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Abstract

Livestock movements are critical for the spread of many infectious diseases in ani-
mal populations. The use of real livestock data allows for disease spread modeling that
incorporates the time-varying contact network and the population demographic. This pa-
per introduces SimInf, an efficient and general framework for stochastic spatio-temporal
disease-spread modeling over a temporal network of connected nodes. It integrates within-
node infection dynamics as continuous-time Markov chains and livestock data as scheduled
events. The core simulation solver is implemented in C and uses OpenMP to divide work
over multiple processors. We provide a technical description of the framework, how to use
a predefined model in SimInf, demonstrate a case study, and finally show how to extend
the framework with a user defined model.

Keywords: computational epidemiology, discrete-event simulation, multicore implementation,
stochastic modeling.

1. Introduction

Livestock movements are an important transmission route for many infectious diseases and
can transfer infectious individuals between holdings over large distances (Danon, Ford, House,
Jewell, Keeling, Roberts, Ross, and Vernon 2011). The livestock movements between holdings
can be represented as a temporal network with nodes coupled by directed edges and the time
when each edge was active (Holme and Saramäki 2012). The temporal network of livestock
movements forms a complex dynamic system in the topology, connectivity and intensity (Ba-
jardi, Barrat, Natale, Savini, and Colizza 2011; Dutta, Ezanno, and Vergu 2014), and these
properties affect how various diseases spread in a network (Shirley and Rushton 2005; Büttner,
Krieter, Traulsen, and Traulsen 2016). European Union legislation requires member states to
keep a registry of all bovine animals in national databases (Anonymous 2000, 2004), which
makes it possible to use real data for the time-varying contact network and the population de-
mographics for large scale disease spread simulations, to better understand transmission and
explore control strategies. However, incorporating large amount of network data in simula-
tions is computationally challenging and require efficient algorithms. Furthermore, specifying
realistic models for disease transmission is a complicated process since various diseases have
fundamentally different transmission routes. Compare, for example, fecal-oral pathogens with
indirect transmission routes via the environment with infections that are transferred by di-
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rect contact between individuals (Brooks-Pollock, de Jong, Keeling, Klinkenberg, and Wood
2015).

In this work, we present an efficient and flexible framework for data-driven spatio-temporal dis-
ease spread modeling, designed to efficiently incorporate large volumes of population demographics-
and temporal network data. This allows the user to asses the spread of, for example, endemic
diseases in the cattle population, in national scale simulations (Bauer, Engblom, and Widgren
2016). We have developed the R (R Core Team 2017) package SimInf, a discrete-event simula-
tor that divides work among multiple processors available in standard computers. The model
integrates infection dynamics as continuous-time Markov chains and available data such as
animal movements, births, slaughter or aging are incorporated as scheduled events. One of
our design goal was to make SimInf completely extendable and allow for growth in available
models and specialized solvers through contributions from the community. Using compiled
C code, rather than interpreted R code, for the transition-rate functions ensures maximum
efficiency when simulating the model. To simplify the process of generating the required C

code for models, the SimInf package include functionality to automatically create C code from
a model specification.

There exists several related R packages for epidemiological modeling on the Comprehensive R
Archive Network (CRAN) that we would like to mention here. The package amei (Merl, John-
son, Gramacy, and Mangel 2010) is designed for parameter estimation of epidemic models and
finding optimal intervention strategies, for example, vaccination, to control disease spread.
Another package is surveillance, a framework for monitoring, modeling, and regression anal-
ysis of infectious diseases, (Meyer, Held, and Höhle 2017). EpiModel (Samuel M. Jenness,
Goodreau, and Morris 2017) is an R package that, similar to SimInf, includes a framework for
modeling spread of diseases on networks. However, they differ in how the data is generated for
the modeling: the network data in EpiModel is simulated using statnet (Handcock, Hunter,
Butts, Goodreau, and Morris 2008), while SimInf was designed to incorporate available net-
work data. The are also similarities between the R package GillespieSSA (Pineda-Krch 2008)
and SimInf, in that both uses the Gillespie stochastic simulation algorithm (SSA) (Gillespie
1977). However, for computational efficiency, the algorithm is implemented using C code in
SimInf.

The paper is organized as follows. In §2 we summarize the mathematical foundation for our
framework. Section §3 gives a technical description of the simulation framework. In §4 we
illustrate the use of the package by some worked examples. Finally, in §5 we demonstrate
how to extend SimInf with user-defined models.

2. Epidemiological modeling

In the following section we give a brief overview of the epidemiological modeling framework
employed in SimInf. The overall approach consists of continuous-time Markov chains as a
general model of the dynamics of the epidemiological state. Importantly, we also allow for a
coupling with concentration variables obeying ordinary differential equations (ODEs), as well
as to externally defined events. We draw much of the material here from (Bauer et al. 2016;
Engblom and Widgren 2017).

In §2.1–2.2 below we distinguish between the local dynamics that describes the evolution
of the epidemiological state at a single node, and the global dynamics, which describes the
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system at the network level. The overall numerical approach underlying SimInf is described
in §2.3.

2.1. Local dynamics

We describe the state of a single node with a state vector X(t) ∈ Z
Ncomp

+ , which counts the
number of individuals at each of Ncomp compartments at time t. The transitions between these
compartments are stochastic and are described by the transition matrix S ∈ ZNcomp×Ntrans

and the transition intensities R : Z
Ncomp

+ → RNtrans
+ , assuming Ntrans different transitions. We

then form a random counting measure µk(dt) = µ(Rk(X(t−)); dt) that is associated with a
Poisson process for the kth intensity Rk(X(t−), which in turn depends on the state prior to
any transition at time t, that is, X(t−).

The local dynamics can then compactly be described by a pure jump stochastic differential
equation (SDE),

dX(t) = Sµ(dt), (1)

where µ(dt) is a vector measure built up from the scalar counting measures µ(dt) = [µ1(dt), . . . ,
µNtrans

(dt)]⊤. If at time t, transition k occurs, then the state vector is updated according to

X(t) = X(t−) + Sk, (2)

with Sk the kth column of S. In (1) the Ntrans different epidemiological state transitions are
competing in the sense of independent Poisson processes. The ‘winning’ process decides what
event happens and changes the state according to (2). The simulation then proceeds under
the Markov assumption where previous events are remembered via the state variable X only.

To make this abstract notation a bit more concrete we consider a traditional example as
follows. In an SIS-model the transitions between a susceptible and an infected compartment
can be written as

S + I
β
−→ 2I

I
γ
−→ S

}

. (3)

With a state vector consisting of two compartments X = [#S,#I], i.e., the number of sus-
ceptible and infected individuals, respectively, we can then write the transition matrix and
intensity vector as

S =

[

−1 1
1 −1

]

, (4)

R(x) = [βx1x2, γx2]
⊤. (5)

To connect this with traditional ODE-based models, note that, replacing the random measure
in (1) with its mean drift, we arrive at

dx(t)

dt
= SR(x), (6)

where now the state variable x ∈ RNcomp . The differences between (1) and (6) are that the
randomness and discreteness of the state variable are not present in the latter formulation. If
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these features are thought to be important, then (1) is an accurate stochastic alternative to
(6), relying only on the Markovian “memoryless” assumption.

There are, however, situations where we would like to mix the discrete stochastic model with
a concentration-type ODE model. In a multi-scale description there are typically variables
for which a continuous description is more natural: a typical example is the concentration
of bacteria in an infectious environment for which individual counting would clearly not be
feasible.

Assuming an additional concentration state vector Y ∈ RNconc a general model which aug-
ments (1) is

dX(t) = Sµ(dt)
Y ′(t) = f(X(t−), Y (t))

}

, (7)

where now the random measure depends also on the concentration variable,

µ(dt) = µ(R(X(t−), Y (t)), dt). (8)

The overall combined state vector is then [X; Y ] ∈ [ZNcomp ; RNconc ].

2.2. Global dynamics

To extend the local dynamics to a network model consisting of Nnodes nodes we first define
the overall state matrices X ∈ Z

Ncomp×Nnodes

+ and Y ∈ RNconc×Nnodes and then extend (7) to

dX(i)(t) = Sµ
(i)(dt), (9)

dY(i)(t)

dt
= f(X(i),Y(i)), (10)

where i ∈ {1, ..., Nnodes} is the node index.

We then consider theNnodes nodes being the vertices of an undirected graph G with interactions
defined in terms of the counting measures ν

(i,j) and ν
(j,i). Here ν

(i,j) represents the state
changes due to an inflow of individuals from node i to node j, and ν

(j,i) represents an inflow
of individuals from node j to node i, assuming node j being in the connected component C(i)
of node i, and vice versa.

The network dynamics is then written as

dX
(i)
t = −

∑

j∈C(i)

Cν
(i,j)(dt) +

∑

j; i∈C(j)

Cν
(j,i)(dt), (11)

dY(i)(t)

dt
= −

∑

j∈C(i)

g(X(i),Y(i)) +
∑

j; i∈C(j)

g(X(j),Y(j)). (12)

In (12), g is similarly the “flow” of the concentration variable Y between the nodes in the
network. For example, this could be the natural modeling target for concentration variables
Y which are transported via surface water or air.



Stefan Widgren, Pavol Bauer, Stefan Engblom 5

Combining this with (9)–(10) we obtain the overall dynamics

dX(i)(t) = Sµ
(i)(dt)−

∑

j∈C(i)

Cν
(i,j)(dt) +

∑

j; i∈C(j)

Cν
(j,i)(dt), (13)

dY(i)(t)

dt
= f(X(i),Y(i))−

∑

j∈C(i)

g(X(i),Y(i)) +
∑

j; i∈C(j)

g(X(j),Y(j)). (14)

Note that ν(i,j) and ν
(j,i) may be equivalently employed for externally scheduled events given

by data using an equivalent construction in terms of Dirac measures. This is the case, for
example, when intra-nodal transport data of individuals are available.

2.3. Numerical method

In SimInf, we solve (13)–(14) by splitting the local update scheme (9)–(10) from the global
update scheme (11)–(12). We discretize time as 0 = t0 < t1 < t2 < · · · , which is partially
required as external data has to be incorporated at some finitely resolved time stamps. The
numerical method of SimInf can then be written per node i as

X̃
(i)
n+1 = X

(i)
n +

∫ tn+1

tn

Sµ
(i)(ds), (15)

X
(i)
n+1 = X̃

(i)
n+1 −

∫ tn+1

tn

∑

j∈C(i)

Cν
(i,j)(ds) +

∫ tn+1

tn

∑

j; i∈C(j)

Cν
(j,i)(ds), (16)

Y
(i)
n+1 = Y

(i)
n + f(X̃

(i)
n+1,Y

(i)
n )∆tn (17)

−
∑

j∈C(i)

g(X̃
(i)
n+1,Y

(i)
n )∆tn +

∑

j; i∈C(j)

g(X̃
(j)
n+1,Y

(j)
n )∆tn.

In this scheme, (15) forms the local stochastic step, that is in practice simulated by the
Gillespie method (Gillespie 1977). Eq. (16) is the data step, where externally scheduled
events are incorporated. Note that the stochastic step evolves at continuous time increments
in the interval [tn, tn+1], and the data step operates only on the final state X̃ at tn+1. The
final step (17) is just the Euler forward method in time with time-step ∆tn = tn+1 − tn for
the concentration variable Y.

3. Technical description of the simulation framework

The overall design of SimInf was inspired and partly adapted from the Unstructured Mesh
Reaction-Diffusion Master Equation (URDME) framework (Engblom, Ferm, Hellander, and
Lötstedt 2009; Drawert, Engblom, and Hellander 2012). SimInf is a general software frame-
work for data-driven modeling and simulation of stochastic disease-spread in a temporal net-
work of connected nodes. In particular, the transition rates and the transition topology are
specified using a compiled language C and R matrices, respectively. The overall modular de-
sign makes extensions easy to handle and since the simulation engine is written in a compiled
language, the efficiency of the simulator is very high.

The SimInf package is available via CRAN at https://CRAN.R-project.org/package=SimInf
and is loaded in R with the following command

https://CRAN.R-project.org/package=SimInf
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R> library("SimInf")

3.1. Overview

The SimInf R package uses object oriented programming with S4 classes (Chambers 2008) to
define objects with logical layers connected by well-defined interfaces for different modeling
scenarios. The two S4 classes SimInf_model and SimInf_events are central and provide
the basis for the flexible framework to perform efficient simulations in compiled C code of
the predefined models in SimInf or user-defined models. The SimInf_model class contains
slots (Table 1) to data structures that define the disease-spread model and one slot events
associated to a SimInf_events object, which contains slots (Table 2) to incorporate and
process scheduled events. Furthermore, the SimInf_model object also contains the output
trajectory after running the core simulation solver on the disease-spread model.

All disease-spread models in SimInf contains the S4 class SimInf_model. Moreover, the
predefined disease-spread models in SimInf have a generating function (Chambers 2008),
with the same name as the model, which check parameters and initialize the necessary data
structures for that specific model. After the model is initialized, the simulation is started
with a call to the run method. To facilitate post-processing and visualization of output data,
the predefined models in SimInf provide several utility functions, for example, susceptible,
infected, prevalence and plot.

3.2. Specification of an epidemiological model

The within-node disease spread model in SimInf is specified as a compartment model with
the individuals divided into compartments defined by discrete disease statuses. The model is
defined by the slots in the S4 class SimInf_model (Table 1). The compartments contains the
number of individuals in each of the Ncomp disease states in every Nnodes nodes.

Eq. (17), the stochastic step, contains Ntrans state transitions and is processed using the two
slots, S and G. The S slot is the state-change matrix (Ncomp ×Ntrans) that determines how to
change the number of individuals in the compartments of a node when the jth state transition
occurs, where 1 ≤ j ≤ Ntrans. Each row corresponds to one compartment and each column to
a state transition. Let u[, i] be the number of individuals in each compartment in node i at
time ti. To move simulation time forward in node i to ti = ti+τi, the vector u[, i] is updated
according to the jth transition by adding the state-change vector S[, j] to u[, i]. After
updating u[, i], the transition rates must be recalculated to obtain the time to the next
event. However, a state transition might not need all transition rates to be recalculated. The
dependency graph G is a matrix (Ntrans ×Ntrans) that determines which transition rates that
need to be recalculated. A non-zero entry in element G[k, j] indicates that transition rate k
needs to be recalculated if the jth state transition occurs, where 1 ≤ k ≤ Ntrans. Furthermore,
the final step (17) is incorporated using a model specific post time step callback to allow
update of the concentration variable Y.

Model-specific data that is passed to the transition-rate functions and the post time-step
function are stored in the two slots: ldata and gdata in the SimInf_model object. The
ldata matrix holds local data for each node where ldata[, i] is the data vector for node i.
Data that is global, i.e., shared between nodes, is stored in the gdata vector.
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Slot Description

S Each column corresponds to a state transition, and execution of state transition j
amounts to adding the S[, j] column to the state vector u[, i] of node i where the
transition occurred. Sparse matrix (Ncomp ×Ntrans) of object class dgCMatrix.

G Dependency graph that indicates the transition rates that need to be updated after
a given state transition has occurred. A non-zero entry in element G[i, j] indicates
that transition rate i needs to be recalculated if the state transition j occurs. Sparse
matrix (Ntrans ×Ntrans) of object class dgCMatrix.

tspan A vector of increasing time points where the state of each node is to be returned.
U The result matrix with the number of individuals in each compartment in every

node. U[, j] contains the number of individuals in each compartment at tspan[j].
U[1:Ncomp, j] contains the number of individuals in each compartment in node 1 at
tspan[j]. U[(Ncomp + 1):(2 * Ncomp), j] contains the number of individuals in each
compartment in node 2 at tspan[j] etc. Integer matrix (NnodesNcomp× length(tspan)).

U_sparse It is possible to run the simulator and write the number of individuals in each com-
partment to the U_sparse sparse matrix (dgCMatrix), which can save a lot of memory
if the model contains many nodes and time-points, but where only a few of the data
points are of interest. If U_sparse is non-empty when run is called, the non-zero entries
in U_sparse indicates where the number of individuals should be written to U_sparse.
The layout of the data in U_sparse is identical to U. Please note that the data in
U_sparse is numeric and that the data in U is integer.

u0 The initial number of individuals in each compartment in every node. Integer matrix
(Ncomp ×Nnodes).

V The result matrix for the real-valued continuous state. V[, j] contains the real-valued
state of the system at tspan[j]. Numeric matrix (NnodesNld × length(tspan)).

V_sparse It is possible to run the simulator and write the real-valued continuous state to the
V_sparse sparse matrix (dgCMatrix), which can save a lot of memory if the model
contains many nodes and time-points, but where only a few of the data points are of
interest. If V_sparse is non-empty when run is called, the non-zero entries in V_sparse

indicates where the real-valued continuous state should be written to V_sparse. The
layout of the data in V_sparse is identical to U.

v0 The initial value for the real-valued continuous state. Numeric matrix (Nld ×Nnodes).
ldata A numeric matrix with local data specific to each node. The column ldata[, j]

contains the local data vector for node j. The local data vector is passed as an argument
to the transition rate functions and the post time step function.

gdata A numeric vector with global data that is common to all nodes. The global data
vector is passed as an argument to the transition rate functions and the post time step
function.

events Scheduled events to modify the discrete state of individuals in a node at a pre-defined
time t. S4 class SimInf_events, see §3.3 and Table 2.

C_code Character vector with optional model C code, see §5. If non-empty, the C code is written
to a temporary file when the run method is called. The temporary file is compiled and
the resulting DLL is dynamically loaded. The DLL is unloaded and the temporary files
are removed after running the model.

Table 1: Description of the slots in the S4 class SimInf_model that defines the epidemiolog-
ical model. Ntrans is the number of state transitions in the model. Ncomp is the number of
compartments in the model. Nnodes is the number of nodes in the model. Nld is the number
of local data specific to each node and equals dim(ldata)[1].
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Slot Description

E Each row corresponds to one compartment in the model. The non-zero entries in a
column indicates the compartments to include in an event. Sparse matrix of object
class dgCMatrix.

N Each row represents one compartment in the model and the values determine how to
move sampled individuals in internal transfer and external transfer events. Integer
matrix.

event Type of event: 0) exit, 1) enter, 2) internal transfer, and 3) external transfer. Other
values are reserved for future event types and not supported by the current default
core solver. Integer vector.

time Time of the event. Integer vector.
node The node that the event operates on. Also the source node for an external transfer

event. Integer vector. 1 ≤ node[i] ≤ Nnodes.
dest The destination node for an external transfer event, equals 0 for the other event

types. Integer vector.
n The number of individuals affected by the event. Integer vector. n[i] ≥ 0.
proportion If n[i] equals zero, the number of individuals affected by event[i] is calculated by

summing the number of individuals in the compartments determined by select[i]

and multiplying with proportion[i]. Numeric vector. 0 ≤ proportion[i] ≤ 1.
select Column j in the event matrix E that determines the compartments that the event

operates on. Integer vector.
shift Column k in the shift matrix N that determines how individuals in internal trans-

fer and external transfer events are shifted to enter another compartment. Integer
vector.

Table 2: Description of the slots in the S4 class SimInf_events that holds data to process
events. Each index, i, of the vectors represent one event. Nnodes is the number of nodes in
the model.

The events slot in the SimInf_model holds data to process the scheduled events, further
described in §3.3.

During simulation of one trajectory, the state of the system is written to the two matrices
U and V. This happens at each occasion the simulation time passes a time point in tspan, a
vector of increasing time points. The first and last element in tspan determines the start-
and end-point of the simulation. The column U[, m] contains the number of individuals in
each compartment in every node at tspan[m], where 1 ≤ m ≤ length(tspan). The first
Ncomp rows in U contains the compartments of the first node. The next Ncomp rows contains
the compartments of the second node etc. The V matrix contains output from continuous
state variables. The column V[, m] contains the values at tspan[m]. The rows are grouped
per node and the number of rows per node is determined by the number of continuous state
variables in that specific model. It is also possible to configure the simulator to write the
state of the system to the sparse matrices U_sparse and V_sparse, which can save a lot of
memory if the model contains many nodes and time-points, but where only a few of the data
points are of interest. In order to use this feature, call the U and V methods (before running a
trajectory) with a sparse matrix with non-zero entries where the simulator should write the
state of the system. The initial state in each node is specified by the two matrices u0 and v0

where u0[, i] is the initial number of individuals in each compartment at node i and v0[,

i] is the initial continuous state in node i.



Stefan Widgren, Pavol Bauer, Stefan Engblom 9

Argument Description

v_new The continuous state vector in the node after the post time step. Exists only in PTSFun.
u The compartment state vector in the node.
v The current continuous state vector in the node.
ldata The local data vector for the node.
gdata The global data vector.
node The node index. Note the node index is zero-based, i.e., the first node is 0.
t Current time in the simulation.

Table 3: Description of the arguments to the transition rate functions (TRFun) and the post
time step function (PTSFun).

3.3. Specification of scheduled events

The scheduled events are used to modify the discrete state of individuals in a node at a pre-
defined time t. There are four different types of events; enter, internal transfer, external trans-
fer and exit. The enter event adds individuals to a node, for example, due to births. The in-
ternal transfer event moves individuals between compartments within one node, for example,
ageing of individuals in a model with several age compartments or vaccination to move individ-
uals to a vaccinated compartment. The external transfer event moves individuals from com-
partments in one node to compartments in a destination node. Finally, the exit event removes
individuals from a node, for example, due to slaughter. The event types are classified into
those that operate on the compartments of a single node E1 = {enter, internal transfer, exit}
and those that operate on the compartments of two nodes E2 = {external transfer}. The
parallel algorithm processes these two classes of events differently, see Algorithm 1 in the ap-
pendix with pseudo-code for the core simulation solver. The scheduled events are processed
when simulation time reaches the time for any of the events. Events that are scheduled at
the same time are processed in the following order: exit, enter, internal transfer and external
transfer.

The S4 class SimInf_events contains slots with data structures to process events (Table 2).
The slots event, time, node, dest, n, proportion, select and shift, are vectors of equal
length. These vectors hold data to process one event: e, where 1 < e ≤ length(event). The
event type and the time of the event are determined by event[e] and time[e], respectively.
The compartments that event[e] operates on, are specified by select[e] together with the
slot E. Each row {1, 2, ..., Ncomp} in the sparse matrix E, represents one compartment in the
model. Let s <- select[e], then each non-zero entry in the column E[, s] includes that
compartment in the event[e] operation. The definitions of all of these operations are a bit
involved and to quickly get an overview, schematic pictures illustrating all of them have been
prepared, we refer to Figures 12,13,14,15,16 in the appendix.

Processing of an enter event

The enter event adds n[e] individuals to one compartment at node[e], where the compart-
ment is specified by a non-zero entry in the row for the compartment in column E[, s]. Please
note that, if the column E[, s] contains several non-zero entries, the individuals are added
to the compartment represented by the first non-zero row in column E[, s]. The values of
dest[e], proportion[e] and shift[e], described below, are not used when processing an
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enter event. See Figure 13 in the appendix for an illustration of a scheduled enter event.

Processing of an internal transfer event

The internal transfer event moves n[e] individuals into new compartments within node[e].
However, if n[e] equals zero, the number of individuals to move is calculated by multiplying
the proportion[e] with the total number of individuals in the compartments represented
by the non-zero entries in column E[, s]. The individuals are then proportionally sampled
and removed from the compartments specified by E[, s]. The next step is to move the
sampled individuals to their new compartment using the matrix N and shift[e], where
shift[e] specifies which column in N to use. Each row {1, 2, ..., Ncomp} in N, represents one
compartment in the model and the values determine how to move sampled individuals before
adding them to node[e] again. Let q <- shift[e], then each non-zero entry in N[, q]

defines the number of rows to move sampled individuals from that compartment i.e., sampled
individuals from compartment p are moved to compartment N[p, q] + p, where 1 ≤ N[p,

q] + p ≤ Ncomp. The value of dest[e], described below, is not used when processing an
internal transfer event. See Figure 15 in the appendix for an illustration of a scheduled
internal transfer event.

Processing of an external transfer event

The external transfer event moves individuals from node[e] to dest[e]. The sampling of
individuals from node[e] is performed in the same way as for an internal transfer event. The
compartments at node[e] are updated by subtracting the sampled individuals while adding
them to the compartments at dest[e]. The sampled individuals are added to the same
compartments in dest[e] as in node[e], unless shift[e] > 0. In that case, the sampled
individuals change compartments according to N as described in processing an internal transfer
event before adding them to dest[e]. See Figures 14 and 16 in the appendix for illustrations
of scheduled external transfer events.

Processing of an exit event

The exit event removes individuals from node[e]. The sampling of individuals from node[e]

is performed in the same way as for an internal transfer event. The compartments at node[e]
are updated by subtracting the sampled individuals. The values of dest[e] and shift[e]

are not used when processing an exit event. See Figure 12 in the appendix for an illustration
of a scheduled exit event.

3.4. Core simulation solver

The SimInf package uses the ability to interface compiled code from R Chambers (2008). The
solver is implemented in the compiled language C (Kernighan and Ritchie 1988) and is called
from R using the .Call() interface (Chambers 2008). Using compiled rather than interpreted
code ensures high performance when running the model. To improve performance further, the
solver uses OpenMP (OpenMP Architecture Review Board 2008) to divide work over multiple
processors and perform computations in parallel. The solver uses the GNU Scientific Library
(GSL) (Galassi, Davies, Theiler, Gough, Jungman, Alken, Booth, and Rossi 2009) to generate
random numbers for the simulation.
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Function pointers

The flexibility of the solver is partly achieved by using function pointers (Kernighan and
Ritchie 1988). A function pointer is a variable that stores the address of a function that can
be used to invoke the function. This provides a simple way to incorporate model specific
functionality into the solver. A model must define one transition rate function for each state
transition in the model. These functions are called by the solver to calculate the transition rate
for each state transition in each node. The output from the transition rate function depends
only on the state of the system at the current time. However, the output is unique to a model
and data are for that reason passed on to the function for the calculation. Furthermore, a
model must define the post time step function. This function is called once for each node
each time the simulation of the continuous-time Markov chain reaches the next day (or, more
generally, the next unit of time) and after the E1 and E2 events have been processed. The
main purpose of the post time step function is to allow for a model to update continuous state
variables in each node.

The transition rate function is defined by the data type TRFun and the post time step function
by the data type PTSFun. These data types are defined in the header file ’src/SimInf.h’

and shown below. The arguments v_new, u, v, ldata, gdata, node, and t of the functions
are described in Table 3.

typedef double (✯TRFun) ( const int ✯u , const double ✯v , const double ✯ ldata ,
const double ✯gdata , double t ) ;

typedef int (✯PTSFun) (double ✯v new , const int ✯u , const double ✯v ,
const double ✯ ldata , const double ✯gdata ,
int node , double t ) ;

Overview of the solver

Here follows an overview of the steps in the solver to run one trajectory, see Algorithm 1 for
pseudo-code and ’src/core/SimInf_solver.c’ for the source code. The simulation starts
with a call to the run method with the model as the first argument and optionally the number
of threads to use and a seed for the random number generator. This method will first call
the validity method on the model to perform error-checking and then call a model specific
C function to initialize the function pointers to the transition rate functions and the post
time step function of the model. Subsequently, the simulation solver is called to run one
trajectory using the model specific data, the transition rate functions, and the post time step
function. If the C_code slot is non-empty, the C code is written to a temporary file when the
run method is called. The temporary file is compiled using ’R CMD SHLIB’ and the resulting
DLL is dynamically loaded. The DLL is unloaded and the temporary files are removed after
running the model. This is further described in §5.

The solver simulates the trajectory in parallel if OpenMP is available. The default is to use
all available threads. However, the user can specify the number of threads to use. The solver
divides data for the Nnodes nodes and the E1 events over the number threads. All E1 events
that affect node i is processed in the same thread as node i is simulated in. The E2 events
are processed in the main thread.

The solver runs the continuous-time Markov chain for each node i. For every time step τi,
the count in the compartments at node i is updated according to the state transition that
occurred (§3.2). The time to the next event is computed, after recalculating affected transition
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Node 1 Node 2
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ii) ii)

Exit Exit
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iv)
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Figure 1: Schematic representation of the SIR compartment model in two nodes. The SIR

model is defined by the three disease states susceptible (S), infected (I), and recovered (R).
i) State transitions between the S, I, and R compartments are modeled as a continuous-time
discrete-state Markov process. The other state transitions are due to scheduled events: ii)
enter events, iii) exit events, and iv) external transfer events.

rate functions (§3.2). When simulated time reaches the next day in node i the E1 events are
processed for that node (§3.3). The E2 events are processed when all nodes reaches the next
day (§3.3). Thereafter, the post time step function is called to allow the model to incorporate
model specific actions. When simulated time passes the next time in tspan, the count of the
compartments and the continuous state variables are written to U and V.

4. Model construction and data analysis: basic examples

4.1. A first example: The SIR model

This section illustrates the specification of the predefined SIR model, which contains the three
compartments susceptible (S), infected (I) and recovered (R), where {S, I, R} represents the
number of individuals in each of the three compartments, respectively. The transmission
route of infection to susceptible individuals is through direct contact between susceptible and
infected individuals. The SIR model has two state transitions in each node i,

Si
βSiIi/(Si+Ii+Ri)
−−−−−−−−−−−→ Ii,

Ii
γIi−−→ Ri,

(18)

where β is the transmission rate and γ is the recovery rate. The state change matrix S and
the dependency graph G for the SIR model are defined as follows

S =

1 2
( )

S −1 0
I 1 −1
R 0 1

G =

1 2
( )

S → I 1 1
I → R 1 1

The first step in creating an SIR model object is to define u0, a data.frame with the initial
condition, i.e., the number individuals in each compartment when the simulation starts. We
will start in a node with 100 individuals of which 1 is infected.

R> u0 <- data.frame(S = 99, I = 1, R = 0)
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Next, we define the time period over which we want to simulate the disease spread. This is a
vector of integers in units of time or a vector of dates. You specify those time points in the
vector that you wish the model to return results for. The model itself does not run in discrete
time steps, but continuous time, so this vector affects only the start and end points of the
simulation and the results that you receive from the model, not the internal calculations of
disease transitions through time. In this example we simulate for 6 months returning results
every 7th day

R> tspan <- seq(1, 6 * 30, by = 7)

Before we can simulate from the model, we need to specify the transmission rate, β, and the
recovery rate, γ.

R> model <- SIR(u0 = u0, tspan = tspan, beta = 0.16, gamma = 0.077)

We are now ready to run the model with these parameters and simulate data. We use the
threads and seed arguments for reproducibility.

R> result <- run(model, threads = 1, seed = 22)

The result object contains the number of individuals in each compartment at the time points
specified in tspan and can be extracted using the U method. The row names indicate the
compartments in the model and the colnames are the time points in tspan. Please note that
the U matrix is truncated here for readability.

R> U(result)[, 1:10]

1 8 15 22 29 36 43 50 57 64

S 99 97 90 82 73 67 51 45 37 32

I 1 3 9 6 11 13 22 20 15 14

R 0 0 1 12 16 20 27 35 48 54

The package SimInf has a plot method for objects of class SimInf_model, such as the object
result, which we can use to display the outcome of the disease simulation in the single node
(Figure 2).

R> plot(result)

In order to run a simulation with multiple nodes we need to just add those nodes to the initial
u0 data.frame that we generate to start the model. If you were doing your own modeling of
many nodes, you would have a data.frame of your node population that you read from, for
example, a spreadsheet. For now we will just add another nodes to the data.frame here in
R.

R> u0 <- data.frame(S = c(99, 90), I = c( 1, 2), R = c( 0, 0))

R> model <- SIR(u0 = u0, tspan = tspan, beta = 0.16, gamma = 0.077)

R> result <- run(model, threads = 1, seed = 22)
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Figure 2: Example of simulated data from one realization of the SIR model (Eq. (18)) in one
node, starting with 99 susceptible, 1 infected, and 0 recovered individuals.

If we inspect the U matrix, it now includes results from two nodes above one another for each
time point in the tspan vector. Please note that the U matrix is truncated here for readability.

R> U(result)[, 1:10]

1 8 15 22 29 36 43 50 57 64

S 99 95 86 82 79 75 68 63 58 49

I 1 5 5 6 7 5 9 9 10 13

R 0 0 9 12 14 20 23 28 32 38

S 90 89 89 81 72 56 45 35 21 12

I 2 3 1 8 16 24 22 27 28 25

R 0 0 2 3 4 12 25 30 43 55

Thanks to the high performance of the simulator, we can easily expand the model to in-
clude several hundreds or thousands of nodes, and still run the simulations efficiently. We
will illustrate this by exploring the dynamics when perturbing the model parameters of the
population- and between-node prevalence in 500 nodes after 75 days. This can be achieved
using the run_outer method. It takes a SimInf_model, a formula specifying the model
gdata parameters to perturb, x and y arrays with values of how much to perturb the param-
eters, and a callback function FUN. The model gdata parameters on the right-hand-side of
the formula are scaled with y. Similarly, the gdata parameters on the left-hand-side of the
formula are scaled with x. For each combination of x and y, the model parameters are scaled
and the function FUN called with the perturbed model.

R> u0 <- data.frame(S = rep(99, 500), I = rep(1, 500), R = rep(0, 500))

R> model <- SIR(u0, 1:75, beta = 0.16, gamma = 0.077)

R> x <- seq(from = 0.2, to = 1.8, by = 0.05)

R> y <- seq(from = 0.2, to = 1.1, by = 0.05)

R> pop <- run_outer(x, y, model, gamma ~ beta,
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Figure 3: Contour plot of the population- and between-node prevalence after simulating 75
days of an SIR model in 500 nodes, starting with 99 susceptible, 1 infected, and 0 recovered
individuals in each node at the first day.

+ function(model) {prevalence(run(model), "pop")[75]})

R> bnp <- run_outer(x, y, model, gamma ~ beta,

+ function(model) {prevalence(run(model), "bnp")[75]})

This illustrates that the between-node prevalence increases for increasing values of the trans-
mission rate β, but decreases for increasing values of the recovery rate γ (Figure 3). As can
be seen in the figure, the relationship is more complex for the population prevalence.

Specification of scheduled events in the SIR model

In this example, we will continue to work with the predefined SIR model to explore a within
node disease spread similar to the first SIR example but with the additional feature that
individuals enter and exit the simulation and that the disease can spread between nodes via
movements of infected individuals between nodes.

We will start with the inclusion of a set of individuals that are moved between nodes in the
network (external transfer events). These events are predefined prior to the simulation and
are applied during the simulation process. For example, if your simulation time is in days,
then after each day, SimInf will apply the events in the data and move individuals between
nodes. In the following example we have five nodes with movements between nodes. To
illustrate the movements themselves, we have only started with 30 individuals in the first
node and the other four are empty, and we will run the simulation for five time steps:

R> u0 <- data.frame(S = c(10, 0, 0, 0, 0), I = c(10, 0, 0, 0, 0),

+ R = c(10, 0, 0, 0, 0))

Now we will define 6 scheduled events to include in the simulation. Below is a data.frame,
that contains the events. Interpret it as follows:
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1. In time step 2 we add 2 susceptible individuals to node 2

2. In time step 3 we move 2 individuals from node 1 to node 3

3. In time step 4 we remove 1 individual from node 2

4. In time step 4 we move 1 individual from node 1 to node 3

5. In time step 4 we move 1 individual from node 1 to node 4

6. In time step 5 we move 2 individuals from node 1 to node 5

R> events

event time node dest n proportion select shift

1 1 2 2 0 2 0 1 0

2 3 3 1 3 1 0 2 0

3 0 4 2 0 1 0 2 0

4 3 4 1 3 1 0 2 0

5 3 4 1 4 1 0 2 0

6 3 5 1 5 2 0 2 0

Now we are ready to run the simulation using the events and the disease spread model as we
did in earlier examples:

R> model <- SIR(u0, 1:5, events = events, beta = 0.16, gamma = 0.077)

R> U(run(model, threads = 1, seed = 22))

1 2 3 4 5

S 10 8 7 7 7

I 10 12 11 9 7

R 10 10 11 11 11

S 0 2 2 1 1

I 0 0 0 0 0

R 0 0 0 0 0

S 0 0 1 1 1

I 0 0 0 0 0

R 0 0 0 1 1

S 0 0 0 0 0

I 0 0 0 1 1

R 0 0 0 0 0

S 0 0 0 0 0

I 0 0 0 0 2

R 0 0 0 0 0

If you inspect the result of this very simple simulation, you will see that 2 individuals were
added to node 2, of which one individual was later removed, and that some individuals were
removed from node 1 and placed in nodes 3, 4, and 5. So far this is not really earth-shattering,
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but if we do this again with a few more individuals then we can see how disease can spread
from an infected node to a non-infected one. We will start with 5 nodes again, but node 1 is
infected and nodes 2–5 now each have 100 susceptible and the simulation will run for 75 days:

R> u0 <- data.frame(S = c(90, 100, 100, 100, 100), I = c(10, 0, 0, 0, 0),

+ R = c(0, 0, 0, 0, 0))

And then we have a few movements of individuals from node 1 to the others:

R> events

event time node dest n proportion select shift

1 3 3 1 3 1 0 2 0

2 3 25 1 2 9 0 2 0

3 3 5 1 3 1 0 2 0

4 3 10 1 3 5 0 2 0

Initialize and run the model

R> model <- SIR(u0, 1:75, events = events, beta = 0.16, gamma = 0.077)

R> result <- run(model, threads = 1, seed = 5)

Figure 4 shows the result from running the model. Note the time that it takes for node 2 to
become positive relative to the movements. On day 25, 10 individuals are moved to the node
causing the outbreak. Also despite the fact that we moved individuals from node 1 to node 3,
there was no outbreak in node 3. This is because of the random selection process that select
susceptible, infected or recovered individuals to move between the nodes.

R> plot(result, N = TRUE, spaghetti = TRUE, compartments = "I")

C code for the SIR model

The C code for the SIR model is defined in the source file ’src/models/SIR.c’. This file
contains the SIR_run function to initialize the core solver (Listing 1 in the appendix), the
transition rate functions (Listing 2 in the appendix) and the post time step function (Listing 3
in the appendix).

4.2. A second example: The SISe3_sp model

This section illustrates the specification of the SISe3_sp model, which is also predefined in
the SimInf package. Two additional features, compared to the SIR model, are used by the
SISe3_spmodel: ageing of individuals by internal transfer events, and usage of the real valued
continuous state V . The SISe3_sp model contains the two compartments susceptible (S) and
infected (I) divided into the three age categories j = {1, 2, 3} and the local environmental
compartment (e) contaminated with free living pathogens (Figure 5). Moreover, nodes are
connected spatially with local spread of the contaminated environmental compartment among
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Figure 4: The number of infected individuals in each node when simulating 75 days of an SIR

model in 5 nodes, starting with 90 susceptible and 10 infected individuals in node 1 and 100
susceptible individuals in nodes 2–5, and moving individuals from node 1 to nodes 2 and 3.

proximal nodes. The transmission route of infection to susceptible individuals is indirect via
the local environment, contaminated by infected individuals. The number of individuals
in each of the six compartments {S1, I1, S2, I2, S3, I3} in node i at time t is u[, i]. The
SISe3_sp model has two state transitions within each of the three age categories,

Sij
υjϕi
−−−→ Iij ,

Iij
γj
−→ Sij ,

(19)

where the state transition from susceptible to infected depends on the concentration of the
environmental contamination ϕi(t) of the pathogen in node i and the indirect transmission
rate υj . The state transition from infected to susceptible depends on the recovery rate γj .
Finally, the environmental infectious pressure is evolved by

dϕi(t)

dt
=

αIi(t)

Ni(t)
+
∑

k

ϕk(t)Nk(t)− ϕi(t)Ni(t)

Ni(t)
·
D

dik
− β(t)ϕi(t), (20)

where the constant α is the average shedding rate of the pathogen to the environment per
infected individual, and Ni = Si+Ii the size of node i. The decay and removal of the pathogen
is captured by β, which is allowed to vary with time. A spatial component with local spread
among proximal nodes is also included in the model, where D is the rate of the local spread
and dik the distance between the two holdings i and k. When running a trajectory of the
SISe3_sp model, the environmental infectious pressure ϕi(t) in each node is evolved in the
post-time-step function by the Euler forward method. The value of ϕi(t) is saved to the V

matrix at the time-points specified by tspan.

Illustration of the stochastic step in the SISe3_sp model

To illustrate the stochastic step in Eq. (17), consider that the number of individuals in each
compartment in node i u[, i] at time t is {12, 3, 63, 14, 92, 2} and that the time to the
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Figure 5: Schematic representation of the SISe3_sp compartment model in two nodes. The
SISe3_sp model is defined by the two disease states susceptible (S) and infected (I) in three
age categories and indirect transmission via an environmental infectious pressure ϕi. i) State
transitions between the S and I compartments are modeled as a continuous-time discrete-
state Markov process. The other state transitions are due to scheduled events: ii) enter
events, iii) internal transfer events, iv) external transfer events, and v) exit events. The
environmental infectious pressure ϕi is modeled with an ordinary differential equation and by
default evolved by the Euler forward method.

next state transition is τi. Furthermore, assume that the next state transition is infected
to susceptible in the first age category which corresponds to the second column in the state
change matrix S. Thus, updating the compartments corresponds to adding S[, 2] to u[,

i], which gives {13, 2, 63, 14, 92, 2}. This also implies that the transition rates for the two
transitions Si,1 → Ii,1 and Ii,1 → Si,1 must be recalculated according to G[, 2].

S =

1 2 3 4 5 6




























S1 −1 1 0 0 0 0
I1 1 −1 0 0 0 0
S2 0 0 −1 1 0 0
I2 0 0 1 −1 0 0
S3 0 0 0 0 −1 1
I3 0 0 0 0 1 −1

G =

1 2 3 4 5 6




























S1 → I1 1 1 0 0 0 0
I1 → S1 1 1 0 0 0 0
S2 → I2 0 0 1 1 0 0
I2 → S2 0 0 1 1 0 0
S3 → I3 0 0 0 0 1 1
I3 → S3 0 0 0 0 1 1

Specification of scheduled events in the SISe3_sp model

The SISe3_sp model have been specified to handle births, imports, ageing, moving and exits
of individuals (Table 4 in the appendix). When individuals enter the model (births, imports),
they are added to the susceptible state in the age category specified by column 1, 2 or 3 in E.
The columns 4, 5 and 6 in E are used for the other events (ageing, moving, exit) to sample
individuals from the susceptible and infected states from each of the three ages categories. To
move the sampled individuals in a internal transfer event (ageing) from age category 1 to age
category 2, the susceptible and infected states should shift two steps to the corresponding state
in age category 2, as specified in N[, 1]. Similarly, N[, 2] move susceptible and infected
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individuals from age category 2 to age category 3.

E =

1 2 3 4 5 6




























S1 1 0 0 1 0 0
I1 0 1 0 1 0 0
S2 0 0 1 0 1 0
I2 0 0 0 0 1 0
S3 0 0 0 0 0 1
I3 0 0 0 0 0 1

N =

1 2




























S1 2 0
I1 2 0
S2 0 2
I2 0 2
S3 0 0
I3 0 0

Case study using the SISe3_sp model

In this section we will demonstrate how to construct and use the SISe3_sp model together
with synthetic cattle events and population data included with the package SimInf. The data
defines the initial population divided into three age categories (0 days ≤ age 1 < 120 days,
120 days ≤ age 2 < 365 days and age 3 ≥ 365 days) in 1600 nodes and scheduled events over
4× 365 days. The two data sets for the model are loaded with

R> data("u0_SISe3", package = "SimInf")

R> data("events_SISe3", package = "SimInf")

To model local spread of the environmental infectious pressure among proximal nodes, we
have to generate a distance matrix. Let us use the synthetic data set (nodes) included in the
SimInf package, which defines a cattle population consisting of 1600 herds located in a 50
square kilometer region, and let proximal neighbors be defined as neighbors within 2500m.

R> data("nodes", package = "SimInf")

R> d <- distance_matrix(x = nodes$x, y = nodes$y, cutoff = 2500)

Next we define tspan to simulate for 4 consecutive years returning the results every 7th day

R> tspan <- seq(1, 4 * 365, by = 7)

We are now ready to create an SISe3_sp object using the SISe3_sp generating method. The
parameters for this example have been chosen such that the between-node prevalence for a
sample trajectory is around 10% and have a seasonal pattern. We assume that the average
duration of infection is 10 days in all age categories, such that the recovery rate γ1,2,3 = 0.1
per animal per day, and assume that the indirect transmission rate of the environmental
infectious pressure γ is equal in all age categories. Moreover, we fix the average shedding rate
α = 1 and allow the decay of the bacteria to vary in four seasonal intervals, β1, ..., β4 over the
year. The end point (day of the year) for each season beta_t1, ..., beta_t4 is determined by
end_t1, ..., end_t4, respectively. We let the local environmental infectious pressure ϕi = 0 at
the beginning of the simulation and let 10% of the herds start with 5% infected individuals.

R> set.seed(123)

R> i <- sample(1:1600, 160)
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R> u0_SISe3$I_1[i] <- as.integer(u0_SISe3$S_1[i] * 0.05)

R> u0_SISe3$I_2[i] <- as.integer(u0_SISe3$S_2[i] * 0.05)

R> u0_SISe3$I_3[i] <- as.integer(u0_SISe3$S_3[i] * 0.05)

R> u0_SISe3$S_1[i] <- u0_SISe3$S_1[i] - u0_SISe3$I_1[i]

R> u0_SISe3$S_2[i] <- u0_SISe3$S_2[i] - u0_SISe3$I_2[i]

R> u0_SISe3$S_3[i] <- u0_SISe3$S_3[i] - u0_SISe3$I_3[i]

Let us now construct an SISe3_sp model object

R> model <- SISe3_sp(u0 = u0_SISe3, tspan = tspan, phi = rep(0, 1600),

+ events = events_SISe3, upsilon_1 = 0.013, upsilon_2 = 0.013, upsilon_3

+ = 0.013, gamma_1 = 0.1, gamma_2 = 0.1, gamma_3 = 0.1, alpha = 1,

+ beta_t1 = 0.095, beta_t2 = 0.12, beta_t3 = 0.10, beta_t4 = 0.15,

+ end_t1 = 91, end_t2 = 182, end_t3 = 273, end_t4 = 365, distance = d,

+ coupling = 0.1)

where phi, beta_t1, ..., beta_t4, end_t1, ..., end_t4, and distance is local data to each
node, and passed to the transition rate functions and the post-time step function in the ldata
parameter.

The package SimInf has a summary method for objects of class SimInf_model, such as the
object model, which displays the model name, the number of nodes Nnodes, the number of
compartments Ncomp, the number of transitions Ntrans, and the total number of scheduled
events and information regarding each event type. If the model has not yet been run, the size
of U and V is 0 x 0.

R> summary(model)

Model: SISe3_sp

Number of nodes: 1600

Number of compartments: 6

Number of transitions: 6

Number of scheduled events: 783773

- Exit: 182535 (n: min = 1 max = 1 avg = 1.0)

- Enter: 182685 (n: min = 1 max = 1 avg = 1.0)

- Internal transfer: 317081 (n: min = 1 max = 4 avg = 1.1)

- External transfer: 101472 (n: min = 1 max = 1 avg = 1.0)

U: 0 x 0

V: 0 x 0

Furthermore, we can display the distribution of the scheduled events over time. Note that
the synthetic events have been generated to illustrate features of the SimInf package and
not to incorporate the full complexity of population demographics and a temporal network.
The synthetic data mimics seasonality in real livestock data Bajardi et al. (2011); Dutta
et al. (2014); Widgren, Engblom, Bauer, Frössling, Emanuelson, and Lindberg (2016), such
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R> plot(events(model))
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Figure 6: The distribution of the synthetic scheduled events data set events_SISe3, that is
distributed with the SimInf package. The enter event adds individuals to a node. The internal
transfer event changes the number of individuals in the compartments within one node. The
external transfer event moves individuals from compartments in one node to compartments
in a destination node. Finally, the exit event removes individuals from a node.

that the number of scheduled events varies over time, see Figure 6. However, the between-
node movements (external transfer) have been generated from random connections, which is
probably not realistic for real livestock data.

The scheduled events give rise to a seasonal variation of the population size in each age
category that can be explored using data in the U matrix. The susceptible and infected

methods take an age argument that can be used to determine the population size by age
category. Let us first run a trajectory to generate data in U, and then plot the number of
individuals in each age category (Figure 7).

R> result <- run(model, threads = 1, seed = 1)

R> N1 <- colSums(susceptible(result, age = 1) + infected(result, age = 1))

R> N2 <- colSums(susceptible(result, age = 2) + infected(result, age = 2))

R> N3 <- colSums(susceptible(result, age = 3) + infected(result, age = 3))

R> opar <- par(mfrow = c(3, 1), mar = c(2, 5, 1, 1))

R> plot(N3 ~ tspan, ylab = "N", type = "l", bty = "l", lty = 1)

R> plot(N2 ~ tspan, ylab = "N", type = "l", bty = "l", lty = 2)

R> plot(N1 ~ tspan, ylab = "N", type = "l", bty = "l", lty = 3)

R> mtext("Day", side = 1, line = 1, at = 750)

R> par(opar)

We might now be interested in exploring how various changes to the model could influence
the spread of infection in the population of interconnected nodes. Let us compare the spatio-
temporal distribution of disease spread when removing the effect of animal movements and
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Figure 7: The population dynamics after running one trajectory over 4 × 365 days of the
SISe3 model using the scheduled events data contained in the SimInf package. Top: Plot
showing the number of individuals older than 356 days. Middle: Plot showing the number
of individuals between 120 and 365 days. Bottom: Plot showing the number of individuals
younger than 120 days. Please note that the y-axis do not start at zero and have different
scales.

local spread. First, we need to create a utility function to visualize the spatio-temporal spread
at evenly spaced time-points.

R> plot_nodes <- function(x) {

+ wnp <- prevalence(x, type = "wnp") > 0

+ opar <- par(mfrow = c(3, 6), mar = c(2, 0.3, 0.3, 0.3))

+ on.exit(opar)

+ for(i in seq(1, dim(wnp)[2], length.out = 18)) {

+ Si <- which(!wnp[, i])

+ Ii <- which(wnp[, i])

+ plot(nodes$x[Si], nodes$y[Si], col = "yellow", pch = 20, xlab = "",

+ ylab = "", xaxt = "n", yaxt = "n", ann = FALSE)

+ day <- 7 * as.integer(i - 1) + 1

+ mtext(sprintf("Day: %i", day), side = 1, line = 0.5)

+ points(nodes$x[Ii], nodes$y[Ii], col = "blue", pch = 20)

+ }

+ }

To remove local spread, we have only to set the coupling parameter to zero and run the
model (Figure 8b).

R> model@gdata["coupling"] <- 0

R> plot_nodes(run(model, threads = 1, seed = 1))

We would also like to explore the effect on the disease-spread when considering local spread
only. However, removing all the external transfer events could potentially set a node in a state



24 SimInf: Data-driven Stochastic Disease Spread Simulations

(a) Between-node disease-spread by both movements of
infected individuals and local spread among proximal nodes.

(b) Between-node disease-spread by movements of infected individuals.

(c) Between-node disease-spread by local spread among proximal nodes.

Figure 8: The distribution of infected nodes (among 1600 nodes within a 50 square kilometer
region) at evenly spaced time points from one realization of the SISe3_sp model over 4× 365
days using synthetic data included in the SimInf package.
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where the other event types cannot be handled due to too few animals in the node. Another
approach to solve this is to shift all infected animals to the susceptible state during an external
transfer event so that infection is not transferred, even though an animal is moved. This can
be achieved in SimInf by adding one column to the shift matrix N and use that column for
the external transfer events. Figure 8c shows the result from running one trajectory with the
modified model.

R> model@gdata["coupling"] <- 0.1

R> model@events@N <- cbind(model@events@N,

+ "3" = c(0L, -1L, 0L, -1L, 0L, -1L))

R> i <- which(model@events@event == 3)

R> model@events@shift[i] <- 3L

R> plot_nodes(run(model, threads = 1, seed = 1))

In this example, removing either local spread or animal movements was not sufficient to
eradicate the disease (Figure 8).

5. Extending SimInf: New models

One of the design goals of SimInf was to make it extendable. The current design supports
two ways to extend SimInf with new models, and this section describes the relevant steps to
implement a new model. Since extending SimInf requires that C code can be compiled, you
will first need to install a compiler. To read more about interfacing compiled code from R

and creating R add-on packages, the ’Writing R extensions’ (https://cran.r-project.
org/doc/manuals/r-release/R-exts.html) manual is the official guide and describes the
process in detail. Another useful resource is the ’R packages’ book by Wickham (2015)
(http://r-pkgs.had.co.nz/).

5.1. Using the model parser to define a new model

The easiest way to define a new model for SimInf is to use the model parser method mparse. It
takes a character vector of transitions in the form of "X -> propensity -> Y" and generates
both C code for the model and the two matrices S and G. The left hand side of the first ’->’-
sign is the initial state, the right hand side of the last ’->’-sign is the final state, and the
propensity is written between the ’->’-signs. The special symbol ’@’ is reserved for the empty
set ∅. We suggest to first draw a schematic representation of the model that includes all
compartments and arrows for all state transitions. Then list the compartments in the order
they should appear in the U matrix. For example, transitions <- c("S -> b*S*I/(S+I+R)

-> I", "I -> g*I -> R") expresses an SIR model in a closed population, where b is the
transmission rate, and g is the recovery rate. We also need to specify the compartments that
defines the model.

R> transitions <- c("S -> b*S*I/(S+I+R) -> I", "I -> g*I -> R")

R> compartments <- c("S", "I", "R")

We can now use the transitions and compartments variables, together with constants b and
g to build an object of class ’SimInf_mparse’ via a call to mparse. Before we can simulate
from the model, it needs to be initialized with the initial condition u0 and tspan.

https://cran.r-project.org/doc/manuals/r-release/R-exts.html
https://cran.r-project.org/doc/manuals/r-release/R-exts.html
http://r-pkgs.had.co.nz/


26 SimInf: Data-driven Stochastic Disease Spread Simulations

0 50 100 150

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

P
ro

p
o

rt
io

n

Time

S I R

Figure 9: Example of simulated data from one realization of the mparse SIR model (Eq. (18))
in one node, starting with 99 susceptible, 1 infected, and 0 recovered individuals.

R> m <- mparse(transitions, compartments, b = 0.16, g = 0.077)

R> model <- init(m, u0 = cbind(S = 99, I = 1, R = 0), tspan = 1:180)

As in earlier examples, the model object can now be used to simulate data and plot the
results. Internally, the C code that was generated by mparse is written to a temporary file
when the run method is called. If the temporary file is compiled successfully, the resulting
DLL is dynamically loaded and used to run one trajectory of the model. Once the simulator
completes, the DLL is unloaded and the temporary files are removed.

R> result <- run(model, threads = 1, seed = 22)

R> plot(result)

The flexibility of the mparse approach allows for quick prototyping of new models or features.
Let us elaborate on the previous example and explore the incidence cases per day. This can
easily be done by adding one compartment ’Icum’ whose sole purpose is to keep track of how
many individuals who become infected over time. We then calculate successive differences at
each time-point in ’Icum’ and plot the result as an epidemic curve (Figure 10).

R> m <- mparse(c("S -> b*S*I/(S+I+R) -> I + Icum", "I -> g*I -> R"),

+ c("S", "I", "Icum", "R"), b = 0.16, g = 0.077)

R> model <- init(m, cbind(S = 99, I = 1, Icum = 0, R = 0), 1:180)

R> result <- run(model, threads = 1, seed = 22)

R> plot(stepfun(result@tspan[-1], diff(c(0, U(result)["Icum",]))),

+ main = "", xlab = "Time", ylab = "Number of cases",

+ do.points = FALSE)

Although SimInf was designed to study disease spread over temporal networks, it is not limited
to that use case but can also be used to study the dynamics of other systems. In a final mparse
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Figure 10: One realization of an epidemic curve displaying the number of incident cases per
day in a node when simulating 180 days of the mparse SIR model (Eq. (18)), starting with
99 susceptible, 1 infected and 0 recovered individuals.

example we will illustrate the Rosenzweig-MacArthur predator-prey model demonstrated in
the GillespieSSA package (Rosenzweig and MacArthur 1963; Pineda-Krch 2008). The model
has a density-dependent growth in the prey and and a nonlinear Type-2 functional response
in the predator (Rosenzweig and MacArthur 1963). Let R and F denote the number of prey
and predators, respectively. The model consists of five transitions (Eq. (21)): i) prey birth,
ii) prey death due to non-predatory events, iii) prey death due to predation, iv) predator
birth, and v) predator death

∅
bR·R
−−−→ R

R
(dR+(bR−dR)·R/K)·R
−−−−−−−−−−−−−−→ ∅

R
α/(1+w·R)·R·F
−−−−−−−−−−→ ∅

∅
bF ·α/(1+w·R)·R·F
−−−−−−−−−−−−→ F

F
dF ·F
−−−→ ∅



































, (21)

where bR, dR, bF , and dF are the per capita birth and death rate of the prey and predator,
respectively. Furthermore, K is the carrying capacity of the prey, α is the predation efficiency,
and w is the degree of predator saturation (Pineda-Krch 2008). Using parameter values from
Pineda-Krch (2008), we define the model as

R> m <- mparse(transitions = c("@ -> bR*R -> R",

+ "R -> (dR+(bR-dR)*R/K)*R -> @", "R -> alpha/(1+w*R)*R*F -> @",

+ "@ -> bF*alpha/(1+w*R)*R*F -> F", "F -> dF*F -> @"),

+ compartments = c("R", "F"), bR = 2, bF = 2, dR = 1, K = 1000,

+ alpha = 0.007, w = 0.0035, dF = 2)

R> model <- init(m, cbind(R = 1000, F = 100), 1:100)
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Figure 11: One realization of the mparse Rosenzweig-MacArthur predator-prey model. In
this trajectory, the predator (F) go extinct after about 25 time steps while the prey (R) then
fluctuates around a plateu of 1000 individuals.

R> result <- run(model, threads = 1, seed = 1)

R> plot(result, N = TRUE)

5.2. Use the SimInf solver from another package

Another possibility is to extend SimInf by creating an R add-on package that uses SimInf

by linking to its core solver native routine, and this section describes the relevant steps to
achieve this. Consider we wish to create a new add-on package PredatorPrey based on the
Rosenzweig-MacArthur predator-prey model from the previous section. To facilitate this, the
SimInf package includes a method (package_skeleton) that automates some of the setup for
a new source package. It creates directories, saves R and C code files to appropriate places,
and creates skeleton help files.

R> path = tempdir()

R> package_skeleton(m, "PredatorPrey", path = path)

where the first argument is the result (SimInf_mparse object) from the mparse method, and
the second argument is the name of the package to create a skeleton for. The created R

file (’R/models.R’) defines the S4 class PredatorPrey that contains the SimInf_model and
a generating function to create a new object of the PredatorPrey model. The generating
function is a template that might need to be updated to meet the specific requirements of the
model, e.g. if the model should handle scheduled events, then E must be specified to select
the subset of compartments involved in each specific event. Furthermore, if one of the events
is an internal transfer event, N must be specified to shift individuals between compartments
within one holding. It is also possible to define parameters that are either local (ldata) to
each node or shared (gdata) between all nodes.

The C file (’src/models.c’) defines one function for each state transition, the post time step
function and the model specific run function, and is automatically compiled when installing
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the package. The header file "SimInf.h" contains the declarations for these functions and
should be included. The SimInf_model_run function is the interface from R to the core
solver in C and list all function pointers to the transition rate functions in a vector in the
order the state transitions appear in the dependency graph G, see Listing 1 in the appendix
for an example from the SIR model and the use of the address of operator ’&’ to obtain the
address of a function. The SimInf_model_run function must return the result from the call
to the core solver with SimInf_run. The arguments to SimInf_run are the arguments passed
to the SimInd_model_run function plus the vector of function pointers to the transition rate
functions and the function pointer to the post time step function. To facilitate extraction of
specific values from the data structures passed as arguments to the transition rate functions
and the post time step function, we recommend using enumeration declarations to name the
values, see Listing 2 in the appendix for an example.

The add-on PredatorPrey source package can now be built and installed with

R> install.packages(file.path(path, "PredatorPrey"), repos = NULL)

If the installation was successful, the newly installed package PredatorPrey can be loaded in
R with the following command.

R> library("PredatorPrey")

6. Conclusion

In this paper we have introduced the R package SimInf which supports data-driven simulations
of disease transmission over spatio-temporal networks. The package offers a very efficient and
highly flexible tool to incorporate real data in simulations at realistic scales.

We hope that our package will facilitate incorporating large volumes of available data, for
example, livestock data, in network epidemic models to better understand disease transmission
in a temporal network and improve design of intervention strategies for endemic and emerging
threats. Future efforts will be concentrated on a software development driven predominantly
by actual use cases.
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8. Appendix

8.1. Pseudo-code for the core simulation solve

Algorithm 1 Pseudo-code for the core simulation solver using direct SSA

1: Run trajectory: Dispatch to model specific run method.
2: C interface: Initialize model transition rate functions and post time step function.
3: for all nodes i=1 to Nnodes do in parallel
4: Compute transition rates for all transitions ωi,j , j = 1, . . . , Ntrans.
5: end for
6: while t < TEnd do
7: for all nodes i=1 to Nnodes do in parallel
8: loop

9: Compute sum of transition rates λi =
∑Ntrans

j=1 ωi,j

10: Sample time to next stochastic event τi = − log(r1)/λi where r1 is a uniformly distributed
random number in the range (0, 1)

11: if τi + ti >= TNext day then
12: Move simulated time forward ti = TNext day

13: go to 20
14: end if
15: Move simulated time forward ti = ti + τi
16: Determine which state transition happened; by inversion, find n such that

∑n−1

j=1 ωi,j < λr2 ≤
∑n

j=1 ωi,j where r2 is a uniformly distributed random number in the

range (0, 1)
17: Update the compartments u[, i] using the state-change vector S[, n]
18: Use the dependency graph G[, n] to recalculate affected transition rates ωi,j

19: end loop
20: Process E1 events
21: end for
22: Process E2 events
23: for all nodes i=1 to Nnodes do in parallel
24: Call post time step function and update the continuous state variable v[ ,i].
25: end for
26: TNext day = TNext day + 1
27: end while
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8.2. C code for the SIR model

Listing 1: Implementation of the function to init and run a simulation with the SIR model

SEXP SIR run (SEXP model , SEXP threads , SEXP seed )
{

TRFun t r f un [ ] = {&SIR S to I , &SIR I to S } ;

return SimInf run (model , threads , seed , t r fun , &SISe3 po s t t ime s t ep ) ;
}

Listing 2: Implementation of the transition rate functions in the SIR model for the transitions
in Eq. (18) between the susceptible and infected compartments. The enumeration declarations
are used to name the variable offsets and facilitate extraction of the values from the various
data vectors.

/✯ Of f s e t in i n t e g e r compartment s t a t e vec to r ✯/
enum {S , I , R} ;

/✯ Of f s e t s in g l o b a l data ( gdata ) to parameters in the model ✯/
enum {BETA, GAMMA} ;

/✯ s u s c e p t i b l e to i n f e c t e d : S −> I ✯/
double SIR S to I ( const int ✯u , const double ✯v , const double ✯ ldata ,

const double ✯gdata , double t )
{

const double S n = u [ S ] ;
const double I n = u [ I ] ;
const double n = S n + I n + u [R ] ;

i f (n > 0 . 0 )
return ( gdata [BETA] ✯ S n ✯ I n ) / n ;

return 0 . 0 ;
}

/✯ i n f e c t e d to s u s c e p t i b l e : I −> S ✯/
double SIR I to S ( const int ✯u , const double ✯v , const double ✯ ldata ,

const double ✯gdata , double t )
{

return gdata [GAMMA] ✯ u [ I ] ;
}

Listing 3: Implementation of the post time step function in the SIR model. The post time
step function should return a value > 0 if the node needs to recalculate the transition rates
for the node, a value (error code) < 0 if an error is detected, or otherwise 0. Since the post
time step function for the SIR model does not make any changes to a node, it always return
0.

int SIR pos t t ime s tep (double ✯v new , const int ✯u , const double ✯v ,
const double ✯ ldata , const double ✯gdata ,
int node , double t )

{
return 0 ;

}
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8.3. Illustration of scheduled events

This section illustrates how the scheduled events for the SISe3_sp model are specified (Ta-
ble 4) and how each event type is executed Figures 12,13,14,15,16

Action event time node dest n proportion select shift

Exit individuals in S1 and I1 0 t x 0 n 0 4 0
Exit individuals in S2 and I2 0 t x 0 n 0 5 0
Exit individuals in S3 and I3 0 t x 0 n 0 6 0
Enter individuals in S1 and I1 1 t x 0 n 0 1 0
Enter individuals in S2 and I2 1 t x 0 n 0 2 0
Enter individuals in S3 and I3 1 t x 0 n 0 3 0
Age individuals in S1 and I1 2 t x 0 n 0 4 1
Age individuals in S2 and I2 2 t x 0 n 0 5 2
Move individuals in S1 and I1 3 t x y n 0 4 0
Move individuals in S2 and I2 3 t x y n 0 5 0
Move individuals in S3 and I3 3 t x y n 0 6 0

Table 4: Examples of the specification of a single row of scheduled event data in the SISe3_sp
model to add, move or remove individuals during the simulation.
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Figure 12: Illustration of a scheduled exit event (event = 0) in the SISe3_sp model at time =
4. The removal of one individual in the third age category {S3, I3} from node 14. Interpreting
the figure from left to right: i) A single row of the event data operating on node 14. ii) u[, 14]

is the current state of node 14; E[, 6] is the 6th column in the select matrix that determines
which compartments (age categories) that are eligible for sampling. iii) The operation of
randomly sampling one individual (n = 1) to move from the compartments selected in step
ii. iv) The resultant state of node 14 after subtracting the sampled individual in step iii from
node 14. †dest and §shift are not used in a scheduled exit event. ‡proportion is not used
when n > 0.
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Figure 13: Illustration of a scheduled enter event (event = 1) in the SISe3_sp model at time
= 4. Add three susceptible individuals to the first age category {S1} in node 14. Interpreting
the figure from left to right: i) A single row of the event data operating on node 14. ii)
u[, 14] is the current state of node 14. iii) E[, 1] is the first column in the select matrix
that determines which compartments (age categories) the new individuals are added. iv) The
resultant state of node 14 after adding the individuals in step iii. †dest, ‡proportion and
§shift are not used in a scheduled enter event.
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Figure 14: Illustration of a scheduled external transfer event (event = 3) in the SISe3_sp

model at time = 4. The movement of one individual in the third age category {S3, I3} from
node 14 to destination node 23. Interpreting the figure from left to right: i) A single row
of the event data operating on node 14 and destination node 23. ii) u[, 14] is the current
state of node 14; u[, 23] is the current state of the destination node 23; E[, 6] is the 6th

column in the select matrix that determines which compartments (age categories) that are
eligible for sampling. iii) The operation of randomly sampling one individual (n = 1) to move
from the compartments selected in step ii. iv) The resultant state of node 14 and destination
node 23 after subtracting the sampled individuals in step iii from node 14 and adding them to
destination node 23. †shift can be used in a scheduled external transfer event, see Figure 16.
‡proportion is not used when n > 0.
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Figure 15: Illustration of a scheduled internal transfer event (event = 2) in the SISe3_sp

model at time = 4. The ageing of three individuals in the first age category {S1, I1}. Inter-
preting the figure from left to right: i) A single row of the event data operating on node 14.
ii) u[, 14] is the current state of node 14; E[, 4] is the 4th column in the select matrix that
determines which compartments (age categories) that are eligible for sampling. iii) The oper-
ation of randomly sampling three individuals (n = 3) to age from the compartments selected
in step ii. iv) The shift operation applies the shift specified in column 1 of the shift matrix
(N) to the individuals sampled in step iii. v) The resultant state of node 14 after subtracting
the sampled individuals in step iii and adding the individuals after the shift operation in step
iv. †dest is not used in internal transfers. ‡proportion is not used when n > 0.
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Figure 16: Illustration of a scheduled external transfer event (event = 3) in the SISe3 model
at time = 4. The ageing of three individuals in the second age category {S2, I2} that are
subsequently moved. Interpreting the figure from left to right: i) A single row of the event
data operating on node 14 and destination node 23. ii) u[, 14] is the current state of node
14; u[, 23] is the current state of the destination node 23; E[, 5] is the 5th column in
the select matrix that determines which compartments (age categories) that are eligible for
sampling. iii) The operation of randomly sampling three individuals (n = 3) to move from the
compartments selected in step ii. iv) The shift operation applies the shift specified in column
2 of the shift matrix (N) to the individuals sampled in step iii. v) The resultant state of node
14 and destination node 23 after subtracting the sampled individuals in step iii from node 14
and adding them to the destination node 23 after the shift operation in step iv. ‡proportion

is not used when n > 0.
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