
Spectrum
Christopher R John

2019-07-29

Spectrum is a fast adaptive spectral clustering method for single or multi-view data. Spectrum uses a
density-aware kernel that strengthens local connections in dense regions in the graph. It uses a recently
developed tensor product graph data integration and diffusion procedure for integrating different data sources
and reducing noise (Shu et al., 2016). Spectrum contains the classical eigengap or our multimodality gap
heuristic for determining the number of clusters (K). Spectrum was developed to cluster single and multi-omic
data for precision medicine and molecular biology. However, the method is sufficiently flexible so it can
generalise well to a wide range of Gaussian and non-Gaussian structures with automatic selection of K.

Contents

1. Data types and requirements
2. Single-view clustering: Gaussian blobs
3. Single-view clustering: Brain cancer RNA-seq
4. Single-view clustering: Brain cancer RNA-seq clustering a range of K
5. Multi-view clustering: Brain cancer multi-omics
6. Single-view clustering: Non-Gaussian data, 3 circles
7. Single-view clustering: Non-Gaussian data, spirals
8. Ultra-fast single-view clustering: Gaussian blobs II
9. Parameter settings

10. Code for heatmaps
11. Closing comments
12. References

1. Data types and requirements

• Data must be in a data frame (single-view) or list of data frames (multi-view)
• Data must have samples as columns and rows as features
• Data should be normalised appropiately so the samples are comparable
• Data should be transformed appropiately so different features are comparable
• Data must be on a continuous scale
• For spectral clustering without finding K automatically, set method to 3 and use the fixk parameter
• For more than 10,000 samples, you can Spectrum in ultra-fast mode (section 7)
• Multi-view data must have the same number of samples in each view and column IDs must be in the

same order

2. Single-view clustering: Gaussian blobs

Here we cluster a simulated dataset consisting of several Gaussian blobs. This could represent a number of
real world problems, for example, clustering a single omic data platform (RNA-seq, miRNA-seq, protein, or
single cell RNA-seq). Method 1 is set as the default when using Spectrum which uses the eigengap method to
find K. We recommend this for most Gaussian clustering tasks. Method 2 which uses the multimodality gap
method which can detect K for non-Gaussian structures as well.

1

The first plot will show the eigenvalues, where the greatest gap is used to decide K, the second plot shows the
results from running UMAP on the similarity matrix. We could also run a t-SNE on the similarity matrix at
this stage, by changing the ‘visualisation’ parameter or a PCA by setting the ‘showpca’ parameter to TRUE.
library(Spectrum)
test1 <- Spectrum(blobs,showdimred=TRUE,fontsize=8,dotsize=2)
#> ***Spectrum***
#> detected views: 1
#> method: 1
#> kernel: density
#> calculating kernel 1
#> done.
#> combining kernels if > 1 and making KNN graph...
#> done.
#> diffusing on tensor graph...
#> done.
#> calculating graph laplacian...
#> getting eigendecomposition of L...
#> done.
#> examining eigenvalues to select K...
#> optimal K: 8
#> doing GMM clustering...
#> done.
#> running UMAP on similarity...

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10 11
Eigenvector

E
ig

en
va

lu
e

#> done.
#> finished.

2

−20

−10

0

10

20

−20 −10 0 10 20
X1

X
2

factor(labels)

1

2

3

4

5

6

7

8

Spectrum generates a number of outputs for the user including the cluster each sample is within in the
‘assignments’ vector contained in the results list (see below code). Use a ‘$’ sign to access the results contained
in the list’s elements and for more information, see ?Spectrum. Cluster assignments will be in the same order
as the input data.
names(test1)
#> [1] "assignments" "eigenvector_analysis" "K"
#> [4] "similarity_matrix" "eigendecomposition"

3. Single-view clustering: Brain cancer RNA-seq

Here we cluster a brain cancer RNA-seq dataset with 150 samples again using the eigengap method. The
sample size has been reduced because of the CRAN package guidelines.

The first plot will show the eigenvalues where the greatest gap in used to decide K, the second plot shows the
results from running UMAP on the diffused similarity matrix.
library(Spectrum)
RNAseq <- brain[[1]]
test2 <- Spectrum(RNAseq,showdimred=TRUE,fontsize=8,dotsize=2)
#> ***Spectrum***
#> detected views: 1
#> method: 1
#> kernel: density
#> calculating kernel 1
#> done.
#> combining kernels if > 1 and making KNN graph...
#> done.
#> diffusing on tensor graph...
#> done.
#> calculating graph laplacian...
#> getting eigendecomposition of L...
#> done.
#> examining eigenvalues to select K...
#> optimal K: 6
#> doing GMM clustering...

3

#> done.
#> running UMAP on similarity...

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10 11
Eigenvector

E
ig

en
va

lu
e

#> done.
#> finished.

−7.5

−5.0

−2.5

0.0

2.5

5.0

−4 0 4 8
X1

X
2

factor(labels)

1

2

3

4

5

6

4. Single-view clustering: Brain cancer RNA-seq clustering a range of K

There will be some cases where the user would like Spectrum to return clustering assignments for each K in a
range so the results can be compared with other variables such as, histology, survival time, etc. There is an
extra parameter that can be used for this.
library(Spectrum)
RNAseq <- brain[[1]]
test3 <- Spectrum(RNAseq,showres=FALSE,runrange=TRUE,krangemax=10)
#> ***Spectrum***
#> detected views: 1
#> method: 1

4

#> kernel: density
#> calculating kernel 1
#> done.
#> combining kernels if > 1 and making KNN graph...
#> done.
#> diffusing on tensor graph...
#> done.
#> calculating graph laplacian...
#> getting eigendecomposition of L...
#> done.
#> examining eigenvalues to select K...
#> optimal K: 6
#> clustered.
#> clustered.
#> clustered.
#> clustered.
#> clustered.
#> clustered.
#> clustered.
#> clustered.
#> clustered.
#> finished.

Then the sample assignments for each K can be extracted as follows. For the desired K replace the number
with this K in the below code, this extracts the assigments from the appropiate element of the list.
head(test3[[2]]$assignments)
#> [1] 2 1 2 2 1 1

5. Multi-view clustering: Brain cancer multi-omics

Here we cluster multi-omic cancer data with three different platforms (or views): mRNA, miRNA, and protein
expression data. This example uses Spectrum’s tensor product graph data integration method to combine
heterogeneous data sources.

The first plot will show the eigenvalues where the greatest gap in used to decide K, the second plot shows the
results from running UMAP on the combined similarity matrix.
library(Spectrum)
test4 <- Spectrum(brain,showdimred=TRUE,fontsize=8,dotsize=2)
#> ***Spectrum***
#> detected views: 3
#> method: 1
#> kernel: density
#> calculating kernel 1
#> done.
#> calculating kernel 2
#> done.
#> calculating kernel 3
#> done.
#> combining kernels if > 1 and making KNN graph...
#> done.
#> diffusing on tensor graph...
#> done.

5

#> calculating graph laplacian...
#> getting eigendecomposition of L...
#> done.
#> examining eigenvalues to select K...
#> optimal K: 3
#> doing GMM clustering...
#> done.
#> running UMAP on similarity...

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10 11
Eigenvector

E
ig

en
va

lu
e

#> done.
#> finished.

−2

0

2

4

−2 0 2 4
X1

X
2

factor(labels)

1

2

3

6. Single-view clustering: Non-Gaussian data, 3 circles

For analysing non-Gaussian structures and determining K automatically, it is much better to use our method
that examines the multimodality of the eigenvectors and searches for the last substantial drop. This method,
by default, also tunes the kernel by examining the multimodality gaps, although this is not always necessary.

6

The method can handle Gaussian clusters too, multimodality is quantified using the well known dip-test
statistic (Hartigan et al., 1985).

In the plot, we have the dip test statistics (Z) which measure the multimodality of the eigenvectors. When the
multimodality is higher, the eigenvectors are more informative and represent blocks of the data’s similarity
matrix. Thus, when there is a big gap this may correspond to the optimal K as we have no more blocks to
find. However, Spectrum has its own greedy algorithm to search for ‘the last substantial gap’ instead of the
greatest gap. This is because searching for the greatest gap sometimes gets stuck in local minima without
including all informative eigenvectors. The parameters for the search can be adjusted with the ‘thresh’ and
‘frac’ parameters. The last plot shown here is PCA to visualise the data, run just on the input data for the
user.
library(Spectrum)
test5 <- Spectrum(circles,showpca=TRUE,method=2,fontsize=8,dotsize=2)
#> ***Spectrum***
#> detected views: 1
#> method: 2
#> kernel: density
#> calculating kernel 1
#> done.
#> combining kernels if > 1 and making KNN graph...
#> done.
#> diffusing on tensor graph...
#> done.
#> calculating graph laplacian...
#> getting eigendecomposition of L...
#> done.
#> examining eigenvector distributions to select K...
#> finding informative eigenvectors...
#> done.
#> optimal K: 3
#> doing GMM clustering...
#> done.

0.04

0.08

0.12

0.16

1 2 3 4 5 6 7 8 9 10 11
Eigenvector

Z

#> finished.

7

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
PC1

P
C

2

factor(labels)

1

2

3

7. Single-view clustering: Non-Gaussian data, spirals

Same as the last example, but for the spirals dataset.

In this example, kernel tuning is required to detect the optimal K. Kernel tuning using our method is best
saved for datasets containing unusual shapes (e.g spirals, letters, etc) that are not well recognised with the
standard kernel parameters. It does add significant computational time.

The kernel tuning plot shows the results from tuning the kernel’s nearest neighbour parameter (NN). D refers
to the greatest difference in dip-test statistics between any consecutive eigenvectors of the graph Laplacian
for that value of NN. Spectrum automatically searches for a minimum (corresponding to the maximum drop
in multimodality) to find the optimal kernel.
library(Spectrum)
test6 <- Spectrum(spirals,showpca=TRUE,method=2,tunekernel=TRUE,fontsize=8,dotsize=2)
#> ***Spectrum***
#> detected views: 1
#> method: 2
#> kernel: density
#> calculating kernel 1
#> finding optimal NN kernel parameter by examining eigenvector distributions
#> tuning kernel NN parameter: 1
#> tuning kernel NN parameter: 2
#> tuning kernel NN parameter: 3
#> tuning kernel NN parameter: 4
#> tuning kernel NN parameter: 5
#> tuning kernel NN parameter: 6
#> tuning kernel NN parameter: 7
#> tuning kernel NN parameter: 8
#> tuning kernel NN parameter: 9
#> tuning kernel NN parameter: 10
#> optimal NN:1
#> done.
#> combining kernels if > 1 and making KNN graph...
#> done.
#> diffusing on tensor graph...

8

#> done.
#> calculating graph laplacian...
#> getting eigendecomposition of L...
#> done.
#> examining eigenvector distributions to select K...
#> finding informative eigenvectors...
#> done.

−0.15

−0.10

−0.05

1 2 3 4 5 6 7 8 9 10
NN

D

#> optimal K: 2
#> doing GMM clustering...
#> done.

0.05

0.10

0.15

0.20

0.25

1 2 3 4 5 6 7 8 9 10 11
Eigenvector

Z

#> finished.

9

−0.8

−0.4

0.0

0.4

0.8

−1.0 −0.5 0.0 0.5 1.0
PC1

P
C

2

factor(labels)

1

2

8. Ultra-fast single-view clustering: Gaussian blobs II

To enable clustering of very high numbers of samples (e.g. 10,000-100,000+) on a single core of a Desktop
computer, Spectrum implements the Fast Approximate Spectral Clustering (FASP) method (Yan et al., 2009).
FASP computes k centroids and then uses these for clustering, after running Spectrum will then assign the
original data to clusters via their centroids. This option is recommended for very large datasets, the loss in
accuracy is usually marginal, see Yan et al. (2009) for further details.

To perform this method the user needs to set the FASPk parameter to a suitable number for their data, this
depends on the data to some degree. For example, if we had 50,000 samples, we might set FASPk to 1,000,
to reduce the clustering data input size by 50x.
library(Spectrum)
test7 <- Spectrum(blobs,FASP=TRUE,FASPk=300,fontsize=8,dotsize=2)
#> ***Spectrum***
#> detected views: 1
#> method: 1
#> kernel: density
#> FASP method: TRUE
#> calculating kernel 1
#> done.
#> combining kernels if > 1 and making KNN graph...
#> done.
#> diffusing on tensor graph...
#> done.
#> calculating graph laplacian...
#> getting eigendecomposition of L...
#> done.
#> examining eigenvalues to select K...
#> optimal K: 8
#> doing GMM clustering...
#> done.
#> finished.

10

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10 11
Eigenvector

E
ig

en
va

lu
e

Looking at the results, we have found the same K as before (8), but with a reduced sample size and runtime.
Observe the output below, where there is a new item in the list for the original sample assignments.
names(test7)
#> [1] "allsample_assignments" "centroid_assignments" "eigenvector_analysis"
#> [4] "K" "similarity_matrix" "eigendecomposition"

head(test7[[1]])
#> c1s1 c2s1 c3s1 c4s1 c5s1 c6s1
#> 2 4 8 1 3 6

9. Parameter settings

Generally speaking, Spectrum is set up to handle a wide range of data automatically with its self-tuning
kernel on the default settings. However, we provide the following advice in more specific circumstances.

• For a lot of noisy Gaussian data, e.g. RNA-seq, protein arrays, etc, we have a preference for method 1
which is the eigengap.

• For very high numbers of samples; switch FASP mode on and set ‘FASPk’ to e.g. 500-10,000. The
‘FASPk’ parameter should be high enough to get a good representation of the data.

• Although in our experiments we found our adaptive density aware kernel superior to the classic Zelnik-
Manor et al. (2005) self tuning kernel, the user might want to experiment on their data with the
Zelnik-Manor kernel (stsc) also included in Spectrum.

• The kernel parameters N and NN2 can be experimented with which control the number of nearest
neighbours used when calculating the local sigma or density parameter. However, the default parameters
have been tested with a wide range of real and simulated data and generalise well.

• For data containing non-Gaussian clusters; use method 2, which can automatically detect K for these
structures. In some cases, the greedy search parameters, ‘thresh’ and ‘frac’, which define the cut-offs
for searching for the last substantial gap in multimodality, may require manually changing for the data
type.

• Kernel tuning for method 2 is optional, it can help for complex structures, but for a large dataset it
may be too time consuming. Especially for omic data we suggest not to use this mode.

11

• For method 2, we tested the method on several single cell RNA-seq datasets and it performs much
better without graph diffusion. So diffusion should be test to FALSE when running on this data type.

10. Code for heatmaps

For users that want to make a heatmap from the Spectrum assignment output, the following code will help.
We just need to order the input data’s columns according to the clustering assignments. Then, when you
make the heatmap with samples as columns, do not cluster the columns because this has been done already,
and use the assignments as an annotation track to visualise them.
1. run my clustering algorithm yielding assignments in vector, e.g. 1,2,2,1,2,2...
2. reorder data according to assignments
ind <- sort(as.vector(test2$assignments),index.return=TRUE)
datax <- RNAseq[,ind$ix] ## order the original data
#annonx <- meta[ind$ix,] ## order the meta data
#annonx$cluster <- ind$x ## add the cluster to the meta data
3. do heatmap
insert your favourite heatmap function

11. Closing comments

Spectrum is an unique assembly of spectral clustering techniques designed to serve a broad community.
Included are both innovations for the field, such as the adaptive density aware kernel and the multimodality
gap procedure, as well as implementations of others state-of-the-art methods. Spectrum is suitable for a wide
range of clustering tasks.

We recommend Spectrum be used in conjuction with dimensionality reduction methods to confirm the
structure and taking into account our recommendations in the parameter settings section of the vignette.

12. References

Hartigan, John A., and Pamela M. Hartigan. “The dip test of unimodality.” The annals of Statistics 13.1
(1985): 70-84.

Yan, Donghui, Ling Huang, and Michael I. Jordan. “Fast approximate spectral clustering.” Proceedings of
the 15th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2009.

Shu, Le, and Longin Jan Latecki. “Integration of single-view graphs with diffusion of tensor product graphs
for multi-view spectral clustering.” Asian Conference on Machine Learning. 2016.

Zelnik-Manor, Lihi, and Pietro Perona. “Self-tuning spectral clustering.” Advances in neural information
processing systems. 2005.

12

	Contents
	1. Data types and requirements
	2. Single-view clustering: Gaussian blobs
	3. Single-view clustering: Brain cancer RNA-seq
	4. Single-view clustering: Brain cancer RNA-seq clustering a range of K
	5. Multi-view clustering: Brain cancer multi-omics
	6. Single-view clustering: Non-Gaussian data, 3 circles
	7. Single-view clustering: Non-Gaussian data, spirals
	8. Ultra-fast single-view clustering: Gaussian blobs II
	9. Parameter settings
	10. Code for heatmaps
	11. Closing comments
	12. References

