

An introduction to TipDatingBeast v1.0-1

Camilo E. Khatchikian1 and Adrien Rieux2
1 Department of Biology, University of Pennsylvania, USA.

2 CIRAD, UMR PVBMT, La Réunion, France.

May 25, 2016

Abstract

This vignette provides an introductory tutorial to the TipDatingBeast package (Rieux &

Khatchikian Submitted) for the R software (R Development Core Team 2015). This package

aims to assist BEAST users implementing various phylogenetic tip-dating tests to assess the

genetic and temporal signal of a dataset. This tutorial provides practical guidance to use the

R functions implemented in this package and interpret the results.

TipDatingBeast@gmail.com

Contents

1 Introduction

2 Getting started

 2.1 Installing the package

 2.2 Getting help in R

 2.3 Bug report and feature requests

3 Using TipDatingBeast functions

 3.1 BEAST 1.x vs. BEAST 2.x

 3.2 The influenza dataset as an example

 3.3 Functions related to the "Date-randomized test"

 3.4 Functions for the "Leave-one-out cross validation"

4 Common Issues

3.1 PlotLOOCV function report "cannot open the connection"

5 References

1) Introduction

Tip dating of phylogenetic trees is a growing discipline aiming to make use of sequence data

isolated at different points in time (i.e., heterochronous datasets) to co-estimate the timing

of evolutionary events with rates of molecular evolution. We built the R package

TipDatingBeast to assist BEAST users with the implementation of various phylogenetic tip-

dating tests aiming to assess the genetic and temporal signal present in a dataset.

TipDatingBeast currently contains two main functions. The first function allows preparing

date-randomization analyses, which assess the temporal signal of a dataset. The second

function allows performing leave-one-out analyses, which allows testing for the consistency

between independent calibration sequences and pinpointing those leading to potential bias.

In this tutorial we provide guidance on how to use those functions and interpret the results.

2) Getting started

2.1 Installing the package

Launch R and install TipDatingBEAST using:

Then launch TipDatingBEAST:

2.2 Getting help in R

This guide is distributed with the TipDatingBeast pacakage and can be found in the R

repository. Helpful information for each function can also specifically be obtained from R.

For instance, getting help for the RandomDates function is possible by typing:

>?RandomDates

>library(TipDatingBeast)

>install.packages("TipDatingBeast")

2.3 Bug report and feature requests

Free software evolves through interactions between communities of developers and users.

This is especially true in R, where these two communities are very much intermingled. You

can use the following dedicated email address: TipDatingBeast@gmail.com to:

• ask a specific question on how to use this package (please carefully check if you cannot

find your answer in this tutorial before contacting us!)

• ask for a new feature: something useful is missing, and you think it will be useful to others?

Please let us know!

• report a possible bug.

3) Using TipDatingBeast functions

3.1 Beast 1.x vs Beast 2.x

The software BEAST (BEAST 1.x) (Drummond & Rambaut 2007) has recently undergone a

rewrite, leading to the release of a new version (BEAST 2) (Bouckaert et al. 2014). Because

the input files required by BEAST 1.x and 2.x are markedly different and we feel that both

versions will be independently updated with new features and models, we made the

functions implemented in TipDatingBeast compatible with both versions. The functions

currently implemented in the TipDatingBeast package automatically screen the input files

and detect whether they have been produced by BEAST 1.x or 2.x.

3.2 The influenza dataset as an example

In this tutorial, we will use the influenza dataset provided in the "Virus Practical.zip" folder

of the BEAST tutorials (http://beast.bio.ed.ac.uk/tutorials) as an empirical example, The

"Flu.nex" file is an alignment of 21 sequences from the Influenza A virus sampled between

1997 and 2004 that contains 1698 nucleotides in length.

http://beast.bio.ed.ac.uk/tutorials

The functions implemented in TipDatingBeast require a BEAST xml-formatted input file in

which each sequence is associated to a date (of any unit e.g., days, months, years etc). Such

BEAST xml input files are generally generated from a molecular sequence alignment file

using the graphical user-interface (GUI) application BEAUti. BEAUti is distributed in the same

package as BEAST (downloadable from the BEAST web page). For the purpose of this

tutorial, we generated two different xml input files from the "Flu.nex" alignment file: one for

BEAST 1.x and one for BEAST 2.x. Those two xml files are included in the TipDatingBeast

package that can be downloaded from:

https://cran.r-project.org/web/packages/TipDatingBeast/index.html

3.3 Functions related to the "Date-randomized test"

The Date randomization test (hereafter "DRT") is a critical initial step in any tip-dating

analyse as it aims to investigate the strength of the temporal signal within a dataset (see

(Duchêne et al. 2015) for a recent evaluation of this test’s performance). The DRT test

involves i) generating multiple randomized BEAST xml-formatted input files by permutation

of sampling times, ii) running them in BEAST and iii) comparing the parameter estimates

obtained with the original vs. the randomized datasets.

The functions "RandomDates" and "RandomClusters" allow generating such date-

randomized XML-formatted input files in which tip dates have been shuffled among the taxa.

3.3.1 The "RandomDates" function

The "RandomDates" function reads an XML-formatted input file, randomly shuffles the dates

(sequence ages) between all samples and writes a new date-randomized-XML. In

TipDatingBeast, this function should be called with the following command:

>RandomDates(name,reps,writeTrees)

With:

name - the name of the original XML-formatted input file on which to apply the date-

randomization procedure (the .xml extension should not be included).

reps - the number of repetitions required by the user. There will be as many date-

randomized datasets produced as the value of reps (default = 20).

writeTrees – set to False (F) if you do not want the trees to be written when running the

date-randomized datasets in BEAST. To make the DRT, only the log files are needed (default

= T).

Here is an example with the Influenza dataset for BEAST 1.x:

The above command reads the Flu-BEAST-18.xml, shuffles the dates 20 times and output 20

new date-randomized xml’s. Note that the name of the xml can be anything and does not

have to include the version of BEAST (it is the case here but it is not mandatory). The date-

randomized XMLs are automatically labeled: "name".Rep[i].xml where i is the number of

date-randomized datasets.

3.3.2 The "RandomCluster" function

This function is similar to "RandomDates" excepts that in "RandomCluster", samples are

grouped into clusters and the shuffling procedure randomizes dates among the clusters but

not within (see Duchêne et al. 2015) for more details on this procedure). There are two

distinct ways to group the samples into clusters. The first one is through the upload of a .csv

file containing the names of the samples (as given in the XML) and a cluster number. Any

positive integer (i.e., positive number) can be used to identified cluster; if a "0" is given to

any sample, it would be excluded from the procedure (refer to Duchêne et al. 2015) for a

explanation of when such approach could be required). The file containing the classification

should be labeled: clusters."name".cvs. An example for such a file in the case of the

Influenza dataset can be found distributed with the package.

>RandomDates(name="Flu_BEAST_18",reps=20,writeTrees=F)

In a second approach, a model-based clustering classification is automatically performed

using the mclust library (Fraley & Raftery 2002). In this case, the option loadCluster should

be set to FALSE (loadCluster = F). If this option is chosen, the new classification is written in a

csv file that is labeled: clusters."name".cvs.

In TipDatingBeast:

With:

name - the name of the original XML-formatted input file on which to apply the date-

randomization procedure (the .xml extension should not be included).

reps - the number of repetitions required by the user. There will be as many date-

randomized datasets produced as the value of reps (default = 20).

loadCluster - set to True (T) if the user provide the .csv file to define the clusters. In that

case, this file should be labeled "clusters.name.csv", where name is the name of the original

XML-formatted input file. If set to False (F) the clustering is automatically made using the

mclust library (Fraley & Raftery 2002).

writeTrees – set to False (F) if you do not want the trees to be written when running the

date-randomized datasets in BEAST. To make the DRT, only the log files are needed (default

= T).

Here is an example with the Influenza dataset for BEAST 2.x:

The above command reads the Flu-BEAST-232.xml, shuffles the dates 20 times among but

not within the clusters (as defined in Flu-BEAST-232.clusters.csv) and output 20 new date-

randomized xmls. Note that the name of the xml can be anything and does not have to

>RandomCluster(name="Flu_BEAST_232",reps=20,loadCluster=T,

writeTrees=F)

>RandomCluster(name,reps,loadCluster,writeTrees)

include the version of BEAST (it is the case here but it is not mandatory). The date-

randomized XMLs are automatically labeled: "name".Rep[i].xml where i is the number of

date-randomized datasets.

3.3.3 The "PlotDRT" function

Once analyzed with BEAST, the PlotDRT function allows comparing the parameter estimates

obtained with the original vs. the randomized datasets. This function requires uploading,

reading and analyzing the "Log" files generated by BEAST. A Log file contains a row for each

MCMC sampling and a column for each estimated parameter. When considered as

frequency distributions, this file provides an estimate of the marginal posterior probability

distribution for each parameter. The function "PlotDRT" enable a graphical comparison of

the parameter estimates obtained with the original vs. the date-randomized datasets

(whatever the shuffling procedure considered).

In TipDatingBeast:

With:

name - the name of the original Log file (excluding the .log extension) to upload and

compute the real parameter estimates on. The name of the Log files computed from the

date-randomized datasets should look like "name.Rep[i].log".

reps - the number of date-randomized log files to be used.

burnin - the fraction of the first MCMC sampling to exclude from the Log files when

computing the parameter estimates distribution (default = 0.1, which means 10%).

An example set of log files for the influence dataset can be found online

(doi:10.5061/dryad.43q71), the plot can be made by using:

The following message should appear on the console:

>PlotDRT(name="Flu_BEAST_18",reps=20,burnin=0.1)

>PlotDRT(name,reps,burnin)

This means that you should indicate which parameter of the log files you want the DRT to be

performed on. You generally have the choice between using the rate of evolution or the age

of the root. To select a variable, type VAR and hit enter:

The list of parameter extracted from the log file should appear. Let say you want the DRT to

be performed on the rate of evolution (noted clock.rate), then type clock.rate

R will now extract the clock.rate column from both the real and the date-randomized log

files and output i) summary statistics (mean, median, 95% HPD) in a stats.csv file as well as ii)

the 95%HPD (both in natural and log scale) in a figure (see Fig. 1).

Figure 1: Plot obtained with the PlotDRT function displaying the 95% HPD for the rate of

evolution calculated on the real (red) and the date-randomized (black) datasets.

enter parameter, type VAR to list variable name, or hit

enter to cancel: clock.rate

enter parameter, type VAR to list variable names, or hit

enter to cancel: VAR

enter parameter, type VAR to list variable names, or hit

enter to cancel:

●

0
.0

0
0

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4

0
.0

0
5

0
.0

0
6

Date−randomization test performed on ucld.mean

u
c
ld

.m
e
a
n

−

−

●−

−
●−
−

●
−

−
●

−

−

●

−

−

●
−

−

●−
−

●−

−
●−

−
●

−

−
●

−

−

●

−

−

●−

−
●
−

−
●

−

−

●

−

−

●−

− ●

−

−

●
−

−

●−
−

● ●Real Randomized

No Overlapping: DRT SUCCESSFULLY PASSED !!!

This plot, often called the DRT is fairly straightforward to interpret. If the 95%HPD of the rate

of evolution (or of the age of the root) calculated on the real dataset (in red) do not overlap

with any of the ones on the date-randomized datasets (in black) as above, then the DRT is

passed and tip-dating inferences can thoroughly be performed on the real dataset. If this is

not the case, then the temporal signal in the data set is probably not wide enough to

perform tip-dating inferences (see Duchêne et al. 2015; Rieux & Balloux 2016; Rieux &

Khatchikian Submitted) for more information).

3.4 Functions related to the Leave-one-out-cross-validation

The Leave-one-out-cross-validation (hereafter LOOCV) is a statistical procedure aiming to

detect whether some particular sequences, when used as calibration in a tip dating analyses,

could lead to systematic bias.

For a dataset of n taxa, the LOOCV involves i) generating n XML-formatted input files, each

of them excluding one taxa, ii) running BEAST with each new input file and estimate the age

of the missing taxa using all the other ones and iii) comparing the estimated vs. true

sequence ages.

3.4.1 The "TaxaOut" function

The function "TaxaOut" allow generating as many XML-formatted input files as a dataset

contains taxa and estimating. Those new XMLs are modified to, when ran in BEAST, provide

an estimation of the age of the missing taxa using the calibrations of the other ones. In R:

With:

name - the name of the original XML-formatted input file on which to apply the LOOCV

procedure (the .xml extension should be excluded). This xml should be set up so that earlier

dates have lower numerical values (i.e., set direction = "forwards" when setting up date in

BEAUti).

lBound - the uniform prior lower bound for the age of the missing taxa (default = 0)

>TaxaOut(name,lBound,hBound,writeTrees=F)

hBound - the uniform prior higher bound for the age of the missing taxa (default = 1.0E100)

writeTrees – set to False (F) if you do not want the trees to be written when running the

LOOCV datasets in BEAST. To proceed the LOOCV, only the log files are needed (default = T)

Here is an example with the Influenza dataset for BEAST 1.x:

The above command reads the Flu-BEAST-18.xml and generates 21 new XMLs, each of them

excluding one different taxa from the tip-calibration panel. Note that the name of the xml

can be anything and does not have to include the version of BEAST (it is the case here but it

is not mandatory). The new XMLs for the LOOCV procedure are automatically labeled:

"name".Taxon[i].xml where i is the number of the taxon being excluded.

3.4.2 The "listTaxa" and "TaxonOut" functions

The function "TaxonOut" does the same thing as "TaxaOut" but one one specific Taxon

(instead for doing it sequentially for each one).

See arguments description for "TaxaOut" above.

takeOut – The name of the Taxon to be excluded from the tip-calibration panel and for

which the age should be estimated using the other taxa. The names of the taxa in an XML

can be obtained with the "ListTaxa funtion" (see below).

The "ListTaxa" function lists the Taxa names in a BEAST XML-formatted file.

name - the name of the BEAST XML-formatted input file

>ListTaxa(name)

>TaxonOut(name,lBound,hBound,takeOut,writeTrees)

>TaxaOut(name="Flu_BEAST_18",lBound=0.0,

hBound=1.E100,writeTrees=F)

3.4.3 The "PlotLOOCV" function

Once the XMLs produced with the "TaxaOut" function analyzed with BEAST, the PlotLOOCV

function allows a graphical comparison of the estimated vs "true" sequence ages. Similarly

to the PlotDRT function, PlotLOOCV requires uploading, reading and analysing the "Log" files

generated by BEAST.

With:

name - the name of the original XML file (excluding the .xml extension). In the same folder,

should be present the i LogFiles generated from the i XMLs produced with the "TaxaOut"

function (i being the number of Taxa in the dataset). The name of the Log files should look

like "name.Taxon[i].log".

burnin - the fraction of the first MCMC sampling to exclude from the Log files when

computing the age estimates distribution (default = 0.1, which equals to 10% burnin).

An example set of log files and original xml necessary for the analysis can be found online

(doi:10.5061/dryad.43q71), the plot can be made by using:

The above command will extract the sample "true" ages from the original XML and the

BEAST estimated ones from the Log files. It will output the summary statistics in a

"leave.one.out.txt" file and produced the following figure:

>PlotLOOCV("Flu_BEAST_18",burnin=0.1)

>PlotLOOCV(name,burnin)

Figure 2: Plot obtained with the PlotLOOCV function. For each sample, horizontal bars

represent their estimated ages (95% HPD) and circles their "real" ages (in black when

included in the estimated interval, in red otherwise).

This plot is also fairly straightforward to interpret. Particular attention should be paid to the

sequences for which "real" ages are not included into the estimated interval (see (Rieux &

Khatchikian Submitted) for a discussion on the reasons and the consequences of such a

deviation).

4) Common Issues

4.1 PlotLOOCV function report "cannot open the connection"

Check that all taxa log files are present in the proper folder and that the original XML is

present in the same folder. Also, check that the name of this file is the same that the base

name of all taxa runs.

5) References

Bouckaert R, Heled J, Kuehnert D, et al. (2014) BEAST 2: A Software Platform for
Bayesian Evolutionary Analysis. Plos Computational Biology 10.

Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling
trees. Bmc Evolutionary Biology 7.

Duchêne S, Duchêne D, Holmes EC, Ho SYW (2015) The Performance of the Date-
Randomization Test in Phylogenetic Analyses of Time-Structured Virus Data.
Molecular Biology and Evolution.

Fraley C, Raftery AE (2002) Model-based clustering, discriminant analysis and density
estimation. Journal of the American Statistical Association 97, 611-631.

R Development Core Team (2015) R: A language and environment for stadistical
computing. R Foundation for Statistical Computing.

Rieux A, Balloux F (2016) Inferences from tip-calibrated phylogenies: a review and a
practical guide. Molecular Ecology 25, 1911-1924.

Rieux A, Khatchikian EC (Submitted) TipDatingBeast: an R package to assist the
implementation of phylogenetic tip-dating tests using BEAST. Molecular ecology
ressources.

