

●

●

●

●

●●●●●●

●

●●

●

●
●●●●

●

●●●●

●

●

●●●●●

●●

●
●

●

●

●●

●

●●●●

● ●

●●●●●

●

●

●●●

●

●

●●●●●●●●●●

●

●●

●

●●●●●●●

●

●●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●

●●

●

●

●

●●●

●

●●●●

●

●●●

●

●

●●●●●●●●●

●

●

●

●
●●●

●

●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●

●

●●

●

●●●●●

●

●

●

●●●

●

●●●

●

●

●

●

●●●●●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●●

●

●●

●

●
●

●●●●●●●●●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●●

●

●●●

●

●●●●●●

●

●●●

●

●●●

●

●

●
●●●

●

●●

●●●●●●●●●●●●

●
●

●

●

●

●● ●

●

●●

●

●●●●

●●

●

●

●●

●●

●●●●●●

●

●

●

●

●●●

●

●

●

●●●

●

●
●

●

●●

●

●

●

●

●

●●●●

●

●

●●●

●

●●●●●

●

●●●

●

●●●●

●

●●

●

●●●

●●

●●

●

●●●●●●
●

●●●●●●●

●

●

●

●

●

●●●●

●●

●●●

●

●●

●

●●●●●●●●●●●●●

●●

●●

●

●●●

●

●●●●

●

●
●

●
●●●

●

●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●●

●

●

●

●●●

●

●●●●●●●

●

●●●●

●

●

●

●

●

●●●●

●

●●

●

●
●

●

●●●●●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●●

●

●●●●●

●

●

●●

●

●●●●●●●●

●

●●●

●

●

●●●●

●

●●

●

●

●

●

●

●●●●●●●

●

●●●

●

●●

●

●●●●●●

●

●●

●

●●●●

●●●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●●●●

●

●●●●●●●●

●●

●●●●●

●

●

●

●

●

●●●●●●

●

●●

●

●
●●●●

●

●●●●

●

●

●●●●●

●●

●
●

●

●

●●

●

●●●●

●●

●●●●●

●

●

●●●

●

●

●●●●●●●●●●

●

●●

●

●●●●●●●

●

●●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●

●●

●

●

●

●●●

●

●●●●

●

●●●

●

●

●●●●●●●●●

●

●

●

●
●●●

●

●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●

●

●●

●

●●●●●

●

●

●

●●●

●

●●●

●

●

●

●

●●●●●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●●

●

●●

●

●
●

●●●●●●●●●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●●

●

●●●

●

●●●●●●

●

●●●

●

●●●

●

●

●
●●●

●

●●

●●●●●●●●●●●●

●
●

●

●

●

●●

OM

●

●

●●

●

●●●●

●●

●

●

●●

●●

●●●●●●

●

●

●

●

●●●

●

●

●

●●●

●

●
●

●

●●

●

●

●

●

●

●●●●

●

●

●●●

●

●●●●●

●

●●●

●

●●●●

●

●●

●

●●●

●●

●●

●

●●●●●●
●

●●●●●●●

●

●

●

●

●

●●●●

●●

●●●

●

●●

●

●●●●●●●●●●●●●

●●

●●

●

●●●

●

●●●●

●

●
●

●
●●●

●

●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●●

●

●

●

●●●

●

●●●●●●●

●

●●●●

●

●

●

●

●

●●●●

●

●●

●

●
●

●

●●●●●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●●

●

●●●●●

●

●

●●

●

●●●●●●●●

●

●●●

●

●

●●●●

●

●●

●

●

●

●

●

●●●●●●●

●

●●●

●

●●

●

●●●●●●

●

●●

●

●●●●

●●●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●●●●

●

●●●●●●●●

●●

●●●●●

●

●

●

●

●

●●●●●●

●

●●

●

●
●●●●

●

●●●●

●

●

●●●●●

●●

●
●

●

●

●●

●

●●●●

●●

●●●●●

●

●

●●●

●

●

●●●●●●●●●●

●

●●

●

●●●●●●●

●

●●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●

●●

●

●

●

●●●

●

●●●●

●

●●●

●

●

●●●●●●●●●

●

●

●

●
●●●

●

●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●

●

●●

●

●●●●●

●

●

●

●●●

●

●●●

●

●

●

●

●●●●●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●●

●

●●

●

●
●

●●●●●●●●●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●●

●

●●●

●

●●●●●●

●

●●●

●

●●●

●

●

●
●●●

●

●●

●●●●●●●●●●●●

●
●

●

●

●

●●

0
40

80
14

0

●

●

●●

●

●●●●

●●

●

●

●●

●●

●●●●●●

●

●

●

●

●●●

●

●

●

●●●

●

●
●

●

●●

●

●

●

●

●

●●●●

●

●

●●●

●

●●●●●

●

●●●

●

●●●●

●

●●

●

●●●

●●

●●

●

●●●●●●
●

●●●●●●●

●

●

●

●

●

●●●●

●●

●●●

●

●●

●

●●●●●●●●●●●●●

●●

●●

●

●●●

●

●●●●

●

●
●

●
●●●

●

●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●●

●

●

●

●●●

●

●●●●●●●

●

●●●●

●

●

●

●

●

●●●●

●

●●

●

●
●

●

●●●●●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●●

●

●●●●●

●

●

●●

●

●●●●●●●●

●

●●●

●

●

●●●●

●

●●

●

●

●

●

●

●●●●●●●

●

●●●

●

●●

●

●●●●●●

●

●●

●

●●●●

●●●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●●●●

●

●●●●●●●●

●●

●●●●●

●

●

●

●

●

●●●●●●

●

●●

●

●
●●●●

●

●●●●

●

●

●●●●●

●●

●
●

●

●

●●

●

●●●●

●●

●●●●●

●

●

●●●

●

●

●●●●●●●●●●

●

●●

●

●●●●●●●

●

●●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●

●●

●

●

●

●●●

●

●●●●

●

●●●

●

●

●●●●●●●●●

●

●

●

●
●●●

●

●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●

●

●●

●

●●●●●

●

●

●

●●●

●

●●●

●

●

●

●

●●●●●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●●

●

●●

●

●
●

●●●●●●●●●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●●

●

●●●

●

●●●●●●

●

●●●

●

●●●

●

●

●
●●●

●

●●

●●●●●●●●●●●●

●
●

●

●

●

●●

0
20

40
60

●

●

●●

●

●●●●

● ●

●

●

●●

●●

●●●●●●

●

●

●

●

●●●

●

●

●

● ●●

●

●
●

●

●●

●

●

●

●

●

● ●●●

●

●

●●●

●

●●●●●

●

●●●

●

●●●●

●

●●

●

●●●

●●

●●

●

●●●●●●
●

●●●●●●●

●

●

●

●

●

●●●●

●●

●●●

●

●●

●

●●●●●●●●●●●●●

●●

●●

●

●●●

●

●●●●

●

●
●

●
●●●

●

●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●●

●

●

●

●●●

●

●●●●●●●

●

●●●●

●

●

●

●

●

●●●●

●

●●

●

●
●

●

●●●●●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●●

●

●●●●●

●

●

●●

●

●●●●●●●●

●

●●●

●

●

●●●
●

●

●●

●

●

●

●

●

●●●●●●●

●

●●●

●

●●

●

●●●●●●

●

●●

●

●●●●

●●●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●●●●

●

●●●●●●●●

● ●

●●●●●

●

●

●

●

●

●●●●●●

●

●●

●

●
●●
●
●

●

●●●●

●

●

●
●
●●●
●

●

●
●

●

●

●●

●

●●●●

● ●

●●●●●

●

●

●●●

●

●

●●●●●●●●●●

●

●●

●

●●●●●●●

●

●●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●

●●

●

●

●

●●●

●

●●●●

●

●●●

●

●

●●●●●●●●●

●

●

●

●
●●●

●

●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●

●

●●

●

●●●●●

●

●

●

●●●

●

●●●

●

●

●

●

●●●●●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●●

●

●●

●

●
●

●●●●●●●●●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●●

●

●●●

●

●●●●●●

●

●●●

●

●●●

●

●

●
●●●

●

●●

●●●●●●●●●●●●

●
●

●

●

●

●● ●

●

●●

●

●●●●

●●

●

●

●●

●●

●●●●●●

●

●

●

●

●●●

●

●

●

●●●

●

●
●

●

●●

●

●

●

●

●

●●●●

●

●

●●●

●

●●●●●

●

●●●

●

●●●●

●

●●

●

●●●

●●

●●

●

●●●●●●
●

●●●●●●●

●

●

●

●

●

●●●●

●●

●●●

●

●●

●

●●●●●●●●●●●●●

●●

●●

●

●●●

●

●●●●

●

●
●

●
●●●

●

●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●●

●

●

●

●●●

●

●●●●●●●

●

●●●●

●

●

●

●

●

●●●●

●

●●

●

●
●

●

●●●●●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●●

●

●●●●●

●

●

●●

●

●●●●●●●●

●

●●●

●

●

●●●
●

●

●●

●

●

●

●

●

●●●●●●●

●

●●●

●

●●

●

●●●●●●

●

●●

●

●●●●

●●●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●●●●

●

●●●●●●●●

●●

●●●●●

●

●

●

●

●

●●●●●●

●

●●

●

●
●●

●
●

●

●●●●

●

●

●
●
●●●

●

●

●
●

●

●

●●

●

●●●●

●●

●●●●●

●

●

●●●

●

●

●●●●●●●●●●

●

●●

●

●●●●●●●

●

●●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●

●●

●

●

●

●●●

●

●●●●

●

●●●

●

●

●●●●●●●●●

●

●

●

●
●●●

●

●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●

●

●●

●

●●●●●

●

●

●

●●●

●

●●●

●

●

●

●

●●●●●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●●

●

●●

●

●
●

●●●●●●●●●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●●

●

●●●

●

●●●●●●

●

●●●

●

●●●

●

●

●
●●●

●

●●

●●●●●●●●●●●●

●
●

●

●

●

●● ●

●

●●

●

●●●●

●●

●

●

●●

●●

●●●●●●

●

●

●

●

●●●

●

●

●

●●●

●

●
●

●

●●

●

●

●

●

●

●●●●

●

●

●●●

●

●●●●●

●

●●●

●

●●●●

●

●●

●

●●●

●●

●●

●

●●●●●●
●

●●●●●●●

●

●

●

●

●

●●●●

●●

●●●

●

●●

●

●●●●●●●●●●●●●

●●

●●

●

●●●

●

●●●●

●

●
●

●
●●●

●

●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●●

●

●

●

●●●

●

●●●●●●●

●

●●●●

●

●

●

●

●

●●●●

●

●●

●

●
●

●

●●●●●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●●

●

●●●●●

●

●

●●

●

●●●●●●●●

●

●●●

●

●

●●●
●

●

●●

●

●

●

●

●

●●●●●●●

●

●●●

●

●●

●

●●●●●●

●

●●

●

●●●●

●●●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●●●●

●

●●●●●●●●

●●

●●●●●

●

●

●

●

●

●●●●●●

●

●●

●

●
●●

●
●

●

●●●●

●

●

●
●
●●●

●

●

●
●

●

●

●●

●

●●●●

●●

●●●●●

●

●

●●●

●

●

●●●●●●●●●●

●

●●

●

●●●●●●●

●

●●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●

●●

●

●

●

●●●

●

●●●●

●

●●●

●

●

●●●●●●●●●

●

●

●

●
●●●

●

●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●

●

●●

●

●●●●●

●

●

●

●●●

●

●●●

●

●

●

●

●●●●●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●●

●

●●

●

●
●

●●●●●●●●●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●●

●

●●●

●

●●●●●●

●

●●●

●

●●●

●

●

●
●●●

●

●●

●●●●●●●●●●●●

●
●

●

●

●

●●

HAM

●

●

●●

●

●●●●

●●

●

●

●●

●●

●●●●●●

●

●

●

●

●●●

●

●

●

●●●

●

●
●

●

●●

●

●

●

●

●

●●●●

●

●

●●●

●

●●●●●

●

●●●

●

●●●●

●

●●

●

●●●

●●

●●

●

●●●●●●
●

●●●●●●●

●

●

●

●

●

●●●●

●●

●●●

●

●●

●

●●●●●●●●●●●●●

●●

●●

●

●●●

●

●●●●

●

●
●

●
●●●

●

●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●●

●

●

●

●●●

●

●●●●●●●

●

●●●●

●

●

●

●

●

●●●●

●

●●

●

●
●

●

●●●●●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●●

●

●●●●●

●

●

●●

●

●●●●●●●●

●

●●●

●

●

●●●
●

●

●●

●

●

●

●

●

●●●●●●●

●

●●●

●

●●

●

●●●●●●

●

●●

●

●●●●

●●●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●●●●

●

●●●●●●●●

●●

●●●●●

●

●

●

●

●

●●●●●●

●

●●

●

●
●●

●
●

●

●●●●

●

●

●
●
●●●

●

●

●
●

●

●

●●

●

●●●●

●●

●●●●●

●

●

●●●

●

●

●●●●●●●●●●

●

●●

●

●●●●●●●

●

●●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●

●●

●

●

●

●●●

●

●●●●

●

●●●

●

●

●●●●●●●●●

●

●

●

●
●●●

●

●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●

●

●●

●

●●●●●

●

●

●

●●●

●

●●●

●

●

●

●

●●●●●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●●

●

●●

●

●
●

●●●●●●●●●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●●

●

●●●

●

●●●●●●

●

●●●

●

●●●

●

●

●
●●●

●

●●

●●●●●●●●●●●●

●
●

●

●

●

●●

0 40 80 140

●

●

●●

●

●●●●

● ●

●

●

●●

●●

●●●●●●

●

●

●

●

●●●

●

●

●

● ●●

●

●
●

●

●●

●

●

●

●

●

● ●●●

●

●

●●●

●

●●●●●

●

●●●

●

●●●●

●

●●

●

●●●

●●

●●

●

●●●●●●
●

●●●●●●●

●

●

●

●

●

●●●●

●●

●●●

●

●●

●

●●●●●●●●●●●●●

●●

●●

●

●●●

●

●●●●

●

●
●

●
●●●

●

●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●●

●

●

●

●●●

●

●●●●●●●

●

●●●●

●

●

●

●

●

●●●●

●

●●

●

●
●

●

●●●●●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●●

●

●●●●●

●

●

●●

●

●●●●●●●●

●

●●●

●

●

●●●●

●

●●

●

●

●

●

●

●●●●●●●

●

●●●

●

●●

●

●●●●●●

●

●●

●

●●●●

●●●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●●●●

●

●●●●●●●●

● ●

●●●●●

●

●

●

●

●

●●●●●●

●

●●

●

●
●●
●
●

●

●●●●

●

●

●●●●●●

●

●
●

●

●

●●

●

●●●●

● ●

●●●●●

●

●

●●●

●

●

●●●●●●●●●●

●

●●

●

●●●●●●●

●

●●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●

●●

●

●

●

●●●

●

●●●●

●

●●●

●

●

●●●●●●●●●

●

●

●

●
●●●

●

●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●

●

●●

●

●●●●●

●

●

●

●●●

●

●●●

●

●

●

●

●●●●●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●●

●

●●

●

●
●

●●●●●●●●●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●●

●

●●●

●

●●●●●●

●

●●●

●

●●●

●

●

●
●●●

●

●●

●●●●●●●●●●●●

●
●

●

●

●

●● ●

●

●●

●

●●●●

●●

●

●

●●

●●

●●●●●●

●

●

●

●

●●●

●

●

●

●●●

●

●
●

●

●●

●

●

●

●

●

●●●●

●

●

●●●

●

●●●●●

●

●●●

●

●●●●

●

●●

●

●●●

●●

●●

●

●●●●●●
●

●●●●●●●

●

●

●

●

●

●●●●

●●

●●●

●

●●

●

●●●●●●●●●●●●●

●●

●●

●

●●●

●

●●●●

●

●
●

●
●●●

●

●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●●

●

●

●

●●●

●

●●●●●●●

●

●●●●

●

●

●

●

●

●●●●

●

●●

●

●
●

●

●●●●●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●●

●

●●●●●

●

●

●●

●

●●●●●●●●

●

●●●

●

●

●●●●

●

●●

●

●

●

●

●

●●●●●●●

●

●●●

●

●●

●

●●●●●●

●

●●

●

●●●●

●●●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●●●●

●

●●●●●●●●

●●

●●●●●

●

●

●

●

●

●●●●●●

●

●●

●

●
●●

●
●

●

●●●●

●

●

●●●●●
●

●

●
●

●

●

●●

●

●●●●

●●

●●●●●

●

●

●●●

●

●

●●●●●●●●●●

●

●●

●

●●●●●●●

●

●●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●

●●

●

●

●

●●●

●

●●●●

●

●●●

●

●

●●●●●●●●●

●

●

●

●
●●●

●

●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●

●

●●

●

●●●●●

●

●

●

●●●

●

●●●

●

●

●

●

●●●●●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●●

●

●●

●

●
●

●●●●●●●●●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●●

●

●●●

●

●●●●●●

●

●●●

●

●●●

●

●

●
●●●

●

●●

●●●●●●●●●●●●

●
●

●

●

●

●●

0 40 80 140

●

●

●●

●

●●●●

●●

●

●

●●

●●

●●●●●●

●

●

●

●

●●●

●

●

●

●●●

●

●
●

●

●●

●

●

●

●

●

●●●●

●

●

●●●

●

●●●●●

●

●●●

●

●●●●

●

●●

●

●●●

●●

●●

●

●●●●●●
●

●●●●●●●

●

●

●

●

●

●●●●

●●

●●●

●

●●

●

●●●●●●●●●●●●●

●●

●●

●

●●●

●

●●●●

●

●
●

●
●●●

●

●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●●

●

●

●

●●●

●

●●●●●●●

●

●●●●

●

●

●

●

●

●●●●

●

●●

●

●
●

●

●●●●●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●●

●

●●●●●

●

●

●●

●

●●●●●●●●

●

●●●

●

●

●●●●

●

●●

●

●

●

●

●

●●●●●●●

●

●●●

●

●●

●

●●●●●●

●

●●

●

●●●●

●●●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●●●●

●

●●●●●●●●

●●

●●●●●

●

●

●

●

●

●●●●●●

●

●●

●

●
●●

●
●

●

●●●●

●

●

●●●●●
●

●

●
●

●

●

●●

●

●●●●

●●

●●●●●

●

●

●●●

●

●

●●●●●●●●●●

●

●●

●

●●●●●●●

●

●●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●

●●

●

●

●

●●●

●

●●●●

●

●●●

●

●

●●●●●●●●●

●

●

●

●
●●●

●

●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●

●

●●

●

●●●●●

●

●

●

●●●

●

●●●

●

●

●

●

●●●●●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●●

●

●●

●

●
●

●●●●●●●●●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●●

●

●●●

●

●●●●●●

●

●●●

●

●●●

●

●

●
●●●

●

●●

●●●●●●●●●●●●

●
●

●

●

●

●● ●

●

●●

●

●●●●

●●

●

●

●●

●●

●●●●●●

●

●

●

●

●●●

●

●

●

●●●

●

●
●

●

●●

●

●

●

●

●

●●●●

●

●

●●●

●

●●●●●

●

●●●

●

●●●●

●

●●

●

●●●

●●

●●

●

●●●●●●
●

●●●●●●●

●

●

●

●

●

●●●●

●●

●●●

●

●●

●

●●●●●●●●●●●●●

●●

●●

●

●●●

●

●●●●

●

●
●

●
●●●

●

●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●●

●

●

●

●●●

●

●●●●●●●

●

●●●●

●

●

●

●

●

●●●●

●

●●

●

●
●

●

●●●●●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●●

●

●●●●●

●

●

●●

●

●●●●●●●●

●

●●●

●

●

●●●●

●

●●

●

●

●

●

●

●●●●●●●

●

●●●

●

●●

●

●●●●●●

●

●●

●

●●●●

●●●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●●●●

●

●●●●●●●●

●●

●●●●●

●

●

●

●

●

●●●●●●

●

●●

●

●
●●

●
●

●

●●●●

●

●

●●●●●
●

●

●
●

●

●

●●

●

●●●●

●●

●●●●●

●

●

●●●

●

●

●●●●●●●●●●

●

●●

●

●●●●●●●

●

●●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●

●●

●

●

●

●●●

●

●●●●

●

●●●

●

●

●●●●●●●●●

●

●

●

●
●●●

●

●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●

●

●●

●

●●●●●

●

●

●

●●●

●

●●●

●

●

●

●

●●●●●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●●

●

●●

●

●
●

●●●●●●●●●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●●

●

●●●

●

●●●●●●

●

●●●

●

●●●

●

●

●
●●●

●

●●

●●●●●●●●●●●●

●
●

●

●

●

●●

0 100 200

0
10

0
20

0

DHD

Figure 10: Distances to the most frequent sequence obtained with various metrics, mvad data.

raised questions in the literature (see for instance Dijkstra and Taris 1995; Wu 2000; Elzinga
2007b). The meaning of the substitution costs, their required symmetry and the sensitivity of
the results to the chosen values have been pointed out as important issues. More recently, the
meaning of indels was also addressed (Hollister 2009; Lesnard 2010). Favoring insertions and
deletions reduces the importance of time shifts in the comparison, while favoring substitutions
gives more importance to position-wise similarities.

Comparing the results obtained with various settings can also be useful for selecting the
appropriate measure. Figure 10 compares the discussed dissimilarity measures for the distance
to the most frequent sequence on the mvad data. We observe that, apart from the LCP
metric, the measures yield very similar results. The few significant differences between HAM
(or DHD) and LCS (or OM) illustrate how LCS and OM reduce dissimilarity by allowing
for shifts in the comparison of the sequences. The mean difference between OM, obtained
with costs derived from substitution rates, and LCS is only 0.4% of the maximal distance.
The largest difference is 0.63%. These small differences are a consequence of low transition
rates which lead to substitution costs comprised between 1.96 and 2; i.e., close to 2. With a
constant substitution cost of 2 and an indel cost equal to 1, OM is just LCS (Elzinga 2007b).

Alexis Gabadinho, Gilbert Ritschard, Nicolas S. Müller, Matthias Studer 29

8.3. Normalized distances

When dealing with sequences of different lengths, we may want to normalize the distances
to account for these differences. More specifically, the aim of normalization is to relativize
distances such that a dissimilarity of say 10 between sequences of length 100 becomes less
important than a dissimilarity of 10 between sequences of length 5. While the maximal
distance between a pair of sequences depends on their length, normalization aims at setting
it to 1 or, at least, to a value that does not depend on the lengths.15

With seqdist() we control normalization by means of the norm argument. When setting it
to TRUE, the normalization applied is determined by the selected metric. For LCP, RLCP and
LCS, we apply Elzinga (2007b)’s normalization. It works as follows. Letting A(x, y) be the
(non normalized) proximity measure, we first normalize this similarity

sA(x, y) =
A(x, y)

√

A(x, x)A(y, y)

The normalized distance is, then, just the complement to 1 of the normalized similarity.

DA(x, y) = 1− sA(x, y)

which gives values comprised between 0 and 1.

For the OM distance, as well as for HAM and DHD, we apply Abbott’s normalization, which
consists of dividing the distance by the length of the longest of the two sequences

DOM (x, y) =
dOM (x, y)

max{|x|, |y|}
.

It results that for OM with an indel cost of 1 and a constant substitution cost of 2, the
maximal normalized OM distance is 2. Though OM is in this latter case equivalent to LCS,
their normalized values differ.

We can also force the normalization method by specifying either "gmean" for Elzinga’s nor-
malization or "maxlength" for Abbott’s solution. Alternatively, we can use "maxdist", which
consists of dividing each distance by its maximal theoretical value. For LCP and LCS dis-
tances, the maximal possible value is the sum ℓx+ℓy of the lengths of the two sequences x and
y, for HAM it is the length ℓ of the sequences, while the maximum theoretical OM distance
is

Dmax = min(ℓx, ℓy) ·min
(

2cI ,max(S)
)

+ cI |ℓx − ℓy|

where cI > 0 is the indel cost, max(S) the greatest substitution cost and |ℓx−ℓy| the absolute
value of the difference in lengths of the two sequences. With the unit indel cost and the scost
transition-rate-based substitution cost matrix, this yields 139.94 for the mvad data. This is
very close from twice the sequence length; i.e., 2 · 70 = 140.

It is worth mentioning that the triangle inequality property of the original distance may in
some cases be lost through the "maxlength" and "maxdist" normalizations.

9. Dissimilarity based sequence analysis

15Normalization is not intended to account for the differences in length of the sequences between which we
are measuring the dissimilarity.

30 Analyzing and Visualizing State Sequences in R with TraMineR

Beside information on the similarity between any pair of sequences, a distance matrix opens
access to many classical statistical and data analysis tools. It permits for instance to extract
representative sequences such as medoids, to run any clustering technique based on pairwise
dissimilarities and to apply multidimensional scaling. It even permits to compute pseudo-
variances and run ANOVA-like analyses as explained in Studer et al. (2011). We demonstrate
in this section how the mvad.om dissimilarity (distance) matrix obtained with the command
shown page 27 can be exploited for further statistical analysis.

9.1. Representative sequences

A major concern when analyzing sets of categorical sequences is to find useful ways of summa-
rizing them. Possible solutions could be to determine some central or typical sequence such
as the modal—most frequent—sequence or the medoid—most central—sequence. However,
such solutions are of limited interest since they provide usually only a too rough idea of the
main patterns in the set. A more general approach consists in finding sets of representatives
and TraMineR provides the versatile generic seqrep() function for extracting such sets from
the dissimilarity matrix. The function allows control over the amount of information that
the representative set should convey. The sets returned by seqrep() exhibit, thus, the key
features of the whole set they are extracted from, which proves useful, for example, when
labeling clusters of sequences.

The principle of the search algorithm (Gabadinho, Ritschard, Studer, and Müller 2011) is to
sort the sequences according to a representativeness criterion16 and to remove the redundancy
by browsing the sorted sequences. The redundancy threshold is set as a percentage (10%
by default) of the maximum theoretical dissimilarity Dmax between two sequences and the
representative set will thus not contain any pair of sequences that are nearer each other than
this threshold. The size of the representative set can be controlled by fixing either the minimal
expected coverage of the representative set or the number nrep of representatives.

The coverage of a representative sequence is the percentage of sequences that are in its neigh-
borhood; i.e., the number of sequences with a distance to the representative less than a
selected threshold.17 The total coverage of the representative set corresponds to the percent-
age of the n original sequences that have a representative in their neighborhood. A series of
other individual and global measures to evaluate the quality of the obtained representatives
is also computed.

The list of representative sequences is obtained by printing the outcome of seqrep() and we
get the quality measures with the summary() method. The seqrplot() function generates
representative sequence plots.

Example 1: Medoid and the centrality criterion

A first simple example 18 of a representative sequence is the medoid of a set of sequences.
The medoid is the most central object; i.e., the one with minimal sum of distances to all other
objects in the set (Kaufman and Rousseeuw 2005). It is a special case of representative se-

16See the reference manual for the different criteria that can be used for sorting the original sequences.
17We suggest setting the threshold as a given percentage of the maximum theoretical distance between two

sequences.
18Results for representative sequences differ from the ones published in the original JSS article. This is due

to the use of weights, which was not implemented in the TraMineR version (1.8) the article is based on.

Alexis Gabadinho, Gilbert Ritschard, Nicolas S. Müller, Matthias Studer 31

quence obtained by selecting the centrality sorting criterion (criterion="dist") and setting
the size of the representative set to 1 (nrep=1).

R> medoid <- seqrep(mvad.seq, diss = mvad.om, criterion = "dist",

+ nrep = 1)

R> print(medoid, format = "SPS")

[>] criterion: dist

[>] 711.57 sequence(s) in the original data set

[>] 1 representative sequence(s)

[>] overall quality: -60.84

Sequence

[1] (SC,24)-(FE,8)-(EM,38)

Example 2: Representative set and the neighborhood density criterion

The medoid of a set of sequences usually yields poor coverage. To increase coverage we should
allow for more than one representative. When seeking for more than one representative, an
initial sort of the sequences according to the density of their neighborhood yields better results.
Neighborhood density is, therefore, the default criterion used by seqrep().

The command below finds and plots the representative set that, with a neighborhood radius
of 10% (default pradius value), covers at least 25% (default coverage value) of the sequences
in each of the two gcse5eq groups:

R> seqrplot(mvad.seq, group = mvad$gcse5eq, diss = mvad.om, border = NA)

In the resulting plot (Figure 11) the selected representative sequences are plotted bottom-
up according to their representativeness score with bar width proportional to the number of
sequences assigned to them. At the top of the plot, two parallel series of symbols standing
each for a representative are displayed horizontally on a scale ranging from 0 to the maximal
theoretical distance Dmax. The location of the symbol associated with the representative, ri,
indicates on axis A the discrepancy within the subset Ri of sequences assigned to ri and on
axis B the mean distance to the representative.

We learn from the plots that respectively five and one representatives are necessary for each
of the two groups to achieve the 25% coverage and that the actual coverage is 29% in both
cases.

9.2. Clustering sequences

Clustering is an exploratory data analysis method aimed at finding automatically homoge-
neous groups or clusters in the data (Kaufman and Rousseeuw 2005). In life course stud-
ies (e.g., McVicar and Anyadike-Danes 2002; Widmer and Ritschard 2009), the method has
typically been used in combination with OM distances to identify distinct groups of sequences
with similar patterns; that is, to define a typology of sequences.

32 Analyzing and Visualizing State Sequences in R with TraMineR

<5 GCSEs

5
re

pr
es

en
ta

tiv
e(

s)
 (

w
ei

gh
te

d
n=

42
9.

56
)

Sep.93 Sep.94 Sep.95 Sep.96 Sep.97 Sep.98

Criterion=density, coverage=29.1%

●

●

●

0 35 70 105 140

B

A

(A) Discrepancy (mean dist. to center)
(B) Mean dist. to representative seq.

>=5 GCSEs

1
re

pr
es

en
ta

tiv
e(

s)
 (

w
ei

gh
te

d
n=

28
2.

01
)

Sep.93 Sep.94 Sep.95 Sep.96 Sep.97 Sep.98

Criterion=density, coverage=29%

●●

●

●

0 35 70 105 140

B

A

(A) Discrepancy (mean dist. to center)
(B) Mean dist. to representative seq.

Employment
Further education

Higher education
Joblessness

School
Training

Figure 11: Representative sequences by end of compulsory school qualification group.

We already showed, in Section 2, how we can make a cluster analysis of sequences using the
cluster library (Maechler, Rousseeuw, Struyf, and Hubert 2005). We used agnes() to make
a hierarchical clustering with the Ward method, but pam() (partitioning around medoids) or
diana() (divisive analysis), for example, could also be used. The four clusters solution was
retained after examining the dendrogram (Figure 12) of the clustering tree obtained with:

R> plot(clusterward, which.plots = 2, labels = FALSE)

Figure 13 on page 34 obtained with the command below shows the representative sequences
by cluster, complementing the plots of the transversal state distributions shown in Figure 1
page 7. The threshold for the coverage of the representative set is set to 35% using the
coverage=.35 argument.

R> seqrplot(mvad.seq, group = cl4.lab, diss = mvad.om, coverage = 0.35,

+ border = NA)

Looking at these two figures helps interpreting and labeling the clusters. They show that clus-
tering from the OM distances identifies four distinct patterns of school to work transitions.
In the first cluster the trajectories are clearly oriented toward early transition to employ-
ment, with, in some cases, a spell of training. The second cluster is dominated by trajectories
containing a spell of school or further education followed by higher education. Cluster 3 cor-
responds to slow transition to employment with first an important spell of further education.
In the last cluster, the transitions from school to work are more chaotic with frequent spells
of training and joblessness.

Alexis Gabadinho, Gilbert Ritschard, Nicolas S. Müller, Matthias Studer 33

0
50

0
10

00
15

00

Dendrogram of agnes(x = mvad.om, diss = TRUE, method = "ward")

Agglomerative Coefficient = 0.99
mvad.om

H
ei

gh
t

Figure 12: Hierarchical sequence clustering from the OM distances, Ward method.

Clust 1 Sig Clust 2 Sig Clust 3 Sig Clust 4 Sig

(Constant) 0.812 0.152 0.069 0.000 0.437 0.000 0.194 0.000
Male 1.616 0.005 0.938 0.767 0.653 0.014 0.951 0.822

Father unemployed 0.753 0.204 0.625 0.166 1.022 0.926 2.015 0.006
Good end cs grade 0.170 0.000 14.987 0.000 1.150 0.432 0.356 0.000

Table 7: Odds Ratios for cluster memberships.

After having labeled the clusters, a common further step is to examine how the cluster mem-
bership depends on covariates by means of logistic regressions. We can, for instance, investi-
gate the profiles of the youngsters belonging to the last cluster with:

R> mb4 <- (cl4.lab == "Cluster 4")

R> glm.cl4 <- glm(mb4 ~ male + funemp + gcse5eq, data = mvad,

+ family = "binomial")

Proceeding the same way for the other clusters and taking the exponential of the regression
coefficients, we get the odds ratios shown in Table 7. We learn from those figures that, among
others, men are significantly more present in Cluster 1 and women in Cluster 3, and that
the chances to follow the trajectory pattern with higher education depicted by Cluster 2 are
multiplied by about 15 for those with good results at the end of compulsory school.

10. Conclusion

TraMineR is a unique toolbox for categorical sequential data that offers, in a unified environ-
ment, a series of methods that could previously only be found in separate programs. It also
provides original measures, plots and methods of analysis that were developed by the authors.

34 Analyzing and Visualizing State Sequences in R with TraMineR

Cluster 1

2
re

pr
es

en
ta

tiv
e(

s)
 (

w
ei

gh
te

d
n=

22
6.

47
)

Sep.93 Sep.94 Sep.95 Sep.96 Sep.97 Sep.98

Criterion=density, coverage=41.2%

●

●

●

0 35 70 105 140

B
A

(A) Discrepancy (mean dist. to center)
(B) Mean dist. to representative seq.

Cluster 2

1
re

pr
es

en
ta

tiv
e(

s)
 (

w
ei

gh
te

d
n=

18
9.

06
)

Sep.93 Sep.94 Sep.95 Sep.96 Sep.97 Sep.98

Criterion=density, coverage=46%

●●

●
●

0 35 70 105 140

B
A

(A) Discrepancy (mean dist. to center)
(B) Mean dist. to representative seq.

Cluster 3

4
re

pr
es

en
ta

tiv
e(

s)
 (

w
ei

gh
te

d
n=

19
6.

82
)

Sep.93 Sep.94 Sep.95 Sep.96 Sep.97 Sep.98

Criterion=density, coverage=39.3%

●

●

●

0 35 70 105 140

B
A

(A) Discrepancy (mean dist. to center)
(B) Mean dist. to representative seq.

Cluster 4

5
re

pr
es

en
ta

tiv
e(

s)
 (

w
ei

gh
te

d
n=

99
.2

2)

Sep.93 Sep.94 Sep.95 Sep.96 Sep.97 Sep.98

Criterion=density, coverage=38%

●

●

●

0 35 70 105 140

B
A

(A) Discrepancy (mean dist. to center)
(B) Mean dist. to representative seq.

Employment
Further education

Higher education
Joblessness

School
Training

Figure 13: Plots of representative sequences by cluster.

Besides the material for state sequences described in this article, the package includes spe-
cific tools for mining event sequences (Ritschard et al. 2008; Müller, Studer, Ritschard, and
Gabadinho 2010; Studer, Müller, Ritschard, and Gabadinho 2010), for studying the discrep-
ancy of a set of sequences through ANOVA-like analyses and regression trees (Studer et al.
2011). In addition, it proposes utilities such as the conversion to and from various sequence
formats (Ritschard et al. 2009) that was briefly addressed in Section 3.

This rich set of features, in combination with other specialized R packages, allows the user to
run all steps of a complete sequence analysis in a single, free, powerful and multi-platform en-
vironment. It is also worth mentioning that development regarding state sequences continues.
Related papers and information on current developments can be found on the package’s Web
page http://mephisto.unige.ch/traminer. We encourage users to submit their feature
requests using our dedicated tool at http://r-forge.r-project.org/projects/traminer.

http://mephisto.unige.ch/traminer
http://r-forge.r-project.org/projects/traminer

Alexis Gabadinho, Gilbert Ritschard, Nicolas S. Müller, Matthias Studer 35

Acknowledgments

The development of the TraMineR package and this article were realized within a research
project supported by the Swiss National Science Foundation under grants 113998 and 122230.

References

Aassve A, Billari F, Piccarreta R (2007). “Strings of Adulthood: A Sequence Analysis of
Young British Women’s Work-Family Trajectories.”European Journal of Population, 23(3),
369–388. URL http://dx.doi.org/10.1007/s10680-007-9134-6.

Abbott A (1997). “Optimize.” URL http://home.uchicago.edu/~aabbott/om.html.

Abbott A, Forrest J (1986). “Optimal Matching Methods for Historical Sequences.” Journal
of Interdisciplinary History, 16, 471–494.

Abbott A, Tsay A (2000). “Sequence Analysis and Optimal Matching Methods in Sociology,
Review and Prospect.” Sociological Methods and Research, 29(1), 3–33.

Berchtold A, Raftery AE (2002). “The Mixture Transition Distribution Model for High-Order
Markov Chains and Non-Gaussian Time Series.” Statistical Science, 17(3), 328–356.

Billari FC (2001a). “The Analysis of Early Life Courses: Complex Description of the Transi-
tion to Adulthood.” Journal of Population Research, 18(2), 119–142.

Billari FC (2001b). “Sequence Analysis in Demographic Research.” Canadian Studies in
Population, 28(2), 439–458. Special Issue on Longitudinal Methodology.

Billari FC, Fürnkranz J, Prskawetz A (2006). “Timing, Sequencing, and Quantum of Life
Course Events: A Machine Learning Approach.” European Journal of Population, 22(1),
37–65.

Blossfeld HP, Golsch K, Rohwer G (2007). Event History Analysis with Stata. Lawrence
Erlbaum, Mahwah NJ.

Brzinsky-Fay C, Kohler U, Luniak M (2006). “Sequence Analysis with Stata.” The Stata
Journal, 6(4), 435–460.

Deville JC, Saporta G (1983). “Correspondence analysis with an extension towards nominal
time series.” Journal of Econometrics, 22, 169–189.

Dijkstra W, Taris T (1995). “Measuring the Agreement between Sequences.” Sociological
Methods and Research, 24(2), 214–231.

Elzinga CH (2007a). CHESA 2.1 User Manual. Vrije Universiteit, Amsterdam. URL http:

//home.fsw.vu.nl/ch.elzinga/.

Elzinga CH (2007b). “Sequence Analysis: Metric Representations of Categorical Time Series.”
Manuscript, Department of Social Science Research Methods, Vrije Universiteit, Amster-
dam. URL http://home.fsw.vu.nl/ch.elzinga/.

http://dx.doi.org/10.1007/s10680-007-9134-6
http://home.uchicago.edu/~aabbott/om.html
http://home.fsw.vu.nl/ch.elzinga/
http://home.fsw.vu.nl/ch.elzinga/
http://home.fsw.vu.nl/ch.elzinga/

36 Analyzing and Visualizing State Sequences in R with TraMineR

Elzinga CH, Liefbroer AC (2007). “De-standardization of Family-Life Trajectories of Young
Adults: A Cross-National Comparison Using Sequence Analysis.” European Journal of
Population, 23, 225–250. doi:10.1007/s10680-007-9133-7.

Fussell E (2005). “Measuring the Early Adult Life Course in Mexico: An Application of the
Entropy Index.” In R Macmillan (ed.), “The Structure of the Life Course: Standardized?
Individualized? Differentiated?”, Advances in Life Course Research, Vol. 9, pp. 91–122.
Elsevier, Amsterdam.

Gabadinho A, Ritschard G, Studer M, Müller NS (2009). “Mining Sequence Data in R with
the TraMineR package: A User’s Guide.” Technical report, Department of Econometrics
and Laboratory of Demography, University of Geneva, Geneva. URL http://mephisto.

unige.ch/traminer/.

Gabadinho A, Ritschard G, Studer M, Müller NS (2010). “Indice de complexité pour le tri et la
comparaison de séquences catégorielles.” Revue des nouvelles technologies de l’information
RNTI, E-19, 61–66.

Gabadinho A, Ritschard G, Studer M, Müller NS (2011). “Extracting and Rendering Repre-
sentative Sequences.” In A Fred, JLG Dietz, K Liu, J Filipe (eds.), “Knowledge Discovery,
Knowledge Engineering and Knowledge Management,” volume 128 of Communications in
Computer and Information Science (CCIS), pp. 94–106. Springer-Verlag.

Hamming RW (1950). “Error Detecting and Error Correcting Codes.” Bell System Techical
Journal, 29, 147–160.

Hollister M (2009). “Is Optimal Matching Suboptimal?” Sociological Methods Research,
38(2), 235–264. doi:10.1177/0049124109346164.

Hosmer DW, Lemeshow S (1999). Applied Survival Analysis, Regression Modeling of Time to
Event Data. John Wiley & Sons, New York.

Kaufman L, Rousseeuw PJ (2005). Finding Groups in Data. John Wiley & Sons, Hoboken.

Lesnard L (2006). “Optimal Matching and Social Sciences.” Série des Documents de Travail
du CREST 2006-01, Institut National de la Statistique et des Etudes Economiques, Paris.

Lesnard L (2010). “Setting Cost in Optimal Matching to Uncover Contemporaneous Socio-
Temporal Patterns.” Sociological Methods and Research, 38, 389–419. doi:10.1177/

0049124110362526.

Levenshtein V (1966). “Binary Codes Capable of Correcting Deletions, Insertions, and Re-
versals.” Soviet Physics Doklady, 10, 707–710.

Maechler M, Rousseeuw P, Struyf A, Hubert M (2005). “Package ‘cluster’: Cluster Anal-
ysis Basics and Extensions.” Reference manual, R-project, CRAN. URL http://CRAN.

R-project.org/package=cluster.

Mayer KU, Tuma N (1990). “Life course research and event history analysis: An overview.”
In KU Mayer, N Tuma (eds.), “Event History Analysis in Life Course Research,” pp. 3–20.
WI: University of Wisconsin Press, Madison.

http://dx.doi.org/10.1007/s10680-007-9133-7
http://mephisto.unige.ch/traminer/
http://mephisto.unige.ch/traminer/
http://dx.doi.org/10.1177/0049124109346164
http://dx.doi.org/10.1177/0049124110362526
http://dx.doi.org/10.1177/0049124110362526
http://CRAN.R-project.org/package=cluster
http://CRAN.R-project.org/package=cluster

Alexis Gabadinho, Gilbert Ritschard, Nicolas S. Müller, Matthias Studer 37

McVicar D, Anyadike-Danes M (2002). “Predicting Successful and Unsuccessful Transitions
from School to Work Using Sequence Methods.” Journal of the Royal Statistical Society A,
165(2), 317–334.

Müller NS, Studer M, Ritschard G, Gabadinho A (2010). “Extraction de règles d’association
séquentielle l’aide de modèles de durée.” Revue des nouvelles technologies de l’information
RNTI, E-19, 25–36.

Needleman S, Wunsch C (1970). “A General Method Applicable to the Search for Similarities
in the Amino Acid Sequence of Two Proteins.” Journal of Molecular Biology, 48, 443–453.

Neuwirth E (2007). RColorBrewer: ColorBrewer Palettes. R package version 1.0-2, URL
http://CRAN.R-project.org/package=RColorBrewer.

Pollock G (2007). “Holistic Trajectories: A Study of Combined Employment, Housing and
Family Careers by Using Multiple-Sequence Analysis.” Journal of the Royal Statistical
Society A, 170(1), 167–183. doi:10.1111/j.1467-985X.2006.00450.x.

R Development Core Team (2011). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.r-project.org.

Ritschard G, Gabadinho A, Müller NS, Studer M (2008). “Mining Event Histories: A Social
Science Perspective.” International Journal of Data Mining, Modelling and Management,
1(1), 68–90. doi:10.1504/IJDMMM.2008.022538.

Ritschard G, Gabadinho A, Studer M, Müller NS (2009). “Converting between Various Se-
quence Representations.” In Z Ras, A Dardzinska (eds.), “Advances in Data Management,”
volume 223 of Studies in Computational Intelligence, pp. 155–175. Springer-Verlag, Berlin.
doi:10.1007/978-3-642-02190-9_8.

Rohwer G, Ptter U (2002). “TDA: Transition Data Analysis.” Software, Ruhr-
Universität Bochum, Fakultät für Sozialwissenschaften, Bochum. URL http://www.

ruhr-uni-bochum.de/tda.html.

Scherer S (2001). “Early Career Patterns: A Comparison of Great Britain andWest Germany.”
European Sociological Review, 17(2), 119–144.

Studer M, Müller NS, Ritschard G, Gabadinho A (2010). “Classer, discriminer et visualiser des
séquences d’événements.” Revue des nouvelles technologies de l’information RNTI, E-19,
37–48.

Studer M, Ritschard G, Gabadinho A, Müller NS (2011). “Discrepancy Analysis of State
Sequences.” Sociological Methods and Research. In press.

Widmer E, Ritschard G (2009). “The De-Standardization of the Life Course: Are Men and
Women Equal?” Advances in Life Course Research, 14(1-2), 28–39. doi:10.1016/j.alcr.
2009.04.001.

Wu LL (2000). “Some Comments on ‘Sequence Analysis and Optimal Matching Methods
in Sociology: Review and Prospect’.” Sociological Methods Research, 29(1), 41–64. doi:

10.1177/0049124100029001003.

http://CRAN.R-project.org/package=RColorBrewer
http://dx.doi.org/10.1111/j.1467-985X.2006.00450.x
http://www.r-project.org
http://www.r-project.org
http://dx.doi.org/10.1504/IJDMMM.2008.022538
http://dx.doi.org/10.1007/978-3-642-02190-9_8
http://www.ruhr-uni-bochum.de/tda.html
http://www.ruhr-uni-bochum.de/tda.html
http://dx.doi.org/10.1016/j.alcr.2009.04.001
http://dx.doi.org/10.1016/j.alcr.2009.04.001
http://dx.doi.org/10.1177/0049124100029001003
http://dx.doi.org/10.1177/0049124100029001003

38 Analyzing and Visualizing State Sequences in R with TraMineR

Yamaguchi K (1991). Event History Analysis. ASRM 28. Sage, Newbury Park and London.

Affiliation:

Alexis Gabadinho, Gilbert Ritschard, Nicolas S. Müller, Matthias Studer
Institute for Demographic and Life Course Studies
University of Geneva
CH-1211 Geneva 4, Switzerland
E-mail: alexis.gabadinho@unige.ch
URL: http://mephisto.unige.ch/

mailto:alexis.gabadinho@unige.ch
http://mephisto.unige.ch/

	Introduction
	The TraMineR R package
	A first glance at TraMineR

	Sequence representations
	State sequences
	Other sequence representations

	State sequence objects
	Creating state sequence objects
	Alphabet and state labels

	Other important attributes and properties
	State colors and position names
	Case weights
	Missing values
	Subsets and attributes inheritance

	Visualizing individual state sequences
	Sequence index plots
	Sequence frequencies
	Sequence frequency plots

	Reading and controlling state sequence plots

	Computing and plotting overall and transversal statistics
	Overall statistical characteristics
	Mean time spent in each state
	Transition rates

	Transversal state distributions
	State distribution plot
	Sequence of modal states
	Transversal entropy of state distributions

	Individual sequence characteristics
	Unidimensional indicators
	Number of transitions
	Number of subsequences
	Within sequence entropy

	Composite complexity measures
	Turbulence
	Complexity index
	Complexity index versus turbulence

	Measuring sequence (dis)similarity
	Dissimilarities based on counts of common attributes
	Edit distances
	Setting indels and substitution costs
	Implemented edit distances
	Comparing dissimilarity measures

	Normalized distances

	Dissimilarity based sequence analysis
	Representative sequences
	Example 1: Medoid and the centrality criterion
	Example 2: Representative set and the neighborhood density criterion

	Clustering sequences

	Conclusion

