
Use of function tuneParameters in

SamplingStrata package

Package version 1.1

Giulio Barcaroli

October 27, 2015

Abstract

The package SamplingStrata allows to determine the best stratifica-
tion of a target population, the one that ensures the minimum sample cost
necessary to satisfy precision constraints in a multivariate and multido-
main case. The underlying algorithm is based on a non deterministic evo-
lutionary approach, making use of the genetic algorithm paradigm. The
performance of the optimization heavily depends on the values given to
the different parameters of the function optimizeStrata. In order to let
the user choose a convenient combination of these values, the function
tuneParameters available in the package permits to run a number of op-
timization tasks by changing in a planned way the parameters values, and
to compare the results in order to choose the best combination.

1

1 Tuning of parameters and improvement of so-
lutions

The package SamplingStrata allows to determine the best stratification of
a target population, the one that ensures the minimum sample cost necessary
to satisfy precision constraints in a multivariate and multidomain case. The
overall approach together with the optimization algorithm are fully described
in Ballin and Barcaroli (2013) and Barcaroli (2014).

The performance of the optimization step strongly depends on the values
of the parameters that are given to the function optimizeStrata. It is worth
while to run this step a number of times, by varying the values of the parameters
in a planned way, and then to analyze the obtained results in order to choose
the best values of the parameters. The function tuneParameters allows to
run many optimization steps and compare the results in terms of the minimal
sample cost required, and also in terms of the CV’s that may be expected once
having chosen a particular solution. tuneParameters can be applied only to a
given domain per time. The parameters of this function are of the same nature
than those of the function optimizeStrata, but they are given in a vectorial
format, whose length is given by the number of optimizations to be run: it is
therefore possible to define different combination of values of the parameters
for each execution of optimizeStrata. After each optimization run, from the
corresponding optimized frame a given number of samples are drawn. For each
of them, the estimates of the target variables Y’s are computed, together with
the absolute differences between the values of the estimates and the true values
in the population, in order to permit a compared evaluation of the different
solutions found in the different runs. As the optimal solution is stored for each
run, after the evaluation it is possible to use it directly, or as a ”suggestion” for
a new optimization with more iterations (in order to improve it). First, it is
necessary to prepare the data, taking into account the fact that it is possible to
apply the function tuneParameters to a single domain per time:

> library(SamplingStrata)

> data(swissstrata)

> data(swisserrors)

> data(swissframe)

> frame <- swissframe[swissframe$domainvalue == 1,]

> strata <- swissstrata[swissstrata$DOM1 == 1,]

> errors <- swisserrors[swisserrors$domainvalue == 1,]

In this case, the first domain has been selected from the swissframe dataframe
and, consequently, the related strata and constraints on the CV’s. Then, we
have to set the different parameters necessary to the function. The first two
parameters are peculiar to this function:

1. noptim defines the number of different optimization runs;

2. nsampl indicates how many samples have to be drawn from the population
frame whose stratification has been optimized by the current solution.

2

The remaining parameters are the same utilized by the function optimizeS-

trata. The only difference is that they must be passed in a vectorial format,
whose length is determined by the number of optimization runs. In this way, in
the i-th run optimizeStrata will receive the combination of parameters values
corresponding to the i-th position in all vectors. It is possible to give the same
values of some of the parameters for all the runs. In the example, only the
parameter related to the initialStrata is varying, from a minimum of 10% of
the number of initial strata, to a maximum of all of them. We choose to do so
because many experiences showed that the optimization step is very sensitive
to the values of this parameter. The other parameter which is very important
is the ’mutation chance’. So, we define the values of the parameters in this way:

> # Number of runs

> noptim <- 8

> # Number of samples to be drawn after each optimization

> nsampl <- 500

> # Number of initial strata

> initialStrata <- ceiling(c(1:noptim)*0.1*(nrow(strata)))

> # Rate for increasing the number of initial strata

> addStrataFactor <- rep(0.01,noptim)

> # Minimum number of units per stratum

> minnumstr <- rep(2,noptim)

> # Number of iterations for each optimization

> iter <- rep(200,noptim)

> # Number of solutions for each iteration

> pops <- rep(20,noptim)

> # Mutation chance

> mut_chance <- rep(0.004,noptim)

> # Elitism rate

> elitism_rate <- rep(0.2,noptim)

The function is invoked in this way:

> tuneParameters (

+ noptim,

+ nsampl,

+ frame,

+ errors,

+ strata,

+ cens = NULL,

+ strcens = FALSE,

+ alldomains = FALSE,

+ dom = 1,

+ initialStrata,

+ addStrataFactor,

+ minnumstr,

+ iter,

3

+ pops,

+ mut_chance,

+ elitism_rate

+)

Input data have been checked and are compliant with requirements

GA Settings

Population size = 20

Number of Generations = 200

Elitism = 4

Mutation Chance = 0.004

[1] FALSE

4

1 2 3 4 5 6 7 8

15
20

25
30

Runs

N
um

be
r

of
 s

tr
at

a
Number of optimal strata / optimization run

1 2 3 4 5 6 7 8

45
50

55
60

Runs

S
am

pl
e

co
st

Solution cost / optimization run

Figure 1: Results of the different optimizations in terms of number of strata
and minimal sample cost required varying the values of the parameter ’initial
strata’

As already said, for each optimization a number of samples are drawn from
the frame stratified accordingly to the corresponding optimal stratification: this
allows to calculate the sampling variance for each target variable, expressed in
terms of their CV’s. The computed CV’s are stored in the file ’results.csv’,
together with the number of strata and the required sample cost:

> results <- read.csv("results_1.csv")

> results

nsimul nstrati cost CV1 CV2 CV3

1 1 12 43 0.07387714 0.07254699 0.07074644

2 2 22 45 0.07029701 0.06780761 0.06798295

3 3 28 54 0.06314823 0.06383479 0.06326419

4 4 28 53 0.06356393 0.06316806 0.05950538

5 5 34 62 0.05994371 0.05991155 0.05695051

6 6 32 57 0.06610824 0.06545774 0.06570065

7 7 32 61 0.06494032 0.06190481 0.06529612

8 8 32 63 0.06636291 0.06712673 0.06538391

CV4

1 0.07356932

2 0.06622405

5

3 0.06663607

4 0.06456820

5 0.05767928

6 0.07581170

7 0.06657378

8 0.07260232

> ind <- which(results$cost==min(results$cost))

The value of ’ind’ indicates the best found solution, and from this we can
recall the associated values of the parameters:

Best optimization: run # 1

Required sample cost: 43

Values of parameters

initialStrata: 12

addStrataFactor: 0.01

minnumstr: 2

iter: 200

pops: 20

mut_chanc: 0.004

elitism_rate: 0.2

Moreover, for each sample, the difference between the sample estimates and
the true values of the parameters in the population are also calculated. The
distributions of these differences are reported in figure 2.

By comparing the performance of the different optimization runs, the best
solutions in terms of sample cost required to comply the constraints on the
maximum CV’s, can be found. It is related to a precise value of the parameter
initial strata. We can decide to assume this value as the best one, and then
proceed to the tuning of the parameter mutation chance. So, we leave unchanged
the previous values of the other parameters (with the exception of initial strata),
and let the values of mutation chance vary:

6

1 2 3 4 5 6 7 8

−
50

00
0

0
50

00
0

Runs

Y1
Distribution of differences between true value and estimate

1 2 3 4 5 6 7 8

−
50

00
0

0
50

00
0

10
00

00

Runs

Y2
Distribution of differences between true value and estimate

1 2 3 4 5 6 7 8

−
1e

+
05

0e
+

00
5e

+
04

1e
+

05

Runs

Y3
Distribution of differences between true value and estimate

1 2 3 4 5 6 7 8

−
40

00
0

0
20

00
0

60
00

0

Runs

Y4
Distribution of differences between true value and estimate

Figure 2: Distributions of the differences between the sampling estimates and
the true value of the parameter in the population under each optimization run
and for each target variable Y

7

> # Number of initial strata

> bestInitialStrata <- initialStrata[ind]

> initialStrata <- rep(bestInitialStrata,noptim)

> # Mutation chance

> mut_chance <- c(1:noptim)*0.002

Then we run again the function tuneParameters:

> tuneParameters (

+ noptim,

+ nsampl,

+ frame,

+ errors,

+ strata,

+ cens = NULL,

+ strcens = FALSE,

+ alldomains = FALSE,

+ dom = 1,

+ initialStrata,

+ addStrataFactor,

+ minnumstr,

+ iter,

+ pops,

+ mut_chance,

+ elitism_rate

+)

Input data have been checked and are compliant with requirements

GA Settings

Population size = 20

Number of Generations = 200

Elitism = 4

Mutation Chance = 0.002

[1] FALSE

8

1 2 3 4 5 6 7 8

12
.0

12
.5

13
.0

13
.5

14
.0

Runs

N
um

be
r

of
 s

tr
at

a
Number of optimal strata / optimization run

1 2 3 4 5 6 7 8

35
40

45
50

Runs

S
am

pl
e

co
st

Solution cost / optimization run

Figure 3: Results of the different optimizations in terms of number of strata
and minimal sample size required varying the values of the parameter ’mutation
chance’

These are the results:

nsimul nstrati cost CV1 CV2 CV3

1 1 13 51 0.07233588 0.06770695 0.07034980

2 2 12 47 0.07292869 0.06979252 0.07151529

3 3 12 39 0.07164565 0.07023369 0.06858932

4 4 12 39 0.07397722 0.07368510 0.07019791

5 5 12 40 0.07245175 0.07196241 0.07072005

6 6 12 37 0.07430896 0.07261058 0.07410794

7 7 13 33 0.07020422 0.06870895 0.06726404

8 8 13 39 0.07330091 0.07243773 0.07148431

CV4

1 0.07089717

2 0.07197497

3 0.07679662

4 0.07098884

5 0.07282606

6 0.07687320

7 0.07206146

8 0.07515864

9

Best optimization: run # 7

Required sample cost: 33

Values of parameters

initialStrata: 12

addStrataFactor: 0.01

minnumstr: 2

iter: 200

pops: 20

mut_chance: 0.014

elitism_rate: 0.2

So, we can read the best value of the parameter mutation chance. At this
point we can decide to stop the tuning of the parameters (actually, the two that
we considered are the most important, the others being much less influent on
the results). As an option, we can improve the best solution so far obtained,
by running again the function optimizeStrata while increasing the number
of iterations. To speed up the convergence of the genetic algorithm, we give
the solution previously obtained as a suggestion to the genetic algorithm. The
solution is read from the .txt external file written at the end of the ind-th
optimization run carried out by tuneParameters, and introduced in the first
row of a matrix (this is the format required by the internal genetic algorithm).

> stmt <- paste("suggestions <- read.table('solution_dom1_iter",ind,".txt')",sep="")

> eval(parse(text=stmt))

> sugg <- matrix(nrow=1,ncol=nrow(suggestions),data=suggestions[,1])

Then, a new optimization step with the same values of the parameters,
but with a greater number of iterations (the double), and with the use of the
parameter suggestion, is run:

10

> bestMutationChance <- mut_chance[ind]

> solution <- optimizeStrata(

+ errors ,

+ strata ,

+ cens = NULL,

+ strcens = FALSE,

+ alldomains = FALSE,

+ dom = 1,

+ initialStrata = bestInitialStrata,

+ addStrataFactor = 0.01,

+ minnumstr = 2,

+ iter = 1000,

+ pops = 20,

+ mut_chance = bestMutationChance,

+ elitism_rate = 0.2,

+ highvalue = 1e+08,

+ suggestions = sugg,

+ realAllocation = TRUE,

+ writeFiles = TRUE

+)

GA Settings

Population size = 20

Number of Generations = 1000

Elitism = 4

Mutation Chance = 0.014

Suggestions

1 = (1, 2, 3, 1, 1, 1, 4, 5, 3, 6, 6, 7, 7, 4, 7, 8, 9, 8, 7, 9, 7, 10, 7, 7, 10, 9, 6, 10, 10, 10, 10, 11, 10, 11, 11, 11, 3, 1, 1, 1, 12, 4, 3, 3, 5, 6, 4, 3, 1, 3, 1, 7, 12, 12, 5, 8, 9, 2, 3, 6, 3, 4, 3, 4, 8, 6, 5, 8, 13, 13, 4, 5, 13, 2, 7, 12, 13, 13, 13, 8, 13, 2, 6, 12, 13, 13, 4, 4, 8, 7, 2, 2, 5, 4, 2, 7, 5, 9, 12, 7, 8, 12, 9, 5, 7, 6, 13, 8, 6, 8, 9, 10, 6, 12, 9, 6, 2, 9, 2)

11

0 200 400 600 800 1000

50
10

0
15

0

Iteration (Generation)B
es

t (
bl

ac
k

lo
w

er
 li

ne
)

an
d

m
ea

n
(r

ed
 u

pp
er

 li
ne

)
ev

al
ua

tio
n

va
lu

e
Domain # 1 − Sample cost 26

Figure 4: Convergence of the new optimization run

As we can see from the convergence graph, we have improved the previous
solution. As usual, we can now proceed with the next operations (updating of
the frame and selecting the sample):

> newstrata <- updateStrata(strata,solution)

> framenew <- updateFrame(frame,newstrata)

> samp <- selectSample(framenew,solution$aggr_strata)

*** Sample has been drawn successfully ***

26 units have been selected from 13 strata

==> There have been 1 take-all strata

from which have been selected 2 units

Of course, we have to repeat these operations for all the different domains
in the frame.

12

References

Ballin, M. and G. Barcaroli (2013). Joint determination of optimal stratification
and sample allocation using genetic algorithm. Survey Methodology 39, 369–
393.

Barcaroli, G. (2014). SamplingStrata: An R package for the optimization of
stratified sampling. Journal of Statistical Software 61 (4), 1–24.

13

