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1 Introduction

Statistical matching techniques aim at integrating two or more data sources (usually
data from sample surveys) referred to the same target population. In the basic statistical
matching framework, there are two data sources A and B sharing a set of variables X
while the variable Y is available only in A and the variable Z is observed just in B.
The X variables are common to both the data sources, while the variables Y and Z are
not jointly observed. The objective of statistical matching (hereafter denoted as SM)
consists in investigating the relationship between Y and Z at “micro” or “macro” level
(D’Orazio et al., 2006b). In the micro case the SM aims at creating a “synthetic” data
source in which all the variables, X, Y and Z, are available (usually A ∪B with all the
missing values filled in, or simply A filled in with the values of Z). When the objective is
macro, the data sources are integrated to derive an estimate of the parameter of interest,
e.g. the correlation coefficient between Y and Z or the contingency table Y × Z.

A parametric approach to SM requires the explicit adoption of a model for (X,Y, Z);
obviously, if the model is misspecified the results will not be reliable. The nonparametric
approach is more flexible in handling complex situations (different types of variables).
The two approaches can be mixed: first a parametric model is assumed and its param-
eters are estimated then a synthetic data set is derived through a nonparametric micro
approach. In this manner the advantages of both parametric and nonparametric ap-
proach are maintained: the model is parsimonious while nonparametric techniques offer
protection against model misspecification. Table 1 provides a summary of the objectives
and approaches to SM (D’Orazio et al., 2008).

*This document is partly based on the work carried out in the framework of the ESSnet project on Data
Integration, partly funded by Eurostat (December 2009–December 2011). For more information on
the project visit http://www.essnet-portal.eu/di/data-integration
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Table 1: Objectives and approaches to Statistical matching.

Objectives of Approaches to statistical Matching
Statistical matching Parametric Nonparametric Mixed

MAcro yes yes no
MIcro yes yes yes

In the traditional SM framework when only A and B are available, all the SM methods
(parametric, nonparametric and mixed) that use the set of common variables X to match
A and B, implicitly assume the conditional independence (CI) of Y and Z given X:

f (x, y, z) = f (y|x)× f (z|x)× f (x)

This assumption is particularly strong and seldom holds in practice. To avoid it the
SM should incorporate some auxiliary information concerning the relationship between
Y and Z (see Chap. 3 in D’Orazio et al. 2006b). The auxiliary information can be at
micro level (a new data source in which Y and Z or X, Y and Z are jointly observed)
or at macro level (e.g. an estimate of the correlation coefficient ρXY or an estimate of
the contingency table Y ×Z, etc.) or simply consist of some logic constraints about the
relationship between Y and Z (structural zeros, etc.; for further details see D’Orazio et
al., 2006a).

An alternative approach to SM consists in the evaluation of the uncertainty when
estimating the parameters of interest. This uncertainty is due to the lack of joint in-
formation concerning Y and Z. For instance, let us assume that (X,Y, Z) follows a
trivariate normal distribution and the goal of SM consists in estimating the correlation
matrix; in the basic SM framework the available data allow to estimate all the com-
ponents of the correlation matrix with the exception of ρY Z ; in this case, due to the
properties of the correlation matrix (has to be semidefinite positive), it is possible to
conclude that:

ρXY ρXZ −
√(

1− ρ2Y X

) (
1− ρ2XZ

)
≤ ρY Z ≤ ρXY ρXZ +

√(
1− ρ2Y X

) (
1− ρ2XZ

)
The higher is the correlation between X and Y and between X and Z, the shorter will

be the interval and, consequently, the lower will be the uncertainty. In practical applica-
tions, by substituting the correlation coefficients with the corresponding estimates it is
possible to derive a “range” of admissible values of the unknown ρY Z . The investigation
of the uncertainty in SM will be discussed in the Section 6.

Section 2 will be discuss some practical aspects concerning the preliminary steps, with
emphasis on the choice of the marching variables; moreover some example data will be
introduced. In Section 3 some nonparametric approaches to SM at micro will be shown.
Section 4 is devoted to the mixed approaches to SM. Section 5 will discuss SM approaches
to deal with data arising from complex sample surveys carried out on finite populations.
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2 Practical steps in an application of statistical matching

Before applying SM methods in order to integrate two or more data sources some de-
cisions and preprocessing steps are required (Scanu, 2008). In practice, given two data
sources A and B related to the same target population, the following steps are necessary:

1. Choice of the target variables Y and Z, i.e. of the variables observed distinctly in
two sample surveys.

2. Identification of all the common variables X shared by A and B. In this step some
harmonization procedures may be required because of different definitions and/or
classifications. Obviously, if two similar variables can not be harmonized they have
to be discarded. The common variables should not present missing values and the
observed values should be accurate (no measurement errors). Note that if A and
B are representative samples of the same population then the common variables
are expected to share the same marginal/joint distribution.

3. Potentially all the X variables can be used directly in the SM application, so called
matching variables but actually, not all them are used. Section 2.2 will provide
more details concerning this issue.

4. The choice of the matching variables is strictly related to the matching framework
(see Table 1).

5. Once decided the framework, a SM technique is used to match the samples.

6. Finally the results of the matching should be evaluated.

2.1 Example data

The next Sections will provide simple examples of application of some SM techniques in
the R environment (R Core Team, 2015) by using the functions in StatMatch (D’Orazio,
2016). These examples will use artificial data set that come with StatMatch; these
artificial data sets are generated by considering the variables usually observed in the
EU-SILC (European Union Statistics on Income and Living Conditions) survey (for
major details see StatMatch help pages).

> library(StatMatch) #loads pkg StatMatch

> data(samp.A) # sample A in SM examples

> str(samp.A)

'data.frame': 3009 obs. of 13 variables:

$ HH.P.id : chr "10149.01" "17154.02" "5628.01" "15319.01" ...

$ area5 : Factor w/ 5 levels "NE","NO","C",..: 1 1 2 4 4 3 4 5 4 3 ...

$ urb : Factor w/ 3 levels "1","2","3": 1 1 2 1 2 2 2 2 2 2 ...

$ hsize : int 1 2 1 2 5 2 4 3 4 4 ...

$ hsize5 : Factor w/ 5 levels "1","2","3","4",..: 1 2 1 2 5 2 4 3 4 4 ...
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$ age : num 85 78 48 78 17 28 26 51 60 21 ...

$ c.age : Factor w/ 5 levels "[16,34]","(34,44]",..: 5 5 3 5 1 1 1 3 4 1 ...

$ sex : Factor w/ 2 levels "1","2": 2 1 1 1 1 2 2 2 2 2 ...

$ marital : Factor w/ 3 levels "1","2","3": 3 2 3 2 1 2 1 2 2 1 ...

$ edu7 : Factor w/ 7 levels "0","1","2","3",..: 4 4 4 2 2 6 6 3 2 4 ...

$ n.income: num 1677 13520 20000 12428 0 ...

$ c.neti : Factor w/ 7 levels "(-Inf,0]","(0,10]",..: 2 3 4 3 1 1 2 3 1 1 ...

$ ww : num 3592 415 2735 1240 5363 ...

> data(samp.B) # sample B in the SM examples

> str(samp.B)

'data.frame': 6686 obs. of 12 variables:

$ HH.P.id: chr "5.01" "5.02" "24.01" "24.02" ...

$ area5 : Factor w/ 5 levels "NE","NO","C",..: 5 5 3 3 1 1 2 2 2 2 ...

$ urb : Factor w/ 3 levels "1","2","3": 3 3 2 2 1 1 2 2 2 2 ...

$ hsize : int 2 2 2 2 2 2 3 3 3 3 ...

$ hsize5 : Factor w/ 5 levels "1","2","3","4",..: 2 2 2 2 2 2 3 3 3 3 ...

$ age : num 45 18 76 74 47 46 53 55 21 53 ...

$ c.age : Factor w/ 5 levels "[16,34]","(34,44]",..: 3 1 5 5 3 3 3 4 1 3 ...

$ sex : Factor w/ 2 levels "1","2": 2 2 1 2 1 2 2 1 2 1 ...

$ marital: Factor w/ 3 levels "1","2","3": 3 1 2 2 1 1 2 2 1 2 ...

$ edu7 : Factor w/ 7 levels "0","1","2","3",..: 4 3 2 3 3 6 4 4 4 3 ...

$ labour5: Factor w/ 5 levels "1","2","3","4",..: 3 5 4 4 1 5 5 1 5 1 ...

$ ww : num 179 179 330 330 1116 ...

The two data frames samp.A and samp.B share the variables X.vars; the net income
(z.var) is available in samp.A while the person’s economic status (y.var) is available
only in samp.B.

> X.vars <- intersect(names(samp.A), names(samp.B))

> X.vars

[1] "HH.P.id" "area5" "urb" "hsize" "hsize5" "age"

[7] "c.age" "sex" "marital" "edu7" "ww"

> setdiff(names(samp.A), names(samp.B)) # available just in A

[1] "n.income" "c.neti"

> setdiff(names(samp.B), names(samp.A)) # available just in B

[1] "labour5"

For major details on the variables contained in A and B see the corresponding help
pages.
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2.2 The choice of the matching variables

In statistical matching applications A and B may share many common variables. In
practice, just the most relevant ones, called matching variables, are used in the match-
ing. The selection of these variables should be performed through opportune statistical
methods (descriptive, inferential, etc.) and by consulting subject matter experts.

From a statistical point of view, the choice of the marching variables XM (XM ⊆ X)
should be carried out in a “multivariate sense” in order to identify the subset of the
XM variables connected at the same time with Y and Z (Cohen, 1991); unfortunately
this would require the availability of an auxiliary data source in which all the variables
(X,Y, Z) are observed. In the basic SM framework the data in A permit to explore
the relationship between Y and X, while the relationship between Z and X can be
investigated in B. Then the results of the two separate analyses have to be combined in
some manner; usually the subset of the matching variables is obtained as XM = XY ∪XZ ,
being XY (XY ⊆ X) the subset of the common variables that better explains Y , while
XZ is the subset of the common variables that better explain Z (XZ ⊆ X). The risk is
that of ending with too many matching variables, thereby increasing the complexity of
the problem and potentially affecting negatively the results of SM. In particular, in the
micro approach this may introduce additional undesired variability and bias as far as
the joint (marginal) distribution of XM and Z is concerned. For this reason sometimes
the set of the matching variables is obtained as a compromise

XY ∩XZ ⊆ XM ⊆ XY ∪XZ

.
The simplest procedure to identify XY consists in calculation of pairwise correla-

tion/association measures between Y and each of the available predictors X. The
same analysis should be performed on B to identify the best predictors od Z. When
the response variable is continuous one can look at correlation with the predictors.
In order to identify eventual nonlinear relationship it may be convenient to consider
the ranks (Spearman’s rank correlation coefficient). An interesting suggestion from
Harrell (2001) consists in looking at the adjusted R2 related to the regression model
rank(Y ) vs. rank(X) (unadjusted R2 corresponds to squared Spearman’s rank correla-
tion coefficient). When X is categorical nominal variable it is considered the adjusted
R2 of the regression model rank(Y ) vs. dummies(X). The function spearman2 in the
package Hmisc (Harrell et al., 2014) computes automatically the adjusted R2 for each
couple response-predictor.

> require(Hmisc)

> spearman2(n.income~area5+urb+hsize+age+sex+marital+edu7,

+ p=2, data=samp.A)

Spearman rho^2 Response variable:n.income

rho2 F df1 df2 P Adjusted rho2 n

5



area5 0.033 25.45 4 3004 0.0000 0.031 3009

urb 0.000 0.49 2 3006 0.6105 0.000 3009

hsize 0.032 49.82 2 3006 0.0000 0.031 3009

age 0.136 236.99 2 3006 0.0000 0.136 3009

sex 0.120 410.25 1 3007 0.0000 0.120 3009

marital 0.034 53.02 2 3006 0.0000 0.033 3009

edu7 0.071 38.17 6 3002 0.0000 0.069 3009

By looking at the adjusted R2, it comes out that just the gender (sex) and age (age)
have a certain predictive power on n.income.

When response and predictors are all categorical, then Chi-square based association
measures (Cramer’s V ) or proportional reduction of the variance measures can be con-
sidered. The function pw.assoc in StatMatch computes some of them.

> pw.assoc(labour5~area5+urb+hsize5+c.age+sex+marital+edu7, data=samp.B)

$V

labour5.area5 labour5.urb labour5.hsize5 labour5.c.age

0.10968031 0.03222037 0.11125871 0.39412166

labour5.sex labour5.marital labour5.edu7

0.32181407 0.23630089 0.23968345

$lambda

labour5.area5 labour5.urb labour5.hsize5 labour5.c.age

0.04360596 0.00000000 0.02598283 0.29530050

labour5.sex labour5.marital labour5.edu7

0.08788974 0.04586534 0.15386353

$tau

labour5.area5 labour5.urb labour5.hsize5 labour5.c.age

0.0129525034 0.0004782976 0.0142621011 0.1988405973

labour5.sex labour5.marital labour5.edu7

0.0329951308 0.0299137496 0.0776071229

$U

labour5.area5 labour5.urb labour5.hsize5 labour5.c.age

0.0163106664 0.0007064674 0.0166305027 0.2485754478

labour5.sex labour5.marital labour5.edu7

0.0371158413 0.0420075216 0.0803914797

In practice it comes out the best predictor of person’s economic status (labour5) is the
age conveniently categorized (c.age), among the remaining variables, just the education
levels (edu7) has some a certain predictive power on labour5.

To summarize, in this example the set of the matching variables could be composed
by age, sex and edu7 (i.e. XM = XY ∪XZ).
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When too many variables are available, before computing pairwise association/correlation
measures it would be necessary to discard the redundant predictors (functions redun and
varclus in Hmisc can be of help).

Sometimes the important predictors can be identified by fitting models and then run-
ning procedures for selecting the best predictors. The selection of the subset XY can also
be demanded to nonparametric procedures such as Classification And Regression Trees
(Breiman et al., 1984). Instead of fitting a single tree, it would be better to fit a random
forest (Breiman, 2001) by means of the function randomForest available in the package
randomForest (Liaw and Wiener, 2002) which provides a measure of importance for
the predictors (to be used with caution).

The approach to SM based on the study of uncertainty offers the possibility of choosing
the matching variable by selecting just those common variables with the highest contri-
bution to the reduction of the uncertainty. The function Fbwidths.by.x in StatMatch
permits to explore the reduction of uncertainty when all the variables (X,Y, Z) are cat-
egorical. In particular, assuming that XD correspond to the complete crossing of the
matching variables XM , it is possible to show that in the basic SM framework

P
(low)
j,k ≤ PY=j,Z=k ≤ P

(up)
j,k ,

being

P
(low)
j,k =

∑
i

PXD=i ×max
{

0;PY=j|XD=i + PZ=k|XD=i − 1
}

P
(up)
j,k =

∑
i

PXD=i ×min
{
PY=j|XD=i;PZ=k|XD=i

}
for j = 1, . . . , J and k = 1, . . . ,K, being J and K the categories of Y and Z respectively.

The function Fbwidths.by.x estimates (P
(low)
j,k , P

(up)
j,k ) for each cell in the contingency

table Y ×Z for all the possible combinations of the input X variables; then the reduction
of uncertainty is measured naively by the average widths of the intervals:

d̄ =
1

J ×K
∑
j,k

(P̂
(up)
j,k − P̂

(low)
j,k )

> # choiche of the matching variables based on uncertainty

> xx <- xtabs(~c.age+sex+marital+edu7, data=samp.A)

> xy <- xtabs(~c.age+sex+marital+edu7+c.neti, data=samp.A)

> xz <- xtabs(~c.age+sex+marital+edu7+labour5, data=samp.B)

> out.fbw <- Fbwidths.by.x(tab.x=xx, tab.xy=xy, tab.xz=xz)

> # sort output according to average width

> sort.av <- out.fbw$sum.unc[order(out.fbw$sum.unc$av.width),]

> head(sort.av) # best 6 combinations of the Xs

x.vars x.cells x.freq0 xy.cells xy.freq0

|c.age*sex*marital*edu7 4 210 51 1470 863
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|c.age*sex*edu7 3 70 7 490 168

|c.age*sex*marital 3 30 0 210 18

|c.age*marital*edu7 3 105 16 735 341

|c.age*sex 2 10 0 70 0

|c.age*edu7 2 35 1 245 55

xz.cells xz.freq0 av.width rel.av.width

|c.age*sex*marital*edu7 1050 538 0.06598348 0.5688524

|c.age*sex*edu7 350 111 0.07158300 0.6171266

|c.age*sex*marital 150 22 0.07559817 0.6517420

|c.age*marital*edu7 525 213 0.07760632 0.6690545

|c.age*sex 50 3 0.07804262 0.6728159

|c.age*edu7 175 42 0.08114008 0.6995195

By looking at the average width of the cells bounds it appears that all Xs being
considered should be used as matching variables. Unfortunately the input tables tab.xy
and tab.xy have a lot of empty cells (cells with frequency equal to zero; 863 out of
1470 in tab.xy and 538 out of 1050 in tab.xy); in such a context the results may be
unreliable. On the contrary, the second best choice of X variables, even if determines
a slight worsening of the average width of intervals, seems a viable alternative, even
because the input tables are much less sparse; moreover the X variables are the same
that would be chosen as matching variables at the end of the previous analyses based on
computations of pairwise association/correlations measures. Note that in the presence of
sparse contingency tables a possible alternative way of working may consist in estimating
the cells probabilities by applying a pseudo-Bayes estimator, implemented in the function
pBayes available in StatMatch (see corresponding help pages for major details).

3 Nonparametric micro techniques

Nonparametric approach is very popular in SM when the objective is the creation of a
synthetic data set. Most of the nonparametric micro approaches consists in filling in the
data set chosen as the recipient with the values of the variable which is available only
in the other data set, the donor one. In this approach it is important to decide which
data set plays the role of the recipient; usually it is the data set to be used as the basis
for further statistical analyses. The obvious choice would be that of using the larger one
because it is expected to provide more accurate estimates; unfortunately, such a way of
working may provide inaccurate SM results, especially when the sizes of the two data
sources are very different. In practice, the larger is the recipient with respect to the
donor, the more times a unit in the latter could be selected as a donor. In this manner,
there is a high risk that the distribution of the imputed variable does not reflect the
original one (estimated form the donor data set). In the following it will be assumed
that A is the recipient while B is the donor, being nA ≤ nB (nA and nB are the sizes of
A and B respectively). Hence the objective of SM will be that of filling in A with values
of Y (variable available only in B).
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In StatMatch the following nonparametric micro techniques are available: random
hot deck, nearest neighbor hot deck and rank hot deck (see Section 2.4 in D’Orazio et al.,
2006b; Singh et al., 1993).

3.1 Nearest neighbor distance hot deck

The nearest neighbor distance hot deck techniques are implemented in the function
NND.hotdeck. This function searches in data.don the nearest neighbor of each unit in
data.rec according to a distance computed on the matching variables XM specified with
the argument match.vars. By default the Manhattan (city block) distance is considered
(dist.fun="Manhattan"). In order to reduce the effort in computing distances it is
preferable to define some donation classes (argument don.class): for a record in given
donation class it will be selected a donor in the same class (the distances are computed
only between units belonging to the same class). Usually, the donation classes are defined
according to one or more categorical common variables (geographic area, etc.). In the
following, a simple example of usage of NND.hotdeck is reported; donation classes are
formed using large geographical areas ("area5") and gender ("sex"), while distances
are computed on age ("age"):

> group.v <- c("area5","sex")

> X.mtc <- "age"

> out.nnd <- NND.hotdeck(data.rec=samp.A, data.don=samp.B,

+ match.vars=X.mtc, don.class=group.v)

Warning: The Manhattan distance is being used

All the categorical matching variables in rec and don

data.frames, if present are recoded into dummies

The function NND.hotdeck does not create the synthetic data set; for each unit in A the
corresponding closest donor in B is identified according to the imputation classes (when
defined) and the chosen distance function; the recipient-donor units’ identifiers are saved
in the data.frame mtc.ids stored in the output list returned by NND.hotdeck. This list
provides also the distance between each couple recipient-donor (saved in the dist.rd

component of the output list) and the number of available donors at the minimum
distance for each recipient (component noad). Note that when there are more donors at
the minimum distance, then one of them is picked up at random.

> summary(out.nnd$dist.rd) # summary distances rec-don

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000000 0.000000 0.000000 0.003988 0.000000 6.000000

> summary(out.nnd$noad) # summary available donors at min. dist.

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.00 8.00 11.00 10.82 14.00 28.00
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In order to derive the synthetic data set it is necessary to run the function cre-

ate.fused which requires the output of NND.hotdeck function (component mtc.ids of
the output’s list) and the specification of the Z variables to donate from B to A via the
argument z.vars:

> head(out.nnd$mtc.ids)

rec.id don.id

[1,] "35973" "27403"

[2,] "21483" "36572"

[3,] "39095" "29030"

[4,] "36844" "22421"

[5,] "560" "33394"

[6,] "34062" "13754"

> fA.nnd <- create.fused(data.rec=samp.A, data.don=samp.B,

+ mtc.ids=out.nnd$mtc.ids,

+ z.vars="labour5")

> head(fA.nnd) #first 6 obs.

HH.P.id area5 urb hsize hsize5 age c.age sex marital

35973 17154.02 NE 1 2 2 78 (64,104] 1 2

21483 10198.01 NE 2 1 1 54 (44,54] 1 2

39095 18619.02 NE 1 2 2 42 (34,44] 1 1

36844 17559.01 NE 2 2 2 55 (54,64] 1 2

560 260.01 NE 2 2 2 70 (64,104] 1 2

34062 16246.01 NE 2 3 3 66 (64,104] 1 2

edu7 n.income c.neti ww labour5

35973 3 13520 (10,15] 415.1592 4

21483 3 0 (-Inf,0] 985.7281 1

39095 2 18937 (15,20] 5728.2815 1

36844 2 18666 (15,20] 1592.5737 1

560 1 8619 (0,10] 2163.1869 4

34062 3 21268 (20,25] 1970.7038 4

As far as distances are concerned (argument dist.fun), all the distance functions in
the package proxy (Meyer and Butchta, 2015) are available. Anyway, for some partic-
ular distances it was decided to write specific R functions. In particular, when dealing
with continuous matching variables it is possible to use the maximum distance (L∞

norm) implemented in maximum.dist; this function works on the true observed values
(continuous variables) or on transformed ranked values (argument rank=TRUE) as sug-
gested in Kovar et al. (1988); the transformation (ranks divided by the number of units)
removes the effect of different scales and the new values are uniformly distributed in the
interval [0, 1]. The Mahalanobis distance can be computed by using mahalanobis.dist
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which allows an external estimate of the covariance matrix (argument vc). When deal-
ing with mixed type matching variables, the Gowers’s dissimilarity (Gower, 1981) can
be computed (function gower.dist): it is an average of the distances computed on the
single variables according to different rules, depending on the type of the variable. All
the distances are scaled to range from 0 to 1, hence the overall distance cat take a value
in [0, 1]. When dealing with mixed types matching variables it is still possible to use
the distance functions for continuous variables but NND.hotdeck transforms factors into
dummies (by means of the function fact2dummy).

By default NND.hotdeck does not pose constraints on the “usage” of donors: a record
in the donor data set can be selected many times as a donor. The multiple usage
of a donor can be avoided by resorting to a constrained hot deck (argument con-

strained=TRUE in NND.hotdeck); in such a case, a donor can be used just once and
all the donors are selected in order to minimize the overall matching distance. In prac-
tice, the donors are identified by solving a traveling salesperson problem; two alter-
natives are available: the Hungarian algorithm (argument constr.alg="Hungarian"

implemented in the function solve LSAP in the package clue (Hornik, 2005 and 2015)
and the algorithm provided by the package lpSolve (Berkelaar et al., 2015) (argument
constr.alg="lPsolve"). Setting constr.alg="Hungarian" (default) is more efficient
and faster.

> group.v <- c("sex","area5")

> X.mtc <- "age"

> out.nnd.c <- NND.hotdeck(data.rec=samp.A, data.don=samp.B,

+ match.vars=X.mtc, don.class=group.v,

+ dist.fun="Manhattan", constrained=TRUE,

+ constr.alg="Hungarian")

Warning: The Manhattan distance is being used

All the categorical matching variables in rec and don

data.frames, if present are recoded into dummies

> fA.nnd.c <- create.fused(data.rec=samp.A, data.don=samp.B,

+ mtc.ids=out.nnd.c$mtc.ids,

+ z.vars="labour5")

The constrained matching returns an overall matching distance greater than the one
in the unconstrained case, but it tends to better preserve the marginal distribution of
the variable imputed in the synthetic data set.

> #comparing distances

> sum(out.nnd$dist.rd) # unconstrained

[1] 12

> sum(out.nnd.c$dist.rd) # constrained
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[1] 90

To compare the marginal joint distributions of a set of categorical variables it is pos-
sible to resort to the function comp.prop in StatMatch which provides some similarity
measure among distributions of categorical variables and performs also the Chi-square
test (for details see comp.prop the help pages).

> # estimating marginal distribution of labour5

> tt0 <- xtabs(~labour5, data=samp.B) # reference distr.

> tt <- xtabs(~labour5, data=fA.nnd) # synt unconstr.

> ttc <- xtabs(~labour5, data=fA.nnd.c) #synt. constr.

> #

> # comparing marginal distributions

> cp1 <- comp.prop(p1=tt, p2=tt0, n1=nrow(fA.nnd), n2=NULL, ref=TRUE)

> cp2 <- comp.prop(p1=ttc, p2=tt0, n1=nrow(fA.nnd), n2=NULL, ref=TRUE)

> cp1$meas

tvd overlap Bhatt Hell

0.004679798 0.995320202 0.999971919 0.005299164

> cp2$meas

tvd overlap Bhatt Hell

0.004376739 0.995623261 0.999981040 0.004354333

By looking at comp.prop output it comes out that, as expected, the marginal distri-
bution of c.netI in the synthetic file obtained after constrained NND is closer to the
reference distribution (estimated on the donor dataset) than the one estimated from the
synthetic file after the unconstrained NND.

3.2 Random hot deck

The function RANDwNND.hotdeck carries out the random selection of each donor from a
suitable subset of all the available donors. This subset can be formed in different ways,
e.g. by considering all the donors sharing the same characteristics of the recipient (de-
fined according to some XM variables, such as geographic region, etc.). The traditional
random hot deck (Singh et al., 1993) within imputation classes is performed by simply
specifying the donation classes via the argument don.class (the classes are formed by
crossing the categories of the categorical variables being considered). For each recipient
record in a given donation class, a donor is picked up completely at random within the
same donation class.

> # random hot deck in classes formed crossing "area5" and "sex"

> group.v <- c("area5","sex")

> rnd.1 <- RANDwNND.hotdeck(data.rec=samp.A, data.don=samp.B,
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+ match.vars=NULL, don.class=group.v)

> fA.rnd <- create.fused(data.rec=samp.A, data.don=samp.B,

+ mtc.ids=rnd.1$mtc.ids,

+ z.vars="labour5")

As for NND.hotdeck, the function RANDwNND.hotdeck does not create the synthetic
data set; the recipient-donor units’ identifiers are saved in the component mtc.ids of
the list returned in output. The number of donors available in each donation class are
saved in the component noad.
RANDwNND.hotdeck implements various alternative methods to create classes of donors

by using a continuous matching variable. These methods are based essentially on
a distance measure computed on the matching variables provided via the argument
match.vars. In practice, when cut.don="k.dist" only the donors whose distance from
the recipient is less or equal to threshold k are considered (see Andridge and Little,
2010). By setting cut.don="exact" the k (0 < k ≤ nD) closest donors are retained
(nD is the number of available donors for a given recipient). With cut.don="span" a
proportion k (0 < k ≤ 1) of the closest available donors it is considered; while, setting
cut.don="rot" and k=NULL the subset reduces to the

[√
nD
]

closest donors; finally,
when cut.don="min" only the donors at the minimum distance from the recipient are
retained.

> # random choice of a donor among the closest k=20 wrt age

> # sharing the same values of "area5" and "sex"

> group.v <- c("area5","sex")

> X.mtc <- "age"

> rnd.2 <- RANDwNND.hotdeck(data.rec=samp.A, data.don=samp.B,

+ match.vars=X.mtc, don.class=group.v,

+ dist.fun="Manhattan",

+ cut.don="exact", k=20)

Warning: The Manhattan distance is being used

All the categorical matching variables in rec and don data.frames,

if present, are recoded into dummies

> fA.knnd <- create.fused(data.rec=samp.A, data.don=samp.B,

+ mtc.ids=rnd.2$mtc.ids,

+ z.vars="labour5")

When distances are computed on some matching variables, then the output of RAND-
wNND.hotdeck provides some information concerning the distances of the possible avail-
able donors for each recipient observation.

> head(rnd.2$sum.dist)
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min max sd cut dist.rd

[1,] 0 61 17.204128 1 0

[2,] 0 38 9.898723 1 1

[3,] 0 50 11.642050 1 0

[4,] 0 38 10.037090 1 1

[5,] 0 53 14.865282 1 0

[6,] 0 49 13.404280 1 1

In particular, "min", "max" and "sd" columns report respectively the minimum, the
maximum and the standard deviation of the distances (all the available donors are
considered), while "cut" refers to the distance of the kth closest donor; "dist.rd" is
distance existing among the recipient and the randomly chosen donor.

When selecting a donor among those available in the subset identified by the arguments
cut.don and k, it is possible to use a weighted selection by specifying a weighting variable
via weight.don argument. This topic will be tackled in Section 5.

3.3 Rank hot deck

The rank hot deck distance method has been introduced by Singh et al. (1993). It
searches for the donor at a minimum distance from the given recipient record but, in
this case, the distance is computed on the percentage points of the empirical cumulative
distribution function of the unique (continuous) common variable XM being considered.
The empirical cumulative distribution function is estimated by:

F̂ (x) =
1

n

n∑
i=1

I (xi ≤ x)

being I() = 1 if xi ≤ x and 0 otherwise. This transformation provides values uniformly
distributed in the interval [0, 1]; moreover, it can be useful when the values of XM can
not be directly compared because of measurement errors which however do not affect
the “position” of a unit in the whole distribution (D’Orazio et al., 2006b). This method
is implemented in the function rankNND.hotdeck. The following simple example shows
how to call it.

> # distance computed on the percentage points of ecdf of "age"

> rnk.1 <- rankNND.hotdeck(data.rec=samp.A, data.don=samp.B,

+ var.rec="age", var.don="age")

> #create the synthetic data set

> fA.rnk <- create.fused(data.rec=samp.A, data.don=samp.B,

+ mtc.ids=rnk.1$mtc.ids,

+ z.vars="labour5",

+ dup.x=TRUE, match.vars="age")

> head(fA.rnk)

HH.P.id area5 urb hsize hsize5 age c.age sex marital

21384 10149.01 NE 1 1 1 85 (64,104] 2 3
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35973 17154.02 NE 1 2 2 78 (64,104] 1 2

11774 5628.01 NO 2 1 1 48 (44,54] 1 3

32127 15319.01 S 1 2 2 78 (64,104] 1 2

6301 2973.05 S 2 5 >=5 17 [16,34] 1 1

12990 6206.02 C 2 2 2 28 [16,34] 2 2

edu7 n.income c.neti ww age.don labour5

21384 3 1677 (0,10] 3591.8939 85 4

35973 3 13520 (10,15] 415.1592 78 4

11774 3 20000 (15,20] 2735.4029 48 2

32127 1 12428 (10,15] 1239.5086 78 5

6301 1 0 (-Inf,0] 5362.7588 17 3

12990 5 0 (-Inf,0] 2077.7137 28 3

The function rankNND.hotdeck allows for constrained and unconstrained matching in
the same manner as in NND.hotdeck. It is also possible to define some donation classes
(argument don.class), in this case the empirical cumulative distribution is estimated
separately class by class.

> # distance computed on the percentage points of ecdf of "age"

> # computed separately by "sex"

> rnk.2 <- rankNND.hotdeck(data.rec=samp.A, data.don=samp.B, var.rec="age",

+ var.don="age", don.class="sex",

+ constrained=TRUE, constr.alg="Hungarian")

> fA.grnk <- create.fused(data.rec=samp.A, data.don=samp.B,

+ mtc.ids=rnk.2$mtc.ids,

+ z.vars="labour5",

+ dup.x=TRUE, match.vars="age")

> head(fA.grnk)

HH.P.id area5 urb hsize hsize5 age c.age sex marital

35973 17154.02 NE 1 2 2 78 (64,104] 1 2

11774 5628.01 NO 2 1 1 48 (44,54] 1 3

32127 15319.01 S 1 2 2 78 (64,104] 1 2

6301 2973.05 S 2 5 >=5 17 [16,34] 1 1

27740 13206.01 NO 1 3 3 61 (54,64] 1 2

21483 10198.01 NE 2 1 1 54 (44,54] 1 2

edu7 n.income c.neti ww age.don labour5

35973 3 13520 (10,15] 415.1592 78 4

11774 3 20000 (15,20] 2735.4029 48 1

32127 1 12428 (10,15] 1239.5086 78 4

6301 1 0 (-Inf,0] 5362.7588 17 5

27740 3 22823 (20,25] 277.9246 62 4

21483 3 0 (-Inf,0] 985.7281 55 1

In estimating the empirical cumulative distribution it is possible to consider the units’
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weights (arguments weight.rec and weight.don). This topic will be tackled in Section
5.

3.4 Using functions in StatMatch to impute missing values in a survey

All the functions in StatMatch that implement the hot deck imputation techniques can
be used to impute missing values in a single data set. In this case it is necessary to:

1. separate the observations in two data sets: the file A plays the role of recipient
and will contain the units with missing values on the target variable, while the file
B is the donor and will contain all the available donors (units with non missing
values for the target variable).

2. Fill in the missing values in the recipient by means of an hot deck imputation
technique.

3. Join recipient and donor file.

In the following a simple example with the iris data.frame is reported. Distance hot
deck is used to fill missing values in the recipient.

> # step 0) introduce missing values in iris

> data(iris, package="datasets")

> set.seed(1324)

> miss <- rbinom(150, 1, 0.30) #generates randomly missing

> iris.miss <- iris

> iris.miss$Petal.Length[miss==1] <- NA

> summary(iris.miss$Petal.L)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

1.1 1.6 4.3 3.8 5.1 6.9 46

> #

> # step 1) separate units in two data sets

> rec <- subset(iris.miss, is.na(Petal.Length), select=-Petal.Length)

> don <- subset(iris.miss, !is.na(Petal.Length))

> #

> # step 2) search for closest donors

> X.mtc <- c("Sepal.Length", "Sepal.Width", "Petal.Width")

> nnd <- NND.hotdeck(data.rec=rec, data.don=don,

+ match.vars=X.mtc, don.class="Species",

+ dist.fun="Manhattan")

Warning: The Manhattan distance is being used

All the categorical matching variables in rec and don

data.frames, if present are recoded into dummies
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> # fills rec

> imp.rec <- create.fused(data.rec=rec, data.don=don,

+ mtc.ids=nnd$mtc.ids, z.vars="Petal.Length")

> imp.rec$imp.PL <- 1 # flag for imputed

> #

> # step 3) re-aggregate data sets

> don$imp.PL <- 0

> imp.iris <- rbind(imp.rec, don)

> #summary stat of imputed and non imputed Petal.Length

> tapply(imp.iris$Petal.Length, imp.iris$imp.PL, summary)

$`0`

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.1 1.6 4.3 3.8 5.1 6.9

$`1`

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.300 1.425 4.200 3.591 5.100 6.700

4 Mixed methods

A SM mixed method consists of two steps: (1) a model is fitted and all its parameters are
estimated, then (2) a nonparametric approach is used to create the synthetic data set.
The model is more parsimonious while the nonparametric approach offers “protection”
against model misspecification. The implemented mixed approaches for SM are based
essentially on predictive mean matching imputation methods (see D’Orazio et al. 2006b,
Section 2.5 and 3.6). In particular, the function mixed.mtc in StatMatch can use two
similar mixed methods that manage variables (XM , Y, Z) following the the multivariate
normal distribution. The main difference is in step (1) when estimating the parameters
of the two regressions Y vs. XM and Z vs. XM . By default the parameters are estimated
through maximum likelihood (argument method="ML" in mixed.mtc); in alternative a
method proposed by Moriarity and Scheuren (2001, 2003) (argument method="MS") is
available. At the end of the step (1), the data set A is filled in with the “intermediate”
values z̃a = ẑa + ea (a = 1, . . . , nA) obtained by adding a random residual term ea to the
predicted values ẑa. The same happens in B which is filled in with the values ỹb = ŷb+eb
(b = 1, . . . , nB).

In the step (2) each record in A is filled in with the value of Z observed on the donor
found in B according to a constrained distance hot deck; the Mahalanobis distance is
computed by considering the intermediate and live values: couples (ya, z̃a) in A and
(ỹb, zb) in B.

Such a two steps procedure presents various advantages: it offers protection against
model misspecification and at the same time reduces the risk of bias in the marginal
distribution of the imputed variable because the distances are computed on intermediate
and truly observed values of the target value instead of the matching variables XM . In
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fact, when computing distances on many matching variables, the variables with low
predictive power on the target variable may influence negatively the distances.

D’Orazio et al. (2005) compared the two alternative methods based in an exten-
sive simulation study: in general ML tends to perform better, moreover it permits to
avoid some incoherencies in the estimation of the parameters that can happen with the
Moriarity and Scheuren approach.

In the following example the iris data set is used just to show how mixed.mtc works.

> # uses iris data set

> iris.A <- iris[101:150, 1:3]

> iris.B <- iris[1:100, c(1:2,4)]

> X.mtc <- c("Sepal.Length","Sepal.Width") # matching variables

> # parameters estimated using ML

> mix.1 <- mixed.mtc(data.rec=iris.A, data.don=iris.B, match.vars=X.mtc,

+ y.rec="Petal.Length", z.don="Petal.Width",

+ method="ML", rho.yz=0,

+ micro=TRUE, constr.alg="Hungarian")

> mix.1$mu #estimated means

Sepal.Length Sepal.Width Petal.Length Petal.Width

5.843333 3.057333 4.996706 1.037109

> mix.1$cor #estimated cor. matrix

Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length 1.0000000 -0.1175698 0.9131794 0.8490516

Sepal.Width -0.1175698 1.0000000 -0.0992586 -0.4415012

Petal.Length 0.9131794 -0.0992586 1.0000000 0.7725288

Petal.Width 0.8490516 -0.4415012 0.7725288 1.0000000

> head(mix.1$filled.rec) # A filled in with Z

Sepal.Length Sepal.Width Petal.Length Petal.Width

101 6.3 3.3 6.0 0.2

102 5.8 2.7 5.1 1.3

103 7.1 3.0 5.9 1.7

104 6.3 2.9 5.6 1.4

105 6.5 3.0 5.8 1.5

106 7.6 3.0 6.6 1.8

> cor(mix.1$filled.rec)

Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length 1.0000000 0.45722782 0.8642247 0.47606997

Sepal.Width 0.4572278 1.00000000 0.4010446 -0.01582276

Petal.Length 0.8642247 0.40104458 1.0000000 0.34391854

Petal.Width 0.4760700 -0.01582276 0.3439185 1.00000000
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When using mixed.mtc the synthetic data set is provided in output as the compo-
nent filled.rec of the list returned by calling it with the argument micro=TRUE. When
micro=FALSE the function mixed.mtc returns just the estimates of the parameters (para-
metric macro approach).

The function mixed.mtc by default performs mixed SM under the CI assumption
(ρY Z|XM

= 0 argument rho.yz=0). When some additional auxiliary information about
the correlation between Y and Z is available (estimates from previous surveys or form
external sources) then it can be exploited in SM by specifying a value (6= 0) for the
argument rho.yz; it represents a guess for ρY Z|XM

when using the ML estimation, or a
guess for ρY Z when estimating the parameters via the Moriarity and Scheuren approach.

> # parameters estimated using ML and rho_YZ|X=0.85

> mix.2 <- mixed.mtc(data.rec=iris.A, data.don=iris.B, match.vars=X.mtc,

+ y.rec="Petal.Length", z.don="Petal.Width",

+ method="ML", rho.yz=0.85,

+ micro=TRUE, constr.alg="Hungarian")

> mix.2$cor

Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length 1.0000000 -0.1175698 0.9131794 0.8490516

Sepal.Width -0.1175698 1.0000000 -0.0992586 -0.4415012

Petal.Length 0.9131794 -0.0992586 1.0000000 0.9113867

Petal.Width 0.8490516 -0.4415012 0.9113867 1.0000000

> head(mix.2$filled.rec)

Sepal.Length Sepal.Width Petal.Length Petal.Width

101 6.3 3.3 6.0 1.5

102 5.8 2.7 5.1 1.2

103 7.1 3.0 5.9 1.6

104 6.3 2.9 5.6 1.4

105 6.5 3.0 5.8 1.5

106 7.6 3.0 6.6 1.5

Special attention is required when specifying a guess for ρY Z under the Moriarity
and Scheuren estimation approach (method="MS"); in particular it may happen that the
specified value for ρY Z is not compatible with the given SM framework (the correlation
matrix must be positive semidefinite). If this is the case, then mixed.mtc substitutes the
input value of rho.yz by its closest admissible value, as shown in the following example.

> mix.3 <- mixed.mtc(data.rec=iris.A, data.don=iris.B, match.vars=X.mtc,

+ y.rec="Petal.Length", z.don="Petal.Width",

+ method="MS", rho.yz=0.75,

+ micro=TRUE, constr.alg="Hungarian")
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input value for rho.yz is 0.75

low(rho.yz)= -0.1662

up(rho.yz)= 0.5565

Warning: value for rho.yz is not admissible: a new value is chosen for it

The new value for rho.yz is 0.5465

> mix.3$rho.yz

start low.lim up.lim used

0.7500 -0.1662 0.5565 0.5465

5 Statistical matching of data from complex sample surveys

The SM techniques presented in the previous Sections implicitly or explicitly assume
that the observed values in A and B are i.i.d. Unfortunately, when dealing with samples
selected from a finite population by means of complex sampling designs (with stratifica-
tion, clustering, etc.) it is difficult to maintain the i.i.d. assumption: it would mean that
the sampling design can be ignored. If this is not the case, inferences have to account for
sampling design and the weights assigned to the units (usually design weights corrected
for unit nonresponse, frame errors, etc.) (see Särndal et al., 1992, Section 13.6).

5.1 Naive micro approaches

A naive approach to SM of data from complex sample surveys consists in applying
nonparametric micro methods (NND, random or rank hot deck) without considering the
design nor the units weights. Once obtained the synthetic dataset (recipient filled in with
the missing variables) the successive statistical analyses are carried out by considering the
sampling design underlying the recipient data set and the corresponding survey weights.
In the following a simple example applying nearest neighbor hot deck is reported.

> # summary info on the weights

> sum(samp.A$ww) # estimated pop size from A

[1] 5094952

> sum(samp.B$ww) # estimated pop size from B

[1] 5157582

> summary(samp.A$ww)

Min. 1st Qu. Median Mean 3rd Qu. Max.

122.2 774.9 1417.0 1693.0 2283.0 8192.0

> summary(samp.B$ww)
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Min. 1st Qu. Median Mean 3rd Qu. Max.

55.49 361.70 660.50 771.40 1042.00 3759.00

> # NND constrained hot deck

> group.v <- c("sex","area5")

> out.nnd <- NND.hotdeck(data.rec=samp.A, data.don=samp.B,

+ match.vars="age", don.class=group.v,

+ dist.fun="Manhattan",

+ constrained=TRUE, constr.alg="Hungarian")

Warning: The Manhattan distance is being used

All the categorical matching variables in rec and don

data.frames, if present are recoded into dummies

> fA.nnd.m <- create.fused(data.rec=samp.A, data.don=samp.B,

+ mtc.ids=out.nnd$mtc.ids,

+ z.vars="labour5")

> # estimating distribution of labour5 using weights

> t1 <- xtabs(ww~labour5, data=fA.nnd.m) # imputed in A

> t2 <- xtabs(ww~labour5, data=samp.B) # ref. estimate in B

> c1 <- comp.prop(p1=t1, p2=t2, n1=nrow(fA.nnd.m), ref=TRUE)

> c1$meas

tvd overlap Bhatt Hell

0.01964716 0.98035284 0.99975978 0.01549889

As far as imputation of missing values is concerned, a way of taking into account the
sampling design can be in forming the donation classes by using the design variables
(stratification and/or clustering variables) jointly with the most relevant common vari-
ables (Andridge and Little, 2010). Unfortunately in SM this can increase the complexity
or may be unfeasible because the design variables may not be available or may be partly
available. Moreover, the two sample surveys may have quite different designs and the
design variables used in one survey maybe not available in the other one and vice versa.

When imputing missing values in a survey, another possibility, consists in using sam-
pling weights (design weights) to form the donation classes (Andridge and Little, 2010).
But again, in SM applications the problem can be slightly more complex even because
the sets of weights can be quite different from one survey to the other (usually the avail-
able weights are the design weights corrected to compensate for unit nonresponse, to
satisfy some given constraints etc.). The same Authors (Andridge and Little, 2010) in-
dicate that when imputing the missing values, the selection of the donors can be carried
out with probability proportional to weights associated to the donors (weighted random
hot deck). This feature is implemented in RANDwNDD.hotdeck when the weight.don

argument to pass the name of the weighting variable.

> group.v <- c("sex","area5")

> rnd.2 <- RANDwNND.hotdeck(data.rec=samp.A, data.don=samp.B,
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+ match.vars=NULL, don.class=group.v,

+ weight.don="ww")

> fA.wrnd <- create.fused(data.rec=samp.A, data.don=samp.B,

+ mtc.ids=rnd.2$mtc.ids,

+ z.vars="labour5")

> # comparing marginal distribution of labour5 using weights

> tt.0w <- xtabs(ww~labour5, data=samp.B)

> tt.fw <- xtabs(ww~labour5, data=fA.wrnd)

> c1 <- comp.prop(p1=tt.fw, p2=tt.0w, n1=nrow(fA.wrnd), ref=TRUE)

> c1$meas

tvd overlap Bhatt Hell

0.02129280 0.97870720 0.99972761 0.01650429

The function rankNND.hotdeck can use the units’ weights (wi) in estimating the
percentage points of the the empirical cumulative distribution function:

F̂ (x) =

∑n
i=1wiI (xi ≤ x)∑n

i=1wi

In the following it is reported an very simple example with constrained rank hot deck.

> rnk.w <- rankNND.hotdeck(data.rec=samp.A, data.don=samp.B,

+ don.class="area5", var.rec="age",

+ var.don="age", weight.rec="ww",

+ weight.don="ww", constrained=TRUE,

+ constr.alg="Hungarian")

> #

> #create the synthetic data set

> fA.wrnk <- create.fused(data.rec=samp.A, data.don=samp.B,

+ mtc.ids=rnk.w$mtc.ids,

+ z.vars="labour5",

+ dup.x=TRUE, match.vars="age")

> # comparing marginal distribution of labour5 using weights

> tt.0w <- xtabs(ww~labour5, data=samp.B)

> tt.fw <- xtabs(ww~labour5, data=fA.wrnk)

> c1 <- comp.prop(p1=tt.fw, p2=tt.0w, n1=nrow(fA.wrnk), ref=TRUE)

> c1$meas

tvd overlap Bhatt Hell

0.01872254 0.98127746 0.99973907 0.01615326

D’Orazio et al. (2012) compared several naive procedures. In general, when rank and
random hot deck procedures use the weights, as shown before, they tend to perform
quite well in terms of preservation of the marginal distribution of the imputed variable
Z and of the joint distribution X × Z in the synthetic data set. The nearest neighbour
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donor, performs well only when constrained matching is used and a design variable (used
in stratification) is considered in forming donation classes.

5.2 Statistical matching method that account explicitly for the sampling
weights

In literature there are few SM methods that explicitly take into account the sampling
design and the corresponding sampling weights: Renssen’s approach based on weights’
calibrations (Renssen, 1998); Rubin’s file concatenation (Rubin, 1986) and the approach
based on the empirical likelihood proposed by Wu (2004). A comparison among these
approaches can be found in D’Orazio et al. (2010).

The package StatMatch provides functions to apply the procedures suggested by
Renssen (1998). Renssen’s approach consists in a series of calibration steps of the survey
weights in A and B in order to achieve consistency between estimates (mainly totals)
computed separately from the two data sources. Calibration is a technique very common
in sample surveys for deriving new weights, as close as possible to the starting ones,
which fulfill a series of constraints concerning totals for a set of auxiliary variables (for
further details on calibration see Särndal, 2005). The Renssen’s approach works well
when dealing with categorical variables or in a mixed case in which the number of
continuous variables is very limited. In the following it will be assumed that all the
variables (XD, Y, Z) are categorical, being XD a complete or an incomplete crossing of
the matching variables XM . The procedure and the functions developed in StatMatch
permits to have one or more continuous variables (better just one) in the subset of the
matching variables XM , while Y and Z can be both categorical or a combination of
them is allowed (Y categorical and Z continuous, or vice versa).

The first step in the Renssen’s procedure consists in calibrating weights in A and in B
such that the new weights when applied to the set of the XD variables allow to reproduce
some known (or estimated) population totals. In StatMatch the harmonization step
can be performed by using harmonize.x. This function performs weights calibration (or
post-stratification) by means of functions available in the R package survey (Lumley,
2004 and 2014). When the population totals are already known then they have to be
passed to harmonize.x via the argument x.tot; on the contrary, when they are unknown
(x.tot=NULL) they are estimated by a weighted average of the totals estimated on the
two surveys before the harmonization step:

t̃XD
= λt̂

(A)
XD

+ (1− λ) t̂
(B)
XD

being λ = nA/(nA + nB) (nA and nB are the sample sizes of A and B respectively)
(Korn and Graubard, 1999, pp. 281–284).

The following example shows how to harmonize the joint distribution of the gender
and classes of age with the data from the previous example, assuming that the joint
distribution of age and gender is not known in advance.

> tt.A <- xtabs(ww~sex+c.age, data=samp.A)

> tt.B <- xtabs(ww~sex+c.age, data=samp.B)
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> (prop.table(tt.A)-prop.table(tt.B))*100

c.age

sex [16,34] (34,44] (44,54] (54,64] (64,104]

1 -0.01897392 -0.64897955 1.33820068 -1.17082477 -0.04332117

2 0.53926387 -0.13999008 -0.22698122 0.72274725 -0.35114110

> comp.prop(p1=tt.A, p2=tt.B, n1=nrow(samp.A),

+ n2=nrow(samp.B), ref=FALSE)

$meas

tvd overlap Bhatt Hell

0.02600212 0.97399788 0.99931620 0.02614962

$chi.sq

Pearson df q0.05 delta.h0

11.3311924 9.0000000 16.9189776 0.6697327

$p.exp

c.age

sex [16,34] (34,44] (44,54] (54,64] (64,104]

1 0.11982616 0.10203271 0.09082844 0.06953352 0.10327752

2 0.11640939 0.09715433 0.08531810 0.07641245 0.13920738

> library(survey, warn.conflicts=FALSE) # loads survey

> # creates svydesign objects

> svy.samp.A <- svydesign(~1, weights=~ww, data=samp.A)

> svy.samp.B <- svydesign(~1, weights=~ww, data=samp.B)

> #

> # harmonizes wrt to joint distr. of gender vs. c.age

> out.hz <- harmonize.x(svy.A=svy.samp.A, svy.B=svy.samp.B,

+ form.x=~c.age:sex-1)

> #

> summary(out.hz$weights.A) # new calibrated weights for A

Min. 1st Qu. Median Mean 3rd Qu. Max.

124.5 787.6 1435.0 1708.0 2318.0 8230.0

> summary(out.hz$weights.B) # new calibrated weights for B

Min. 1st Qu. Median Mean 3rd Qu. Max.

54.22 360.70 659.60 768.50 1040.00 3870.00

> tt.A <- xtabs(out.hz$weights.A~sex+c.age, data=samp.A)

> tt.B <- xtabs(out.hz$weights.B~sex+c.age, data=samp.B)
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> c1 <- comp.prop(p1=tt.A, p2=tt.B, n1=nrow(samp.A),

+ n2=nrow(samp.B), ref=FALSE)

> c1$meas

tvd overlap Bhatt Hell

8.326673e-17 1.000000e+00 1.000000e+00 0.000000e+00

The second step in the Renssen’s procedure consists in estimating the the joint dis-
tribution Y and Z; in practice, when they both are categorical variables of two-way
contingency table Y × Z is the target of estimation; on the contrary, in the mixed case,
the objective is the estimation of the total of the continuous variable for each category
of the categorical one. When Y and Z are both categorical variables, in absence of
auxiliary information, the two-way contingency table Y × Z is estimated under the CI
assumption by means of:

P̂
(CIA)
(Y=j,Z=k) = P̂

(A)
Y=j|XD=i × P̂

(B)
Z=k|XD=i × P̂XD=i

for i = 1, . . . , I; j = 1, . . . , J ; K = 1, . . . ,K;

In practice, P̂
(A)
Y=j|XD=i is computed from A; P̂

(B)
Z=k|XD=i is computed from data in B

while PXD=i can be estimated indifferently from A or B (the data set are harmonized
with respect to the XD distribution).

In StatMatch an estimate of the table Y × Z under the CIA is provided by the
function comb.samples.

> # estimating c.netI vs. labour5 under the CI assumption

> out <- comb.samples(svy.A=out.hz$cal.A, svy.B=out.hz$cal.B,

+ svy.C=NULL, y.lab="c.neti", z.lab="labour5",

+ form.x=~c.age:sex-1)

> #

> addmargins(t(out$yz.CIA)) # table estimated under the CIA

(-Inf,0] (0,10] (10,15] (15,20] (20,25] (25,35]

1 371437.37 300036.37 274311.45 330113.82 211281.36 214834.05

2 66423.86 72968.22 72975.95 97978.40 62237.15 68317.71

3 77131.99 52710.28 46296.31 47966.68 28773.09 29169.28

4 71486.63 321060.02 252077.13 189783.80 88163.94 94066.02

5 396817.21 402085.73 270202.33 176110.31 110621.43 86631.14

Sum 983297.07 1148860.62 915863.16 841953.00 501076.98 493018.19

(35, Inf] Sum

1 105304.98 1807319.4

2 35320.81 476222.1

3 12929.49 294977.1

4 57905.82 1074543.4

5 42613.70 1485081.8

Sum 254074.80 5138143.8
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When some auxiliary information is available, e.g. a third data source C, containing
all the variables (XM , Y, Z) or just (Y,Z), the Renssen’s approach permits to exploit it
in estimating Y × Z. Two alternative methods are available: (a) incomplete two-way
stratification; and (b) synthetic two-way stratification. In practice, both the methods es-
timate Y ×Z from C after some further calibration steps (for further details see Renssen,
1998). The function comb.samples implements both the methods. In practice, the syn-
thetic two-way stratification (argument estimation="synthetic") can be applied only
when C contains all the variables of interest (XM , Y, Z); on the contrary, when the data
source C observes just Y and Z, only the incomplete two-way stratification method can
be applied (argument estimation="incomplete"). In the following a simple example is
reported based on the artificial EU-SILC data introduced in Section 2.1; here a relatively
small sample C (nC = 980) with all the variables of interest (XM , Y, Z) is considered.

> data(samp.C, package="StatMatch")

> str(samp.C)

'data.frame': 980 obs. of 14 variables:

$ HH.P.id : chr "14873.01" "396.02" "8590.01" "9829.02" ...

$ area5 : Factor w/ 5 levels "NE","NO","C",..: 3 4 1 3 4 3 3 2 1 3 ...

$ urb : Factor w/ 3 levels "1","2","3": 3 1 3 2 2 1 2 1 2 2 ...

$ hsize : int 3 2 4 4 3 3 2 2 1 4 ...

$ hsize5 : Factor w/ 5 levels "1","2","3","4",..: 3 2 4 4 3 3 2 2 1 4 ...

$ age : num 57 30 50 52 34 74 44 68 69 20 ...

$ c.age : Factor w/ 5 levels "[16,34]","(34,44]",..: 4 1 3 3 1 5 2 5 5 1 ...

$ sex : Factor w/ 2 levels "1","2": 2 2 1 2 1 2 2 2 1 1 ...

$ marital : Factor w/ 3 levels "1","2","3": 2 2 1 2 1 2 2 2 1 1 ...

$ edu7 : Factor w/ 7 levels "0","1","2","3",..: 5 5 4 3 5 1 6 4 4 3 ...

$ labour5 : Factor w/ 5 levels "1","2","3","4",..: 1 5 2 1 2 5 5 5 4 5 ...

$ n.income: num 21992 5500 12000 19655 14117 ...

$ c.neti : Factor w/ 7 levels "(-Inf,0]","(0,10]",..: 5 2 3 4 3 1 1 1 3 1 ...

$ ww : num 5283 8263 393 4320 3095 ...

> #

> svy.samp.C <- svydesign(~1, weights=~ww, data=samp.C)

> #

> # incomplete two-way estimation

> out.inc <- comb.samples(svy.A=out.hz$cal.A, svy.B=out.hz$cal.B,

+ svy.C=svy.samp.C, y.lab="c.neti",

+ z.lab="labour5", form.x=~c.age:sex-1,

+ estimation="incomplete")

> addmargins(t(out.inc$yz.est))

c.neti

labour5 (-Inf,0] (0,10] (10,15] (15,20]

1 7243.513 185219.341 381495.050 515181.965
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2 15874.055 72106.516 82623.354 58809.307

3 155118.209 97829.755 12867.523 5343.608

4 17683.292 339365.095 258388.148 206553.507

5 787378.002 454339.908 180489.087 56064.617

Sum 983297.071 1148860.615 915863.161 841953.003

c.neti

labour5 (20,25] (25,35] (35, Inf] Sum

1 283962.924 338163.812 96052.788 1807319.392

2 65135.801 77292.219 104380.850 476222.101

3 6191.702 17626.324 0.000 294977.120

4 140799.992 59935.831 51817.497 1074543.361

5 4986.563 0.000 1823.668 1485081.846

Sum 501076.980 493018.185 254074.803 5138143.820

The incomplete two-way stratification method estimates the table Y × Z from C by
preserving the marginal distribution of Y and of Z estimated respectively from A and
from B after the initial harmonization step; on the contrary, the joint distribution of the
matching variables (which is the basis of the harmonization step) is not preserved.

> new.ww <- weights(out.inc$cal.C) #new cal. weights for C

> #

> # marginal distributions of c.neti

> m.work.cA <- xtabs(out.hz$weights.A~c.neti, data=samp.A)

> m.work.cC <- xtabs(new.ww~c.neti, data=samp.C)

> m.work.cA-m.work.cC

c.neti

(-Inf,0] (0,10] (10,15] (15,20]

0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

(20,25] (25,35] (35, Inf]

0.000000e+00 -5.820766e-11 0.000000e+00

> #

> # marginal distributions of labour5

> m.cnetI.cB <- xtabs(out.hz$weights.B~labour5, data=samp.B)

> m.cnetI.cC <- xtabs(new.ww~labour5, data=samp.C)

> m.cnetI.cB-m.cnetI.cC

labour5

1 2 3 4 5

4.656613e-10 5.820766e-11 0.000000e+00 0.000000e+00 0.000000e+00

> # joint distribution of the matching variables

> tt.A <- xtabs(out.hz$weights.A~sex+c.age, data=samp.A)

> tt.B <- xtabs(out.hz$weights.B~sex+c.age, data=samp.B)
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> tt.C <- xtabs(new.ww~sex+c.age, data=samp.C)

> c1 <- comp.prop(p1=tt.A, p2=tt.B, n1=nrow(samp.A),

+ n2=nrow(samp.B), ref=FALSE)

> c2 <- comp.prop(p1=tt.C, p2=tt.A, n1=nrow(samp.C),

+ n2=nrow(samp.A), ref=FALSE)

> c1$meas

tvd overlap Bhatt Hell

8.326673e-17 1.000000e+00 1.000000e+00 0.000000e+00

> c2$meas

tvd overlap Bhatt Hell

0.07017944 0.92982056 0.99689740 0.05570102

As said before, the synthetic two-way stratification (argument estimation="synthetic")
requires that the auxiliary data source C contains the matching variables XM and the
target variables Y and Z.

> # synthetic two-way estimation

> out.synt <- comb.samples(svy.A=out.hz$cal.A, svy.B=out.hz$cal.B,

+ svy.C=svy.samp.C, y.lab="c.neti",

+ z.lab="labour5", form.x=~c.age:sex-1,

+ estimation="synthetic")

> #

> addmargins(t(out.synt$yz.est))

c.neti

labour5 (-Inf,0] (0,10] (10,15] (15,20]

1 6413.645 185135.215 380521.561 512500.700

2 10885.563 57412.300 87158.242 75001.590

3 153869.170 98916.807 14426.512 8600.865

4 16443.459 333130.110 275594.544 198336.224

5 795685.234 474266.183 158162.302 47513.625

Sum 983297.071 1148860.615 915863.161 841953.003

c.neti

labour5 (20,25] (25,35] (35, Inf] Sum

1 303097.057 330025.366 89625.848 1807319.392

2 68339.486 76460.339 100964.582 476222.101

3 5661.756 13502.009 0.000 294977.120

4 116257.994 73030.471 61750.559 1074543.361

5 7720.688 0.000 1733.814 1485081.846

Sum 501076.980 493018.185 254074.803 5138143.820

As in the case of incomplete two-way stratification, also the synthetic two-way strat-
ification derives the table Y × Z from C by preserving the marginal distribution of Y
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and of Z estimated respectively from A and from B after the initial harmonization step;
on the contrary, the joint distribution of the matching variables (which is the basis of
the harmonization step) is still not preserved.

It is worth noting that comb.samples can also be used for micro imputation. In
particular, when the argument micro is set to TRUE the function returns also the two
data frames Z.A and Y.B. The first ones has the same rows as svy.A and predicted
values for the Z variables; note that when Z is categorical then Z.A will have a number
of columns equals the number of categories of the Z variable (specified via z.lab); in
this case, each row provides the estimated probabilities for a unit of assuming a value
in the various categories. The same happens for Y.B that with a categorical Y variable
will provide the estimated probabilities of assuming a category of y.lab for each unit in
B. The predictions are obtained as a by-product of the whole procedure which is based
on the usage of the linear probability models (for major details see Renssen, 1998). The
procedure corresponds to a regression imputation that, when dealing with all categorical
variables (XD, Y, Z), provides a synthetic data set (A filled in with Z) which preserves the
marginal distribution of the Z variable and the joint distribution X×Z. Unfortunately,
linear probability models have some well known drawbacks and may provide estimated
probabilities less than 0 or greater than 1. For this reason, such predictions should be
used carefully.

> # predicting prob of labour5 in A under the CI assumption

> out <- comb.samples(svy.A=out.hz$cal.A, svy.B=out.hz$cal.B,

+ svy.C=NULL, y.lab="c.neti", z.lab="labour5",

+ form.x=~c.age:sex-1, micro=TRUE)

> head(out$Z.A)

labour51 labour52 labour53 labour54

21384 0.005895738 0.009457258 0.0005925546 5.060136e-01

35973 0.014861567 0.049402931 0.0014012439 8.649132e-01

11774 0.606176690 0.257693834 0.0610535722 2.369977e-02

32127 0.014861567 0.049402931 0.0014012439 8.649132e-01

6301 0.439783594 0.094976579 0.1220299990 0.000000e+00

12990 0.334682265 0.030621139 0.1043395013 1.727712e-20

labour55

21384 0.47804089

35973 0.06942110

11774 0.05137614

32127 0.06942110

6301 0.34320983

12990 0.53035709

> sum(out$Z.A<0) # negative est. prob.

[1] 0
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> sum(out$Z.A>1) # est. prob. >1

[1] 0

> # compare marginal distributions of Z

> t.zA <- colSums(out$Z.A * out.hz$weights.A)

> t.zB <- xtabs(out.hz$weights.B ~ samp.B$labour5)

> c1 <- comp.prop(p1=t.zA, p2=t.zB, n1=nrow(samp.A), ref=TRUE)

> c1$meas

tvd overlap Bhatt Hell

2.185752e-16 1.000000e+00 1.000000e+00 1.053671e-08

D’orazio et al. (2012) suggest using a randomization mechanism to derive the predicted
category starting from the estimated probabilities.

> # predicting categories of labour5 in A

> # randomized prediction with prob proportional to estimated prob.

> pps1 <- function(x) sample(x=1:length(x), size=1, prob=x)

> pred.zA <- apply(out$Z.A, 1, pps1)

> samp.A$labour5 <- factor(pred.zA, levels=1:nlevels(samp.B$labour5),

+ labels=as.character(levels(samp.B$labour5)),

+ ordered=T)

> # comparing marginal distributions of Z

> t.zA <- xtabs(out.hz$weights.A ~ samp.A$labour5)

> c1 <- comp.prop(p1=t.zA, p2=t.zB, n1=nrow(samp.A), ref=TRUE)

> c1$meas

tvd overlap Bhatt Hell

0.01281817 0.98718183 0.99985951 0.01185287

> # comparing joint distributions of X vs. Z

> t.xzA <- xtabs(out.hz$weights.A~c.age+sex+labour5, data=samp.A)

> t.xzB <- xtabs(out.hz$weights.B~c.age+sex+labour5, data=samp.B)

> out.comp <- comp.prop(p1=t.xzA, p2=t.xzB, n1=nrow(samp.A), ref=TRUE)

> out.comp$meas

tvd overlap Bhatt Hell

0.04682085 0.95317915 0.99739102 0.05107817

> out.comp$chi.sq

Pearson df q0.05 delta.h0

66.305895 46.000000 62.829620 1.055329
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6 Exploring uncertainty due to the statistical matching
framework

When the objective of SM consists in estimating a parameter (macro approach) it is
possible to tackle SM in an alternative way consisting in the “exploration” of the un-
certainty on the model chosen for (XM , Y, Z), due to the lack of knowledge typical of
the basic SM framework (no auxiliary information is available). This approach does not
end with a unique estimate of the unknown parameter characterizing the joint p.d.f.
for (XD, Y, Z); on the contrary it identifies an interval of plausible values for it. When
dealing with categorical variables, the estimation of the intervals of plausible values for
the probabilities in the table Y × Z are provided by the Fréchet bounds:

max{0;PY=j + PZ=k − 1} ≤ PY=j,Z=k ≤ min{PY=j ;PZ=k}

for j = 1, . . . , J and k = 1, . . . ,K, being J and K the categories of Y and Z respectively.
Let consider the matching variables XM , for sake of simplicity let assume that XD is

the variable obtained by the crossproduct of the chosen XM variables; by conditioning
on XD, it is possible to derive the following result (D’Orazio et al., 2006a):

P
(low)
j,k ≤ PY=j,Z=k ≤ P

(up)
j,k

with

P
(low)
j,k =

∑
i

PXD=i ×max
{

0;PY=j|XD=i + PZ=k|XD=i − 1
}

P
(up)
j,k =

∑
i

PXD=i ×min
{
PY=j|XD=i;PZ=k|XD=i

}
for j = 1, . . . , J and k = 1, . . . ,K. It is interesting to observe that the CIA estimate of
PY=j,Z=k is always included in the interval identified by such bounds:

P
(low)
j,k ≤ P

(CIA)
Y=j,Z=k ≤ P

(up)
j,k

In the SM basic framework, the probabilities PY=j|XD=i are estimated from A, the
PZ=k|XD=i are estimated fromB, while the marginal distribution PXD=i can be estimated
indifferently on A or on B, assuming that both the samples, being representative samples
of the same population, provide not significantly different estimates of P (XM = i). If
this is not the case, before computing the bounds it would be preferable to harmonize
the distribution of XD in A and in B by using the function harmonize.x.

In StatMatch the Fréchet bounds for PY=j,Z=k (j = 1, . . . , J and k = 1, . . . ,K),
conditioned or not on XD, are provided by Frechet.bounds.cat.

> #comparing joint distribution of the X_M variables in A and in B

> t.xA <- xtabs(ww~c.age+sex, data=samp.A)

> t.xB <- xtabs(ww~c.age+sex, data=samp.B)

> comp.prop(p1=t.xA, p2=t.xB, n1=nrow(samp.A), n2=nrow(samp.B), ref=FALSE)
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$meas

tvd overlap Bhatt Hell

0.02600212 0.97399788 0.99931620 0.02614962

$chi.sq

Pearson df q0.05 delta.h0

11.3311924 9.0000000 16.9189776 0.6697327

$p.exp

sex

c.age 1 2

[16,34] 0.11982616 0.11640939

(34,44] 0.10203271 0.09715433

(44,54] 0.09082844 0.08531810

(54,64] 0.06953352 0.07641245

(64,104] 0.10327752 0.13920738

> #

> #computing tables needed by Frechet.bounds.cat

> t.xy <- xtabs(ww~c.age+sex+c.neti, data=samp.A)

> t.xz <- xtabs(ww~c.age+sex+labour5, data=samp.B)

> out.fb <- Frechet.bounds.cat(tab.x=t.xA, tab.xy=t.xy, tab.xz=t.xz,

+ print.f="data.frame")

> out.fb

$bounds

c.neti labour5 low.u low.cx CIA up.cx

1 (-Inf,0] 1 0 0.000000000 0.072955769 0.15583196

2 (0,10] 1 0 0.000000000 0.058667109 0.13291141

3 (10,15] 1 0 0.000000000 0.053322867 0.11844631

4 (15,20] 1 0 0.000000000 0.064228962 0.12824327

5 (20,25] 1 0 0.000000000 0.041285116 0.08707527

6 (25,35] 1 0 0.000000000 0.042007648 0.08373295

7 (35, Inf] 1 0 0.000000000 0.020391749 0.04384385

8 (-Inf,0] 2 0 0.000000000 0.013051237 0.04832337

9 (0,10] 2 0 0.000000000 0.014303784 0.06614969

10 (10,15] 2 0 0.000000000 0.014181961 0.07400038

11 (15,20] 2 0 0.000000000 0.019174832 0.09187918

12 (20,25] 2 0 0.000000000 0.012237075 0.07898611

13 (25,35] 2 0 0.000000000 0.013442244 0.08323003

14 (35, Inf] 2 0 0.000000000 0.006855021 0.04639340

15 (-Inf,0] 3 0 0.000000000 0.015199630 0.05208961

16 (0,10] 3 0 0.000000000 0.010322642 0.05764921

17 (10,15] 3 0 0.000000000 0.009021442 0.05764921
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18 (15,20] 3 0 0.000000000 0.009317709 0.05293186

19 (20,25] 3 0 0.000000000 0.005606192 0.04279912

20 (25,35] 3 0 0.000000000 0.005683647 0.04157094

21 (35, Inf] 3 0 0.000000000 0.002497950 0.02785055

22 (-Inf,0] 4 0 0.000000000 0.014036390 0.03750664

23 (0,10] 4 0 0.011470404 0.061883870 0.11696439

24 (10,15] 4 0 0.013592029 0.048337106 0.08659406

25 (15,20] 4 0 0.011761008 0.036233678 0.06187780

26 (20,25] 4 0 0.000000000 0.016727802 0.03625866

27 (25,35] 4 0 0.000000000 0.017674490 0.03391989

28 (35, Inf] 4 0 0.000000000 0.010738718 0.02349429

29 (-Inf,0] 5 0 0.005369394 0.078535703 0.19377873

30 (0,10] 5 0 0.000000000 0.078348934 0.19120282

31 (10,15] 5 0 0.000000000 0.052672002 0.13862751

32 (15,20] 5 0 0.000000000 0.034301754 0.09507185

33 (20,25] 5 0 0.000000000 0.021655115 0.06957876

34 (25,35] 5 0 0.000000000 0.016857678 0.05624648

35 (35, Inf] 5 0 0.000000000 0.008242173 0.03521776

up.u

1 0.19377873

2 0.22352634

3 0.17753538

4 0.16325693

5 0.09751130

6 0.09566571

7 0.04872561

8 0.09243362

9 0.09243362

10 0.09243362

11 0.09243362

12 0.09243362

13 0.09243362

14 0.04872561

15 0.05730261

16 0.05730261

17 0.05730261

18 0.05730261

19 0.05730261

20 0.05730261

21 0.04872561

22 0.19377873

23 0.21068606

24 0.17753538

25 0.16325693
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26 0.09751130

27 0.09566571

28 0.04872561

29 0.19377873

30 0.22352634

31 0.17753538

32 0.16325693

33 0.09751130

34 0.09566571

35 0.04872561

$uncertainty

av.u av.cx

0.1138008 0.0773067

The final component of the output list provided by Frechet.bounds.cat summarizes
the uncertainty by means of the average width of the unconditioned bounds and the
average width of the bounds obtained by conditioning on XD Please note the it would
be preferable to derive the uncertainty bounds after the harmonization of the joint
distribution of the XD variables in the source data sets.

When dealing with continuous variables, if it is assumed that their joint distribution
is multivariate normal, the uncertainty bounds for the correlation coefficient ρY Z can
be obtained by using the function mixed.mtc with argument method="MS". The follow-
ing example assumes multivariate normal distribution holding for joint distribution for
age, gender (the matching variables), the log-transformed personal net income (log of
"netIncome" which plays the role of Y ) and the aggregated personal economic status
(binary variable "work" which plays the role of Z).

> # continuous variables

> samp.A$log.netI <- log(ifelse(samp.A$n.income>0, samp.A$n.income, 0) + 1)

> lab <- as.integer(samp.B$labour5)

> samp.B$work <- factor(ifelse(lab<3, 1, 2)) # binary variable working status

> X.mtc <- c("age", "sex")

> mix.3 <- mixed.mtc(data.rec=samp.A, data.don=samp.B, match.vars=X.mtc,

+ y.rec="log.netI", z.don="work",

+ method="MS")

input value for rho.yz is 0.0601

low(rho.yz)= -0.7808

up(rho.yz)= 0.901

The input value for rho.yz is admissible

When a single X variable is considered, the bounds can be obtained explicitly by using
formula in Section 1.
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