
Reol

Barb Banbury, University of Tennessee, bbanbury@utk.edu

November 11, 2013

Reol is a package that interfaces the Encyclopedia of Life (EOL) with the
R environment. It will download EOL pages via the API, and text is scraped
for content and amassed into various datasets. Reol can be used to download
and manipulate data about any taxonomic groups. In addition, data from
provider pages can be downloaded and used for creating taxonomic trees or
gathering taxonomic synonyms.

This document will provide a deeper explanation about the various func-
tions than the help pages, and provide examples of typical application. I will
be using the Great Apes as a working example, since it is a nice small group
and the individual species have a lot of information.

1 Getting Started

This vignette assumes you have the current version of R (>3.0) and Reol
(>1.20). First, install and load the package. A stable release is avail-
able through CRAN (http://cran.r-project.org/web/packages/Reol/) and an
unstable working repository is available for use through our R-Forge site
(https://r-forge.r-project.org/projects/reol/). The repository will be the most
current edition of Reol and probably comes with new bells and whistles, but
note that it also might contain bugs. If you encounter any issues during use,
please submit them to our R-Forge site under trackers.

You can register as an EOL user on their website (http://eol.org/users/register)
and generate and save an API key in your user profile. This key is a unique
identifier that you can use when using the EOL API. Though it is not re-
quired, it is recommended to use a key, especially if you are going to be using
the API heavily. All Reol functions that interact with the API have the
option to include a key (MyKey).

1

To ensure that the API is up and running, you can use the PingAPI

function. If there is an error, it will report the error message.

> library(Reol)

> PingAPI()

[1] "Success"

2 Downloading EOL Pages

The first step is to get information from EOL pages to your local machine.
There are two ways to download information, 1) you can download indi-
vidual files/pages off EOL and house the .xml in your working directory
(to.file=TRUE) or 2) you can choose to download within R and save the
list within your workspace (to.file=FALSE). This vignette and all of the
examples in the help files are set to download data as an R object, so that
no additional files are generated. However, if you are running the exam-
ples by hand, you can select whichever method you prefer. Also, if you are
downloading files, be sure to set whichever working directory you wish to use
using setwd(your/path/). EOL pages will all download with an eol prefix,
followed by the EOL ID, so they can easily be stored all in the same place.
Verbosity will print downloaded file status to screen.

There are benefits and drawbacks to which type of download you choose.
If you choose to download to files, then a single file will be created for each
EOL page you download. These files are small text files, and shouldn’t take
up much space on your computer, however they will need management in
terms of organization. Downloading to the R workspace is a nice alternative
to keeping track of files, however there will be a limit of computer memory
to how many you can store before having allocation issues. We recommend
that if you are going to download a small number of taxa to download as an
R object, but if you are downloading a large number of taxa then to save
files.

> GreatApes <- c("Pan troglodytes", "Pan paniscus",

+ "Pongo pygmaeus", "Pongo abelii", "Gorilla gorilla",

+ "Gorilla beringei", "Homo sapiens")

> DownloadedApes <- DownloadSearchedTaxa(GreatApes, to.file=FALSE,

+ verbose=F)

2

If you are downloading files, DownloadSearchedTaxa will return a vector
of filenames with the eol prefix followed by the EOL ID. If you are down-
loading to the R workspace, then DownloadSearchedTaxa will return a list,
where each item in the list is a separate eol page. To get the EOL ID associ-
ated with the list, you can use names(). It is also possible to download taxa
using the DownloadEOLpages function, which accepts the EOL ID number
rather than a taxonomic name.

> names(DownloadedApes)

[1] "eol326449" "eol326448" "eol326450" "eol2925671"

[5] "eol326447" "eol2923523" "eol327955"

3 Gathering Data from EOL pages

Any EOL data can be gathered that is available via the API, but for now
Reol is focused on numerical data (text mining is a future possibility). These
gathering functions will all use the downloaded EOL information. Remem-
ber though, that in order to find information, you either have to be in the
same working directory as the files are located or have the correct workspace
loaded. The functions will collect data in various ways, but all of them are
coded to accept either a vector of file names OR a list of EOL pages. The
user doesn’t need to specify which they are submitting.

3.1 Richness

Richness score is an EOL metric that measures the amount of information
a page contains. The value can be between 0 (no information) to 100 (all
information) and is based on how much text a page has, how many multi-
media or map files are available, how many different topics are covered, how
many different sources contribute information, and whether information has
been reviewed or not. You can read more about how it is calculated here:
http://eol.org/pages/1/updates/statistics.

> GetRichnessScores(DownloadedApes)

Taxon eolID

1 Pan troglodytes (Blumenbach, 1775) 326449

3

2 Pan paniscus Schwartz, 1929 326448

3 Pongo pygmaeus 326450

4 Pongo abelii 2925671

5 Gorilla gorilla (Savage and Wyman, 1847) 326447

6 Gorilla beringei 2923523

7 Homo sapiens Linnaeus, 1758 327955

Richness_Score

1 87.2632

2 85.0915

3 83.8078

4 81.8989

5 84.7585

6 70.4675

7 87.2866

3.2 Data Objects

Another type of data we can assemble is the kind and number of data objects
that EOL pages house. These data objects can be images, videos, sound
recordings, text, etc. The CombineDataObjectInformation function will
return a very large data frame with information about each dataobject. This
might be useful if you are looking for all the data objects from a particular
provider or type (for example, all images submitted by fishbase). If there
are a lot of data objects, it may hang your computer to try to print this
to the screen. This function is probably best when used as an object and
then sorted and subsetted. The DataObjectOverview gives an overview of
the data object information by returning counts of each type of data. This
function doesn’t return any specific information, but you can determine if
there is even distribution of objects across data types (for example, do birds
and frogs have similar numbers of sound recordings). Verbosity refers to
turning on or off print statements as it combines files for the analysis (may
be helpful if you have a large number of files to combine, so you know that
the program is running).

> DataObjectInfo <- CombineDataObjectInformation(DownloadedApes,

+ verbose=F)

> DataObjectInfo[1,]

4

Taxon eolID dataObjectID

1 Pan troglodytes 326449 605e8ecaea4a6bf789fa8193cdec5397

taxonConceptID dataType mimeType

1 326449 http://purl.org/dc/dcmitype/Text text/html

agent title language

1 ARKive Description en

license

1 http://creativecommons.org/licenses/by-nc-sa/3.0/

rights rightsHolder

1 Copyright Wildscreen 2003-2008 Wildscreen

audience

1 General public

source

1 http://www.arkive.org/chimpanzee/pan-troglodytes/

subject

1 http://rs.tdwg.org/ontology/voc/SPMInfoItems#TaxonBiology

description

1 Along with the pygmy chimp or bonobo (<i>Pan paniscus</i>), the chimpanzee is the closest living relative (4) to humans and is estimated to share 98 percent of our genes (6). There are currently four recognised subspecies of chimpanzee, showing differences in appearance and geographic range: the western or masked chimpanzee (<i>Pan troglodytes verus</i>), central or black-faced chimpanzee (<i>P. t. troglodytes</i>), eastern or long-haired chimpanzee (<i>P. t. schweinfurthii</i>) and the eastern Nigeria chimpanzee (<i>P. t. vellerosus</i>) (3). They all have the characteristic chimpanzee body shape with longer arms than legs, together with opposable thumbs and big toes (5). The bare skin on the face, ears, palms, and soles of the feet is pinkish to black (5), whilst the rest of the body is covered with brown to black hairs (6). Chimpanzees have very expressive features with their bulging eyebrows and protrusive lips (6). The long arms and fingers and mobile shoulder joints allow chimps to move easily in the trees where they forage and rest (4). The majority of their locomotion however, takes place on the ground in the form of 'knuckle-walking' (4).

additionalInformation created modified

1 Trusted <NA> <NA>

bibliographicCitation reference mediaURL thumbnailURL

1 <NA> <NA> <NA> <NA>

location Point

1 <NA> <NA>

> DataObjectOverview(DownloadedApes, verbose=F)

Taxon eolID text.html text.plain image.jpeg

1 Pan troglodytes 326449 35 1 73

2 Pan paniscus 326448 31 0 60

3 Pongo pygmaeus 326450 32 0 75

4 Pongo abelii 2925671 30 0 27

5 Gorilla gorilla 326447 33 1 76

6 Gorilla beringei 2923523 31 10 45

7 Homo sapiens 327955 52 5 74

image.png application.octet.stream

1 3 0

2 3 0

5

3 1 0

4 1 0

5 0 0

6 0 0

7 2 1

3.3 Common Names

Common or vernacular names are also available on the EOL pages and their
associated languages. If output is set to detail (or d), it will return a data
frame with the taxon, EOL ID, common name, and language. In the following
example, just the common names for humans are retrieved, but vectors of
taxa are supported as well. If output=counts, then a data frame of language
counts will be retuned without the common names.

> GetCommonNames(DownloadedApes, output="c")

Taxon eolID de en es

1 Pan troglodytes (Blumenbach, 1775) 326449 1 3 2

2 Pan paniscus Schwartz, 1929 326448 0 5 1

3 Pongo pygmaeus 326450 0 5 2

4 Pongo abelii 2925671 1 6 0

5 Gorilla gorilla (Savage and Wyman, 1847) 326447 0 3 2

6 Gorilla beringei 2923523 1 6 0

7 Homo sapiens Linnaeus, 1758 327955 1 2 1

fi fr ru az ca eu hy it la lt oc sq ur

1 1 1 1 0 0 0 0 0 0 0 0 0 0

2 3 3 0 0 0 0 0 0 0 0 0 0 0

3 1 2 0 0 0 0 0 0 0 0 0 0 0

4 0 1 0 0 0 0 0 0 0 0 0 0 0

5 1 1 1 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0

7 1 2 2 1 1 1 1 1 1 1 2 1 3

3.4 References

This function gathers a collective bibliography from EOL pages. If output
is set to detail, full bibliographic data will be returned as a data frame that

6

contains the taxon, EOL ID, and the entire reference. This data is also
available as counts, which will return a data frame with taxon, EOL ID, and
the number of references each page contains.

> GetReferences(DownloadedApes[1], output="d")[1,]

Taxon eolID

1 Pan troglodytes (Blumenbach, 1775) 326449

Reference

1 1. IUCN Red List (March, 2008) http://www.iucnredlist.org

> GetReferences(DownloadedApes, output="c")

Taxon eolID

1 Pan troglodytes (Blumenbach, 1775) 326449

2 Pan paniscus Schwartz, 1929 326448

3 Pongo pygmaeus 326450

4 Pongo abelii 2925671

5 Gorilla gorilla (Savage and Wyman, 1847) 326447

6 Gorilla beringei 2923523

7 Homo sapiens Linnaeus, 1758 327955

Number.Of.References

1 72

2 60

3 43

4 27

5 55

6 25

7 137

3.5 Providers

EOL has a number of content providers (see http://eol.org/info/222) that
provide information about classifications and synonymy. This is data that
falls under the names tab on the EOL website. Reol has a few functions
for gathering provider information. GatherProviderDataFrame gathers the
providers that are available for each taxon in the vector. It returns a data
frame with boolean response, 1 if the provider has contributed information
and 0 if they have not. Total number of providers for each taxon is the last

7

column of the data frame. There is also the option to have it print an ex-
tended output, which will return information about provider IDs, taxonomic
rank, database ID. The extended output format is used for other Reol func-
tions. The BestProvider function calculates the provider that contributes
the most information for the given set of taxa. If there is a tie, it returns only
the first one on the list. This doesn’t necessarily mean it is the best or most
complete provider, so users beware. This function can be useful, however,
for choosing provider pages to download.

> GatherProviderDataFrame(DownloadedApes)

Taxon eolID

1 Pan troglodytes 326449

2 Pan paniscus 326448

3 Pongo pygmaeus 326450

4 Pongo abelii 2925671

5 Gorilla gorilla 326447

6 Gorilla beringei 2923523

7 Homo sapiens 327955

Species 2000 & ITIS Catalogue of Life: April 2013

1 1

2 1

3 1

4 0

5 1

6 0

7 1

Paleobiology Database GBIF Nub Taxonomy

1 1 1

2 1 1

3 1 1

4 1 1

5 1 1

6 1 1

7 1 1

IUCN Red List (Species Assessed for Global Conservation)

1 1

2 1

8

3 1

4 1

5 1

6 1

7 1

NCBI Taxonomy

1 1

2 1

3 1

4 1

5 1

6 1

7 1

Integrated Taxonomic Information System (ITIS)

1 1

2 1

3 1

4 0

5 1

6 0

7 1

number.sources

1 6

2 6

3 6

4 4

5 6

6 4

7 6

> BestProvider(DownloadedApes)

[1] "Paleobiology Database"

3.6 IUCN Status

This function will gather the IUCN status (if any) from the EOL pages.

> GetIUCNStat(DownloadedApes)

9

Taxon eolID

1 Pan troglodytes (Blumenbach, 1775) 326449

2 Pan paniscus Schwartz, 1929 326448

3 Pongo pygmaeus 326450

4 Pongo abelii 2925671

5 Gorilla gorilla (Savage and Wyman, 1847) 326447

6 Gorilla beringei 2923523

7 Homo sapiens Linnaeus, 1758 327955

IUCNstat

1 Endangered (EN)

2 Endangered (EN)

3 Endangered (EN)

4 Critically Endangered (CR)

5 Critically Endangered (CR)

6 Critically Endangered (CR)

7 Least Concern (LC)

4 Downloading Provider Pages

Just as EOL page content can be downloaded and scraped for content, so can
the content off the provider pages. These pages will download to the working
directory, and should be ok to stored together. Downloaded provider page
names are prefixed with hier and followed by their provider ID, so they can be
easily separated from EOL pages. Verbosity will print downloaded file status
to screen. Providers give two kinds of information: 1) taxonomic synonyms,
and 2) taxonomic hierarchies. Not all providers will provide both kinds of
data, some will only provide one or the other, so if the following functions
do not work, check the provider and try again.

> NCBIfiles <- DownloadHierarchy(DownloadedApes, to.file=FALSE,

+ database="NCBI Taxonomy", verbose=F)

5 Gathering Data from Provider Pages

There are essentially two pieces of information that can be gathered from the
provider pages, the taxonomic hierarchy and a synonyms list. Reol utilizes
both bits in several functions, which are described in detail below.

10

5.1 Taxonomic Synonyms

Each provider records their own set of taxonomic synonyms, so lists may be
different from provider to provider. If output is set to detail, a data frame
will be returned with the taxon name, the provider ID, and the synonym. If
output is set to counts, then a data frame with taxon, provider ID, and the
number of taxonomic synonyms is returned. These synonyms are scientific
synonyms only, not misidentifications or vernacular names.

> GatherSynonyms(NCBIfiles, "d")

Taxon hierID Synonym

1 Pongo abelii 51378546 Pongo pygmaeus abeli

2 Pongo abelii 51378546 Pongo pygmaeus abelii

> GatherSynonyms(NCBIfiles, "c")

Taxon hierID NumberOfSynonyms

1 Pan troglodytes 51378532 0

2 Pan paniscus 51378531 0

3 Pongo pygmaeus 51378544 0

4 Pongo abelii 51378546 2

5 Gorilla gorilla 51378523 0

6 Gorilla beringei 51378527 0

7 Homo sapiens 51378539 0

5.2 Taxonomic parents and offspring

There are a few functions to help determine taxonomic parentage and off-
spring (if the provider contributes this info). The function TaxonParents,
will give the full hierarchical ranking of any single taxon (note this does not
work for multiple hierarchy files). The function TaxonChildren will return
a table of all of the primary offspring from that taxon, for example, if you
provide a genus it will return a list of species names or if you provide a species
it will return any subspecies.

> TaxonParents(NCBIfiles[1])

11

1 Superkingdom Eukaryota

2 Kingdom Metazoa

3 Phylum Chordata

4 Subphylum Craniata

5 Superclass Gnathostomata

6 Class Mammalia

7 Superorder Euarchontoglires

8 Order Primates

9 Suborder Haplorrhini

10 Infraorder Simiiformes

11 Parvorder Catarrhini

12 Superfamily Hominoidea

13 Family Hominidae

14 Subfamily Homininae

15 Genus Pan

16 Species Pan troglodytes

> TaxonChildren(NCBIfiles)

Taxon TaxonChild

1 Pan troglodytes Chimpansee troglodytes

2 Pan troglodytes Pan troglodytes schweinfurthii

3 Pan troglodytes Pan troglodytes troglodytes

4 Pan troglodytes Pan troglodytes verus

5 Pan troglodytes Pan troglodytes vellerosus

6 Pan troglodytes Pan troglodytes ellioti

7 Pongo pygmaeus Pongo pygmaeus pygmaeus

8 Pongo abelii Pongo pygmaeus abeli

9 Pongo abelii Pongo pygmaeus abelii

10 Gorilla gorilla Gorilla gorilla (Savage, 1847)

11 Gorilla gorilla Gorilla gorilla gorilla

12 Gorilla gorilla Gorilla gorilla uellensis

13 Gorilla gorilla Gorilla gorilla diehli

14 Gorilla beringei Gorilla beringei Matschie, 1903

15 Gorilla beringei Gorilla beringei graueri

16 Gorilla beringei Gorilla beringei beringei

17 Homo sapiens Homo sapiens Linnaeus, 1758

18 Homo sapiens Homo sapiens neanderthalensis

12

19 Homo sapiens Homo sapiens ssp. Denisova

TaxonRank eolID hierID

1 <NA> <NA> <NA>

2 Subspecies 4454089 51378533

3 Subspecies 4454088 51378534

4 Subspecies 4454090 51378535

5 Subspecies 10373101 51378536

6 Subspecies 18832476 51378537

7 Subspecies 4454106 51378545

8 <NA> <NA> <NA>

9 <NA> <NA> <NA>

10 <NA> <NA> <NA>

11 Subspecies 4454095 51378524

12 Subspecies 12138061 51378525

13 Subspecies 10372989 51378526

14 <NA> <NA> <NA>

15 Subspecies 10372987 51378528

16 Subspecies 34034153 51378529

17 <NA> <NA> <NA>

18 Subspecies 4454114 51378540

19 Subspecies 21642106 51378541

5.3 Creating a Taxonomic Dendrogram

EOL providers can also contribute taxonomic hierarchy data. This data can
be used to create a tree structure or dendrogram of taxonomic structure.
These trees can be used in lieu of a phylogenetic tree if none exists and are
a good way to see patterns in the data. These trees can also be used to see
taxonomic inconsistencies, either compared to a phylogenetic tree (ie para-
phyletic taxa) or among providers. Note, that these trees only represent the
taxonomic hierarchy, and are not a replacement for a phylogenetic analysis.

The tree structure follows the same formatting of the package ape (http://cran.r-
project.org/web/packages/ape/), in the class phylo. The benefit is that you
can use all of ape’s plotting functions to make nice looking trees and mapping
of traits (these plotting functions are not described in detail here).

> ApeTree <- MakeHierarchyTree(NCBIfiles, includeNodeLabels = TRUE)

> plot(ApeTree, "p", show.node.label=TRUE, adj=0.5, font=4,

13

+ edge.width=3, edge.color="dark gray", tip.color="black")

Pan troglodytes

Pan paniscus

Gorilla gorilla

Gorilla beringei

Homo sapiens

Pongo pygmaeus

Pongo abelii

Homininae

Pan

Gorilla

Pongo

There are a few options available for creating the tree. First, the argument
includeNodeLabels will write node labels to the tree file a component of the
class phylo. You can see these in the same way as viewing other pieces of the
tree object. You can choose to turn this off if you will be creating edge labels
for the tree anyway or just don’t care to label anything. It will take up some
computational time depending on how big the tree is, so if you don’t plan
to label, then it is best to turn them off. Second, because EOL data can be
so easily downloaded and these downloaded files can be of any hierarchical
rank, we needed a way to build a tree with missing data. For example, if
several taxa are genera and the rest are species, how will the tips align in
the tree? In this case, you can set the missingData argument to either prune
the taxa with the missing information or you can prune the ranks without
the information. In either case, this will not be necessary if all the taxa

14

are of the same rank. Third, a user can predefine the rankings to use when
building the tree, for example if you would like the tree to be build using only
the taxon phylum, class, and species you can set userRanks = c(”Phylum”,
”Class”, ”Species”) and it will only take these rankings into account. Note
that this option can change the tree topology!

Reol also has a function to create edge labels with the taxonomic group
names automatically. In some cases there are multiple taxonomic names for
one edge, and the user can choose whether to print the most recent divergence
name, the oldest divergence name, or do a combined name that will display
all the names. In the same way as when making the tree, any missing tip
taxon information will have to be dealt with using the argument missingData.

There is a bit more flexibility with visualization using the edge label
functions rather than the node label functions.

> MakeEdgeLabels(NCBIfiles, duplicateEdgeLabels="oldest")

Homininae Pan Gorilla Ponginae

1 2 5 9

> MakeEdgeLabels(NCBIfiles, duplicateEdgeLabels="recent")

Homininae Pan Gorilla Pongo

1 2 5 9

> MakeEdgeLabels(NCBIfiles, duplicateEdgeLabels="combined")

Homininae Pan Gorilla Ponginae.Pongo

1 2 5 9

> edges <- MakeEdgeLabels(NCBIfiles)

> plot(ApeTree, "c", show.node.label=FALSE)

> edgelabels(text=names(edges), edge=edges, bg="light gray")

15

Pan troglodytes

Pan paniscus

Gorilla gorilla

Gorilla beringei

Homo sapiens

Pongo pygmaeus

Pongo abelii

Homininae

Pan

Gorilla

Ponginae

These trees can be used to plot information about EOL data. For exam-
ple, if we want to know patterns of the number of common names across our
taxa, we can plot that information as a continuous trait along our new tax-
onomy tree. One word of caution is to use Reol’s matching functions when
plotting text on a tree. This is especially true when plotting EOL data on
a provider hierarchy tree, since the two may not overlap in taxon names or
even number of files. The first matching function is MatchHierPageToEOL-
data, which will create a table of data with hierarchy/provider IDs and their
associated EOL data. We recommend that if you are going to be traversing
EOL and Hier pages that you go through this function, since it will match
up unique IDs rather than taxon names.

The second matching function is to aid in plotting data on the taxonomic
tree. Tips in the tree are labeled according to their order in tip.labels, which
likely will not match up with the order of your EOL input files. There
are different ways that you can ensure plotting the correct data with its

16

matching tip (for example plotting each tip at a time), however the function
MatchDataToTreeTips will do it automatically. This function creates a new
table, where each row is a tip taxon and data gets populated to that row
in the correct order (if no data exists for that tip, then it is left as NA as a
place holder). For this function, you will need a tree and data that contains
hierIDs, either data scraped from the hierarchy pages OR EOL data that has
been matched using the function MatchHierPageToEOLdata.

> MatchHierPageToEOLdata(MyHiers, GetRichnessScores(DownloadedApes))

HierID eolID Richness_Score

Camelus bactrianus 51377077 344581 <NA>

Camelus dromedarius 51377078 309019 <NA>

Hippopotamus amphibius 51377070 311532 <NA>

Rattus rattus 51380078 328447 <NA>

Rana cascadae 51349060 330264 <NA>

Bufo bufo 51345859 333310 <NA>

> MatchDataToTreeTips(ApeTree, MatchHierPageToEOLdata(MyHiers,

+ GetRichnessScores(DownloadedApes)))

HierID eolID Richness_Score

Pan troglodytes NA NA NA

Pan paniscus NA NA NA

Gorilla gorilla NA NA NA

Gorilla beringei NA NA NA

Homo sapiens NA NA NA

Pongo pygmaeus NA NA NA

Pongo abelii NA NA NA

> MatchDataToTreeTips(ApeTree, GatherSynonyms(NCBIfiles, "c"))

Taxon hierID NumberOfSynonyms

Pan troglodytes Pan troglodytes 51378532 0

Pan paniscus Pan paniscus 51378531 0

Gorilla gorilla Gorilla gorilla 51378523 0

Gorilla beringei Gorilla beringei 51378527 0

Homo sapiens Homo sapiens 51378539 0

Pongo pygmaeus Pongo pygmaeus 51378544 0

Pongo abelii Pongo abelii 51378546 2

17

A simple example of plotting data. In this example, we are plotting the
number of English common names for each Great Ape species.

> CNs <- GetCommonNames(DownloadedApes, output="c")

> plot(ApeTree, label.offset=0.5, x.lim=10, no.margin=TRUE)

> edgelabels(text=names(edges), edge=edges, bg="light blue")

> trans <- CNs[,3]/10

> matched <- MatchDataToTreeTips(ApeTree, MatchHierPageToEOLdata(MyHiers, CNs))

> tiplabels(pch=22, bg=rgb(0,0.5,0.5,trans), cex=2.8, adj=0.7)

> tiplabels(matched[,3], frame="none", bg="clear",adj=-1)

Pan troglodytes

Pan paniscus

Gorilla gorilla

Gorilla beringei

Homo sapiens

Pongo pygmaeus

Pongo abelii

Homininae

Pan

Gorilla

Ponginae

Another simple example of plotting data. In this example, we are plotting
the IUCN status for each Great Ape species.

> ApeData <- MatchDataToTreeTips(ApeTree,

+ MatchHierPageToEOLdata(NCBIfiles, GetIUCNStat(DownloadedApes)))

18

> for(i in sequence(dim(ApeData)[1])) {

+ if(ApeData[i,3] == "Least Concern (LC)") {

+ ApeData[i,4] <- "Khaki"

+ ApeData[i,5] <- "LC"

+ }

+ else if(ApeData[i,3] == "Endangered (EN)") {

+ ApeData[i,4] <- "Goldenrod"

+ ApeData[i,5] <- "EN"

+ }

+ else if(ApeData[i,3] == "Critically Endangered (CR)") {

+ ApeData[i,4] <- "coral4"

+ ApeData[i,5] <- "CR"

+ }

+ }

> plot(ApeTree, label.offset=0.8, x.lim=11)

> edgelabels(text=names(edges), edge=edges, bg="DarkGray")

> tiplabels(pch=21, bg=ApeData[,4], cex=4, adj = 0.85)

> tiplabels(ApeData[,5], frame="none", bg="clear",adj = -0.3)

> title(main="IUCN Status")

19

Pan troglodytes

Pan paniscus

Gorilla gorilla

Gorilla beringei

Homo sapiens

Pongo pygmaeus

Pongo abelii

Homininae

Pan

Gorilla

Ponginae

EN

EN

CR

CR

LC

EN

CR

IUCN Status

20

