
Optimization of sampling strata with the

SamplingStrata package

Package version 1.0.3

Giulio Barcaroli

October 19, 2014

Abstract

In stratified random sampling the problem of determining the optimal
size and allocation of units in strata is solved by considering the stratifica-
tion of the population as given. Conversely, the definition of the optimal
stratification of a sampling frame for a given survey is investigated without
choosing, as objective function, the sampling size required to satisfy given
precision constraints on the parameters of interest of a given survey. This
package allows the determination of the best stratification of a target pop-
ulation, the one that ensures the minimum sample size (or the minimum
fieldwork and interviewing costs) so to satisfy precision constraints in a
multivariate and multidomain case. The underlying algorithm is based on
a non deterministic evolutionary approach, making use of the genetic al-
gorithm paradigm. The specific functions for the execution of the genetic
algorithm are a modified version of those contained in the genalg package.

1

Contents

1 Introduction 3

2 Procedural steps 3

3 Analysis of the frame data and manipulation of auxiliary infor-
mation 4

4 Construction of atomic strata and association of the informa-
tion related to target variables 7

5 Choice of the precision constraints for each target estimate 10

6 Optimization of frame stratification 11

7 Analysis of results 13

8 Updating the frame and selecting the sample 15

9 Evaluation of the found solution 16

2

1 Introduction

Let us suppose we need to design a sample survey, having a complete frame
containing information on the target population (identifiers plus auxiliary in-
formation). If our sample design is a stratified one, we need to choose how to
form strata in the population, in order to get the maximum advantage by the
available auxiliary information. In other words, we have to decide in which way
to combine the values of the auxiliary variables (from now on, the ’X’ variables)
in order to determine a new variable, called ’stratum’. To do so, we have to
take into consideration the target variables of our sample survey (from now on,
the ’Y’ variables): if, to form strata, we choose the X variables most correlated
to the Ys, the efficiency of the samples drawn by the resulting stratified frame
may be greatly increased. In order to handle the whole auxiliary information in
a homogenous way, we have to reduce continuous data to categorical (by mean
of a k-means clustering technique, for example). Then, for every set of candi-
date auxiliary variables Xs, we have to decide (i) what variables to consider as
active variables in strata determination, and (ii) for each active variable, what
set of values (in general, what aggregation of atomic values) have to be consid-
ered. Every combination of values of each active variable determine a particular
stratification of the target population, i.e. a possible solution to the problem of
’best’ stratification. Here, by best stratification, we mean the stratification that
ensures the minimum sample cost, sufficient to satisfy a set of precision con-
straints, set on the accuracy of the estimates of the survey target variables Ys
(constraints expressed as maximum allowable sampling variance on estimates in
different domains of interest). When the cost of data collection is uniform over
the strata, then the total cost is directly proportional to the overall sample size,
and the convenience of a particular stratification can be measured by the associ-
ated size of the sample, whose estimates are expected to satisfy given accuracy
levels. This minimum size can be determined by applying the Bethel algorithm,
with its Chromy variant. In general, the number of possible alternative strati-
fications for a given population may be very high, depending on the number of
variables and on the number of their values, and in these cases it is not possible
to enumerate them in order to assess the best one. A very convenient solution
to this, is the adoption of the evolutionary approach, consisting in applying a
genetic algorithm that may converge towards a near-optimal solution after a
finite number of iterations. The methodology is fully described in Ballin and
Barcaroli (2013), and a complete illustration of the package, together with a
comparison with the stratification package, is in Barcaroli (2014). The im-
plementation of the genetic algorithm is based on a modification of the functions
in the genalg package (see Willighagen (2005)).

2 Procedural steps

The optimization of the sampling design starts by making the sampling frame
available, defining the target estimates of the survey and establishing the preci-

3

sion constraints on them. It is then possible to determine the best stratification
and the optimal allocation. Finally, we proceed with the selection of the sample.
Formalizing, these are the required steps:

1. analysis of the frame data: identification of available auxiliary information;

2. manipulation of auxiliary information: in case auxiliary variables are of
the continuous type, they must be transformed into a categorical form;

3. construction of atomic strata: on the basis of the categorical auxiliary
variables available in the sampling frame, a set of strata can be constructed
by calculating the Cartesian product of the values of all the auxiliary
variables;

4. characterization of each atomic stratum with the information related to
the target variables: in order to optimise both strata and allocation of
sampling units in strata, we need information on the distributions of the
target variables (means and standard deviations);

5. choice of the precision constraints for each target estimate, possibly dif-
ferentiated by domain;

6. optimization of stratification and determination of required sample size
and allocation in order to satisfy precision constraints on target estimates;

7. analysis of the resulting optimized strata;

8. association of new labels to sampling frame units, each of them indicating
the new strata resulting by the optimal aggregation of the atomic strata;

9. selection of units from the sampling frame with a stratified random sample
selection scheme;

10. evaluation of the found optimal solution in terms of expected precision
and bias.

In the following, we will illustrate each step starting from a real sampling frame,
the one that comes with the R package sampling (the dataframe swissmunic-

ipalities).

3 Analysis of the frame data and manipulation
of auxiliary information

As a first step, we have to define a frame dataframe containing the following
information:

� a unique identifier of the unit (no restriction on the name, may be ’cod’);

� the (optional) identifier of the stratum to which the unit belongs;

4

� the values of m auxiliary variables (named from X1 to Xm);

� the (optional) values of p target variables (named from Y1 to Yp);

� the value of the domain of interest for which we want to produce estimates
(named ’domainvalue’).

By typing the following statements in the R environment:

> library(SamplingStrata)

> data(swissmunicipalities)

we get the swissmunicipalities dataframe, that contains 2896 observations
(each observation refers to a Swiss municipality). Among the others, there are
the following variables (data are referred to 2003):

� REG: Swiss region.

� Nom: municipality name.

� Surfacesbois: wood area.

� Surfacescult: area under cultivation.

� Alp: mountain pasture area.

� Airbat: area with buildings.

� Airind: industrial area.

� Pop020: number of men and women aged between 0 and 19.

� Pop2040: number of men and women aged between 20 and 39.

� Pop4065: number of men and women aged between 40 and 64.

� Pop65P: number of men and women aged between 65 and over.

� POPTOT: total population.

First, we define the identifier of the frame:

> swissframe <- NULL

> swissframe$id <- swissmunicipalities$Nom

Let us suppose we want to plan a survey whose target estimates are the totals
of population by age class in each Swiss region. In this case, our Y variables
will be:

� Y1: number of men and women aged between 0 and 19.

� Y2: number of men and women aged between 20 and 39.

� Y3: number of men and women aged between 40 and 64.

5

� Y4: number of men and women aged between 65 and over.

So we execute the following statements:

> swissframe$Y1 <- swissmunicipalities$Pop020

> swissframe$Y2 <- swissmunicipalities$Pop2040

> swissframe$Y3 <- swissmunicipalities$Pop4065

> swissframe$Y4 <- swissmunicipalities$Pop65P

As for the auxiliary variables (Xs), we can use all of those characterising the area
use (wood, mountain or pasture, cultivated, industrial, with buildings). As these
variables are of the continuous type, first we have to reduce them in a categorical
(ordinal) form. A suitable way to do so, is to apply a k-means clustering method
(see Hartigan and Wong (1979)) by using the function var.bin:

> library(SamplingStrata)

> swissframe$X1 <- var.bin(swissmunicipalities$POPTOT, bins=18)

> swissframe$X2 <- var.bin(swissmunicipalities$Surfacesbois, bins=3)

> swissframe$X3 <- var.bin(swissmunicipalities$Surfacescult, bins=3)

> swissframe$X4 <- var.bin(swissmunicipalities$Alp, bins=3)

> swissframe$X5 <- var.bin(swissmunicipalities$Airbat, bins=3)

> swissframe$X6 <- var.bin(swissmunicipalities$Airind, bins=3)

Now, we have six different auxiliary variables of the categorical type, the first
with 18 different modalities, the others with 3 modalities. Finally, we have to
set the values of the ’domainvalue’ variable, which is mandatory. As we want
to obtain estimates for each region, we set:

> swissframe$domainvalue <- swissmunicipalities$REG

> swissframe <- data.frame(swissframe)

Now, the swissframe dataframe looks like this way:

> head(swissframe)

id Y1 Y2 Y3 Y4 X1 X2 X3 X4 X5 X6

1 Zurich 57324 131422 108178 66349 18 3 2 1 3 3

2 Geneve 32429 60074 57063 28398 17 1 1 1 3 2

3 Basel 28161 50349 53734 34314 17 1 1 1 3 3

4 Bern 19399 44263 39397 25575 17 2 3 1 3 3

5 Lausanne 24291 44202 35421 21000 17 2 2 1 3 2

6 Winterthur 18942 28958 27696 14887 16 3 3 1 3 3

domainvalue

1 4

2 1

3 3

4 2

5 1

6 4

6

that is the format required by the package. We write the dataframe to a tab
delimited file:

> write.table (swissframe, "swissframe.txt", row.names=FALSE,col.names=TRUE, sep="\t", quote=FALSE)

In any case, this dataframe comes with the package SamplingStrata: it can be
made available by executing:

> library(SamplingStrata)

> data(swissframe)

> head(swissframe)

progr REG X1 X2 X3 X4 X5 X6 id Y1 Y2

1 1 4 18 3 2 1 3 3 Zurich 57324 131422

2 2 1 17 1 1 1 3 2 Geneve 32429 60074

3 3 3 17 1 1 1 3 3 Basel 28161 50349

4 4 2 17 2 3 1 3 3 Bern 19399 44263

5 5 1 17 2 2 1 3 2 Lausanne 24291 44202

6 6 4 16 3 3 1 3 3 Winterthur 18942 28958

Y3 Y4 domainvalue

1 108178 66349 4

2 57063 28398 1

3 53734 34314 3

4 39397 25575 2

5 35421 21000 1

6 27696 14887 4

4 Construction of atomic strata and association
of the information related to target variables

The strata dataframe reports information regarding each stratum in the
population. There is one row for each stratum. The total number of strata is
given by the number of different combinations of Xs values in the frame. For
each stratum, the following information is required:

1. the identifier of the stratum (named ’stratum’ or ’strato’), concatenation
of the values of the X variables;

2. the values of the m auxiliary variables (named from X1 to Xm) corre-
sponding to those in the frame;

3. the total number of units in the population (named ’N’);

4. a flag (named ’cens’) indicating if the stratum is to be censused (=1) or
sampled (=0);

5. a variable indicating the cost of interviewing per unit in the stratum
(named ’cost’);

7

6. for each target variable y, its mean and standard deviation, named respec-
tively ’Mi’ and ’Si’);

7. the value of the domain of interest to which the stratum belongs (’DOM1’).

For example:

> data(strata)

> head(strata)

stratum N X1 X2 X3 M1 M2 S1

1 1 2246 x11 x21 x31 148.1598 443.0137 95.41435

2 2 2972 x11 x21 x32 184.2041 513.8995 81.26956

3 3 1905 x11 x22 x31 193.8927 488.8046 79.66667

4 4 3125 x11 x22 x32 181.3437 597.1925 82.77032

5 5 1733 x12 x21 x31 109.9850 418.2234 88.20289

6 6 1060 x12 x21 x32 114.7943 489.8292 52.71574

S2 cens cost DOM1

1 202.4569 0 1 tot

2 214.9999 0 1 tot

3 261.1876 0 1 tot

4 226.5086 0 1 tot

5 179.1571 0 1 tot

6 166.0292 0 1 tot

If in the frame dataframe are also present the values of the target Y variables
(from a census, or from administrative data), it is possible to automatically
generate the strata dataframe by invoking the buildStrataDF function. Let
us consider again the swissframe dataframe that we have in built in previous
steps. On this frame we can apply the function buildStrataDF:

> swissstrata <- buildStrataDF(swissframe)

Computations have been done on population data

The function takes as unique argument the name of the frame, and also writes
out in the working directory the strata file, always named ’strata.txt’. This is
the structure of the created dataframe:

> head(swissstrata)

STRATO N M1 M2 M3 M4

1 1*1*1*1*1*1 184 48.31522 49.40217 61.44022 28.40761

2 1*1*1*1*1*2 1 98.00000 106.00000 116.00000 43.00000

3 1*1*1*2*1*1 2 57.00000 64.00000 70.00000 50.00000

4 1*1*2*1*1*1 11 77.72727 81.18182 92.36364 47.00000

5 1*2*1*1*1*1 9 58.22222 61.55556 66.77778 36.22222

6 1*2*1*2*1*1 8 61.00000 68.00000 84.62500 58.37500

S1 S2 S3 S4 COST CENS DOM1 X1 X2

8

1 26.81536 28.49831 32.63062 14.63922 1 0 1 1 1

2 0.00000 0.00000 0.00000 0.00000 1 0 1 1 1

3 4.00000 0.00000 1.00000 15.00000 1 0 1 1 1

4 15.24998 18.69768 17.03084 11.12736 1 0 1 1 1

5 25.46360 20.27100 24.89881 15.49751 1 0 1 1 2

6 24.56624 19.48076 26.35307 26.55625 1 0 1 1 2

X3 X4 X5 X6

1 1 1 1 1

2 1 1 1 2

3 1 2 1 1

4 2 1 1 1

5 1 1 1 1

6 1 2 1 1

It is worth while noting that the total number of different atomic strata is 641,
lower than the dimension of the Cartesian product of the Xs (which is 4374):
this is due to the fact that not all combinations of the value of the auxiliary
variables are present in the sampling frame. Variables ’cost’ and ’cens’ are
initialised respectively to 1 and 0 for all strata. It is possible to give them
different values:

1. for variable ’cost’, it is possible to differentiate the cost of interviewing per
unit by assigning real values;

2. for variable ’cens’, it is possible to set it equal to 1 for all strata that are
of the ’take-all’ type (i.e. all units in that strata must be selected).

The swissstrata dataframe comes together with SamplingStrata package, it
can be made available by typing:

> data(swissstrata)

On the contrary, if there is no information in the frame regarding the target vari-
ables, it is necessary to build the strata dataframe starting from other sources,
for instance a previous round of the same survey, or from other surveys. In this
case, we need to read sample data by executing:

> samp <- read.delim("samplePrev.txt")

The only difference is that computed mean and variances of the Ys are sampling
estimates, whose reliability should be evaluated by carefully considering their
sampling variances. In addition to the naming constraints previously introduced,
this case requires that a variable named ’WEIGHT’ is present in the samp
dataframe. Then we can execute this function in this way:

> strata <- buildStrataDF(samp)

The result is much the same than in the previous case: the function creates a
new dataframe, strata, and writes out in the working directory the strata file,
named ’strata.txt’.

Note that in all cases, for each target variable Y, mean and standard devia-
tion are calculated excluding NAs.

9

5 Choice of the precision constraints for each
target estimate

The errors dataframe contains the accuracy constraints that are set on
target estimates. This means to define a maximum coefficient of variation for
each variable and for each domain value. Each row of this frame is related
to accuracy constraints in a particular subdomain of interest, identified by the
DOM1 value. In the case of the Swiss municipalities, we have chosen to define
the following constraints:

> data(swisserrors)

> swisserrors

DOM CV1 CV2 CV3 CV4 domainvalue

1 DOM1 0.08 0.12 0.08 0.12 1

2 DOM1 0.08 0.12 0.08 0.12 2

3 DOM1 0.08 0.12 0.08 0.12 3

4 DOM1 0.08 0.12 0.08 0.12 4

5 DOM1 0.08 0.12 0.08 0.12 5

6 DOM1 0.08 0.12 0.08 0.12 6

7 DOM1 0.08 0.12 0.08 0.12 7

This example reports accuracy constraints on variables Y1, Y2, Y3 and Y4 that
are the same for all the 7 different subdomains (Swiss regions) of domain level
DOM1. Of course we can differentiate the precision constraints region by region.
It is important to underline that the values of ’domainvalue’ are the same than
those in the frame dataframe, and correspond to the values of variable ’DOM1’
in the strata dataframe. Once having defined dataframes containing frame data,
strata information and precision constraints, it is worth while to check their
internal and reciprocal coherence. It is possible to do that by using the function
checkInput:

> checkInput(swisserrors,swissstrata,swissframe)

Input data have been checked and are compliant with requirements

For instance, this function controls that the number of auxiliary variables is the
same in the frame and in the strata dataframes; that the number of target
variables indicated in the frame dataframe is the same than the number of
means and standard deviations in the strata dataframe, and the same than
the number of coefficient of variations indicated in the errors dataframe.

If we try to determine the total size of the sample required to satisfy these
precision constraints, considering the current stratification of the frame (the 641
atomic strata), we can do it by simply using the function bethel. This function
requires a slightly different specification of the constraints dataframe:

> cv <- swisserrors[1,]

> cv

10

DOM CV1 CV2 CV3 CV4 domainvalue

1 DOM1 0.08 0.12 0.08 0.12 1

because the bethel function does not permit to differentiate precision con-
straints by subdomain. In any case, the result of the application of the Bethel
algorithm (see Bethel (1989)) is:

> sum(bethel(swissstrata,cv))

[1] 893

That is, the required amount of units to be selected, with no optimization of
sampling strata. In general, after the optimization, this number is sensibly
reduced.

6 Optimization of frame stratification

Once the strata and the constraints dataframes have been prepared, it is
possible to apply the function that optimises the stratification of the frame,
that is optimizeStrata. This function operates on all subdomains, identifying
the best solution for each one of them. The fundamental parameters to be
passed to optimizeStrata are:

1. errors: the (mandatory) dataframe containing the precision levels ex-
pressed in terms of maximum allowable coefficients of variation that regard
the estimates on target variables of the survey

2. strata: the (mandatory) dataframe containing the information related to
’atomic’ strata, i.e. the strata obtained by the Cartesian product of all
auxiliary variables Xs. Information concerns the identifiability of strata
(values of Xs) and variability of Ys (for each Y, mean and standard devi-
ation in strata)

3. cens: the (optional) dataframe containing the takeall strata, those strata
whose units must be selected in whatever sample. It has same structure
than strata dataframe

4. strcens: flag (TRUE/FALSE) to indicate if takeall strata do exist or not.
Default is FALSE

5. initialStrata: the initial limit on the number of strata for each solution.
Default is 3000

6. addStrataFactor: this parameter indicates the probability that at each
mutation the number of strata may increase with respect to the current
value. Default is 0.01

7. minnumstr: indicates the minimum number of units that must be allocated
in each stratum. Default is 2

11

8. iter Indicated the maximum number of iterations (= generations) of the
genetic algorithm. Default is 20

9. pops The dimension of each generations in terms of individuals. Default
is 50

10. mut_chance (mutation chance): for each new individual, the probability
to change each single chromosome, i.e. one bit of the solution vector. High
values of this parameter allow a deeper exploration of the solution space,
but a slower convergence, while low values permit a faster convergence,
but the final solution can be distant from the optimal one. Default is 0.05

11. elitism_rate: this parameter indicates the rate of better solutions that
must be preserved from one generation to another. Default is 0.2.

12. highvalue: parameter for genetic algorithm. Its default value should not
be changed

13. suggestions: optional parameter for genetic algorithm that indicates one
possible solution (maybe from previous runs) that will be introduced in
the initial population. Default is NULL.

14. realAllocation : if FALSE, the allocation is based on INTEGER values;
if TRUE, the allocation is based on REAL values. Default is FALSE.

15. writeFile : indicates if at the end of the processing the resulting strata
will be outputted in a delimited file. Default is ”YES”.

In the case of the Swiss municipalities, this is a possible choice of the value of
the parameters:

> solution <- optimizeStrata(

+ errors = swisserrors,

+ strata = swissstrata,

+ cens = NULL,

+ strcens = FALSE,

+ initialStrata = nrow(strata),

+ addStrataFactor = 0.00,

+ minnumstr = 2,

+ iter = 40,

+ pops = 10,

+ mut_chance = 0.05,

+ elitism_rate = 0.2,

+ highvalue = 1e+08,

+ suggestions = NULL,

+ realAllocation = TRUE,

+ writeFiles = TRUE)

12

Input data have been checked and are compliant with requirements

GA Settings

Population size = 10

Number of Generations = 40

Elitism = 2

Mutation Chance = 0.05

> sum(ceiling(solution$aggr_strata$SOLUZ))

[1] 478

The execution of optimizeStrata produces the solution of 7 different opti-
mization problems, one for each domain. We have reported in Figure 1 the
convergence plot regarding the third domain. The results of the execution are
contained in the list ’solution’, composed by two elements:

1. solution$indices: the vector of the indices that indicates to what ag-
gregated stratum each atomic stratum belongs;

2. solution$aggr_strata: the dataframe containing information on the op-
timal aggregated strata.

7 Analysis of results

We want to analyse what kind of aggregation of the atomic strata the genetic
algorithm did produce. To do so, we apply the function updateStrata, that
assigns the labels of the new strata to the initial one in the dataframe strata,
and produces:

1. a new file named ’newstrata.txt’ containing all the information in the
strata dataframe, plus the labels of the new strata;

2. a table, contained in the dataset ’strata aggregation.txt’, showing in which
way the auxiliary variables Xs determine the new strata.

The function is invoked in this way:

> newstrata <- updateStrata(swissstrata, solution, writeFiles = TRUE)

Now, the atomic strata are associated to the aggregate strata defined in the op-
timal solution, by means of the variable LABEL. If we want to analyse in detail
the new structure of the stratification, we can look at the ’strata aggregation.txt’
file:

> strata_aggregation <- read.delim("strata_aggregation.txt")

> head(strata_aggregation)

13

0 10 20 30 40

40
50

60
70

80
90

10
0

Iteration (Generation)B
es

t (
bl

ac
k

lo
w

er
 li

ne
)

an
d

m
ea

n
(r

ed
 u

pp
er

 li
ne

)
ev

al
ua

tio
n

va
lu

e

Domain # 3 − Sample cost 39.2523489709602

Figure 1: This graph illustrates the convergence of the solution to the final one
starting from the initial one (i.e. the one related to the atomic strata). Along
the x-axis are reported the executed iterations, from 1 to the maximum, while
on the y-axis are reported the size of the sample required to satisfy precision
constraints. The upper (red) line represent the average sample size for each
iteration, while the lower (black) line represents the best solution found until
the i-th iteration.

14

DOM1 AGGR_STRATUM X1 X2 X3 X4 X5 X6

1 1 1 3 2 2 1 1 1

2 1 1 4 2 1 2 1 1

3 1 1 4 3 2 2 2 1

4 1 1 5 3 1 2 1 1

5 1 1 6 1 1 1 2 1

6 1 1 6 2 2 1 1 1

In this structure, for each aggregate stratum the values of the X’s variables in
each contributing atomic stratum are reported. It is then possible to understand
the meaning of each aggregate stratum produced by the optimization.

8 Updating the frame and selecting the sample

Once the optimal stratification has been obtained, to be operational we need
to accomplish the following two steps:

1. to update the frame units with new stratum labels (combination of the
new values of the auxiliary variables Xs);

2. to select the sample from the frame.

As for the first, we execute the following command:

> framenew <- updateFrame(swissframe, newstrata, writeFiles=TRUE)

The function updateFrame receives as arguments the indication of the dataframe
in which the frame information is memorised, and of the dataframe produced
by the execution of the updateStrata function. The execution of this function
produces a dataframe framenew, and also a file (named ’framenew.txt’) with
the labels of the new strata produced by the optimisation step. The allocation
of units is contained in the ’soluz’ column of the dataset ’outstrata.txt’. At this
point it is possible to select the sample from the new version of the frame:

> sample <- selectSample(framenew, solution$aggr_strata, writeFiles=TRUE)

*** Sample has been drawn successfully ***

478 units have been selected from 84 strata

==> There have been 11 take-all strata

from which have been selected 88 units

that produces two .csv files:

1. ’sample.csv’ containing the units of the frame that have been selected,
together with the weight that has been calculated for each one of them;

2. ’sample.chk.csv’ containing information on the selection: for each stratum,
the number of units in the population, the planned sample, the number of
selected units, the sum of their weights that must equalise the number of
units in the population.

15

9 Evaluation of the found solution

In order to be confident about the quality of the found solution, the function
evalSolution allows to run a simulation, based on the selection of a desired
number of samples from the frame to which the stratification, identified as the
best, has been applied. The user can invoke this function also indicating the
number of samples to be drawn:

> evalSolution(framenew, solution$aggr_strata, nsampl=50, writeFiles=TRUE)

For each drawn sample, the estimates related to the Y’s are calculated. Their
mean and standard deviation are also computed, in order to produce the CV
related to each variable in every domain. These CV’s are written to an external
csv file:

> expected_cv <- read.csv("expected_cv.csv")

> expected_cv

CV1 CV2 CV3 CV4 dom

1 0.07938649 0.07749260 0.07797367 0.07681458 DOM1

2 0.07186038 0.07863321 0.07846621 0.07956098 DOM2

3 0.06881093 0.06814682 0.07013284 0.07217689 DOM3

4 0.08890618 0.07745975 0.08324062 0.08163517 DOM4

5 0.07952898 0.08205116 0.08073372 0.08481359 DOM5

6 0.08377938 0.08502181 0.08336146 0.08183058 DOM6

7 0.07133861 0.06529866 0.06406421 0.07306704 DOM7

These values are on average compliant with the precision constraints set (see
also Figure 2).

1 2 3 4

0.
06

5
0.

07
0

0.
07

5
0.

08
0

0.
08

5

Distribution of CV's in the domains

Variables Y

V
al

ue
 o

f C
V

Figure 2: Distribution of the CV’s in the different domains for each target
variable

Moreover, the estimates of each drawn sample are compared to the known
values in the population. The distribution of the differences are reported in the

16

boxplots of Figure 3. It can be seen that the average of the estimates are on
average close to the value zero for all the Y ’s in all domains.

●

●

1 2 3 4 5 6 7

−
60

00
0

−
20

00
0

20
00

0
60

00
0

Domain

D
iff

er
en

ce
s

Y1

●

●

1 2 3 4 5 6 7

−
50

00
0

0
50

00
0

10
00

00

Domain

D
iff

er
en

ce
s

Y2

●

●

1 2 3 4 5 6 7

−
1e

+
05

−
5e

+
04

0e
+

00
5e

+
04

1e
+

05

Domain

D
iff

er
en

ce
s

Y3

●

●

1 2 3 4 5 6 7

−
40

00
0

0
20

00
0

40
00

0

Domain

D
iff

er
en

ce
s

Y4

Figure 3: Distribution of the differences between sample estimates and true
values of the parameters in the different domains

17

References

Ballin, M. and G. Barcaroli (2013). Joint determination of optimal stratification
and sample allocation using genetic algorithm. Survey Methodology 39, 369–
393.

Barcaroli, G. (2014). SamplingStrata: An R package for the optimization of
stratified sampling. Journal of Statistical Software 61 (4), 1–24.

Bethel, J. (1989). Sample allocation in multivariate surveys. Survey Methodol-
ogy 15, 47–57.

Hartigan, J. A. and M. A. Wong (1979). A k-means clustering algorithm. Applied
Statistics 28, 100–108.

Willighagen, E. (2005). genalg: R Based Genetic Algorithm. R package version
0.1.1.

18

