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This tutorial is meant to be a beginner’s guide to using Rdistance. It is assumed that you have some
familiarity with using Program R, but not necessarily with distance-sampling analysis. This beginning tutorial
focuses on input data requirements, fitting a detection function, and estimating abundance (or density).
Here, we make use of the example datasets already contained within Rdistance (i.e., line transect surveys of
sparrows), so you can complete this tutorial without having any data of your own. This tutorial is current as
of version 1.2.2 of Rdistance.

1: Install and load Rdistance

If you haven’t already done so, install the latest version of Rdistance. In the R console, issue
install.packages("Rdistance"). After the package is installed, it can be loaded into the current session
as follows:

require(Rdistance)

## Loading required package: Rdistance
## Rdistance (version 1.2.2)

2: Read in input data

Rdistance requires two input datasets. These can be prepared outside of R and read in as data.frames using,
for example, read.csv. In the following sections, we make use of the sparrow example datasets already
contained within Rdistance.

The first required dataset is a detection data.frame, with a row for each detection, and the following required
columns, named as follows:

• siteID = Factor, the site or transect where the detection was made.
• groupsize = Numeric, the number of individuals within the detected group.
• dist = Numeric, the perpendicular distance (also known as off-transect distance) from the transect to

the detected group.

If the observers recorded sighting distance and sighting angle instead of perpendicular distance (as is often
common in line transect surveys), you can use the perp.dists function (detailed in Section 3) to calculate
the perpendicular distances based on the sighting distances and sighting angles.

The second required dataset is a transect data.frame, with a row for each transect surveyed, and the following
required columns, named as follows:

• siteID = Factor, the site or transect surveyed.
• length = Numeric, the length of the transect. Use the same units as the detection distances.
• ... = Any additional transect-level covariate columns.

1



3: Fit a detection function

After prepping the input data, the first step is to explore your data and fit a detection function. First, load the
example dataset of sparrow detections and their distances from the package using data(sparrow.detections).
Be sure that you have installed and loaded Rdistance prior to issuing the following commands:

data(sparrow.detections)
head(sparrow.detections)

## siteID groupsize sightdist sightangle
## 1 A1 1 65 15
## 2 A1 1 70 10
## 3 A1 1 25 75
## 4 A1 1 40 5
## 5 A1 1 70 85
## 6 A1 1 10 90

Note that the observers recorded sighting distances and sighting angles. Use the perp.dists function to
calculate the perpendicular distance from each detected group to the transect, then remove the sightdist
and sightangle columns.

sparrow.detections$dist <- perp.dists(obs.dist=sparrow.detections$sightdist,
obs.angle=sparrow.detections$sightangle)

sparrow.detections <- sparrow.detections[, -which(names(sparrow.detections)
%in% c("sightdist", "sightangle"))]

head(sparrow.detections)

## siteID groupsize dist
## 1 A1 1 16.8
## 2 A1 1 12.2
## 3 A1 1 24.1
## 4 A1 1 3.5
## 5 A1 1 69.7
## 6 A1 1 10.0

Explore the distribution of distances.

hist(sparrow.detections$dist, col="grey", main="", xlab="distance (m)")

2



distance (m)

F
re

qu
en

cy

0 50 100 150 200

0
20

40
60

80
12

0

summary(sparrow.detections$dist)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 14.15 30.75 39.64 57.35 207.00

Next, fit a detection function (plotted as a red line) using F.dfunc.estim. For now, we will proceed using
the half-normal likelihood as the detection function, but in Section 5 of this tutorial, we demonstrate how
to run an automated process that fits multiple detection functions and compares them using AICc. Note
that distances greater than 150 m are quite sparse, so here we right-truncate the data, tossing out detections
where dist > 150.

dfunc <- F.dfunc.estim(sparrow.detections, likelihood="halfnorm", w.hi=150)
plot(dfunc)

3



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

Distance

P
ro

ba
bi

lit
y 

of
 d

et
ec

tio
n

halfnorm, 0 expansions

ESW = 62.343

dfunc

## Call: F.dfunc.estim(dist = sparrow.detections, likelihood = "halfnorm", w.hi = 150)
##
## Coefficients:
## Sigma
## 49.87415
##
## Convergence: Success
## Function: HALFNORM
## Strip: 0 to 150
## Effective strip width: 62.34334
## Scaling: g(0) = 1
## Log likelihood: 1630.716
## AIC: 3263.443

The effective strip width (ESW) is the key information from the detection function that will be used to next
estimate abundance (or density). The ESW is calculated by integrating under the detection function. A
survey with imperfect detection and ESW equal to X effectively covers the same area as a study with perfect
detection out to a distance of X. See the help documentation for ESW for details.

4: Estimate abundance given the detection function

Estimating abundance requires the additional information contained in the second required dataset, described
earlier, where each row represents one transect. Load the example dataset of surveyed sparrow transects
from the package.
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data(sparrow.transects)
head(sparrow.transects)

## siteID length sage
## 1 A1 500 High
## 2 A2 500 High
## 3 A3 500 High
## 4 A4 500 High
## 5 B1 500 High
## 6 B2 500 High

Next, estimate abundance (or density in this case) using F.abund.estim. If area=1, then density is given
in the squared units of the distance measurements – in this case, sparrows per square meter. Instead, we
set area=10000 in order to convert to sparrows per hectare (1 ha == 10,000 m2). The equation used to
calculate the abundance estimate is detailed in the help documentation for F.abund.estim.

Confidence intervals for abundance are calculated using a bias-corrected bootstrapping method (see
F.abund.estim), and the detection function fit in each iteration of the bootstrap is plotted as a blue line
(if plot.bs=TRUE). Note that, as with all bootstrapping procedures, there may be slight differences in the
confidence intervals between runs due to so-called ‘simulation slop’. Increasing the number of bootstrap
iterations (R = 100 used here) may be necessary to stabilize CI estimates.

fit <- F.abund.estim(dfunc, detection.data=sparrow.detections,
transect.data=sparrow.transects,
area=10000, R=100, ci=0.95, plot.bs=TRUE)
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## Computing bootstrap confidence interval on N...
## ===========================================================================
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fit

## Call: F.dfunc.estim(dist = sparrow.detections, likelihood = "halfnorm", w.hi = 150)
##
## Coefficients:
## Sigma
## 49.87415
##
## Convergence: Success
## Function: HALFNORM
## Strip: 0 to 150
## Effective strip width: 62.34334
## Scaling: g(0) = 1
## Log likelihood: 1630.716
## AIC: 3263.443
##
## Abundance estimate: 0.8265162 ; 95% CI=( 0.6925541 to 1.04618 )

Results of interest (such as the abundance estimate and confidence interval) can be extracted from the
resulting object (here called fit).

fit$n.hat

## [1] 0.8265162

fit$ci

## 3.146705% 98.03137%
## 0.6925541 1.0461801

5: Use AICc to select a detection function and estimate abundance

Alternatively, steps 3 (fitting a detection function) and 4 (estimating abundance) can be automated using
the function F.automated.CDA. This function attempts to fit multiple detection functions, uses AICc (by
default, but see help documentation for AIC.dfunc for other options) to find the ‘best’ detection function,
then proceeds to estimate abundance using that detection function. By default, F.automated.CDA tries
dozens of detection functions, but you can restrict the process to fewer detection functions if you choose
(see help documentation for F.automated.CDA). Specifying plot=TRUE would return a plot of each detection
function. In this example, we won’t restrict the number of detection functions attempted, and we won’t plot
each (plot=FALSE).

auto <- F.automated.CDA(detection.data=sparrow.detections,
transect.data=sparrow.transects,
w.hi=150, plot=FALSE, area=10000, R=100, ci=0.95, plot.bs=TRUE)

## Likelihood Series Expans Converged? Scale? AIC
## halfnorm cosine 0 Yes Ok 3263.4429
## halfnorm cosine 1 Yes Ok 3261.585
## halfnorm hermite 1 Yes Ok 3262.8066
## halfnorm simple 1 Yes Ok 3262.1526
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## halfnorm cosine 2 Yes Ok 3263.3155
## halfnorm hermite 2 Yes Ok 3263.593
## halfnorm simple 2 Yes Ok 3263.4741
## halfnorm cosine 3 Yes Ok 3265.1285
## halfnorm hermite 3 Yes Ok 3265.5499
## halfnorm simple 3 Yes Ok 3265.216
## hazrate cosine 0 Yes Ok 3267.6246
## hazrate cosine 1 Yes Ok 3263.3092
## hazrate hermite 1 No NA NA
## hazrate simple 1 No NA NA
## hazrate cosine 2 Yes Ok 3265.0704
## hazrate hermite 2 Yes Ok 3268.9682
## hazrate simple 2 Yes Ok 3265.5796
## hazrate cosine 3 Yes Ok 3267.117
## hazrate hermite 3 Bad NA NA
## hazrate simple 3 No NA NA
## uniform cosine 0 Yes Ok 3260.7318
## uniform cosine 1 Bad NA NA
## uniform hermite 1 Yes Ok 3262.736
## uniform simple 1 Yes Ok 3262.2602
## uniform cosine 2 Bad NA NA
## uniform hermite 2 No NA NA
## uniform simple 2 Bad NA NA
## uniform cosine 3 Bad NA NA
## uniform hermite 3 No NA NA
## uniform simple 3 Bad NA NA
## negexp cosine 0 Yes Ok 3263.8153
## negexp cosine 1 Yes Ok 3260.0985
## negexp hermite 1 Yes Ok 3260.3108
## negexp simple 1 Yes Ok 3261.0097
## negexp cosine 2 Yes Ok 3262.0306
## negexp hermite 2 No NA NA
## negexp simple 2 Yes Ok 3262.2878
## negexp cosine 3 Yes Ok 3263.4898
## negexp hermite 3 No NA NA
## negexp simple 3 Yes Ok 3264.2055
## Gamma 0 Yes Ok 3586.8919
## Note: Some models did not converge or had parameters at their boundaries.
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## Computing bootstrap confidence interval on N...
## ===========================================================================
##
##
## ---------------- Final Automated CDS Abundance Estimate -------------------------------
## Call: F.dfunc.estim(dist = dist, likelihood = fit.table$like[1], w.lo = w.lo, w.hi = w.hi, expansions = fit.table$expansions[1], series = fit.table$series[1])
##
## Coefficients:
## Beta a1
## 0.02754839 -0.26542176
##
## Convergence: Success
## Function: NEGEXP with 1 expansion(s) of COSINE series
## Strip: 0 to 150
## Effective strip width: 44.72749
## Scaling: g(0) = 1
## Log likelihood: 1628.032
## AIC: 3260.098
##
## Abundance estimate: 1.152038 ; 95% CI=( 0.9034703 to 1.502093 )

You can see that the detection function with the lowest AICc value (and thus selected as the ‘best’) is the
negative exponential likelihood, with one cosine expansion.

6: Conclusion

Note that the detection function that you select has a large influence on the resulting abundance estimate. In
sections 3 and 4, we fit a half-normal detection function and used that function to estimate sparrow density.
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Our estimate was 0.83 sparrows per ha (95% CI = 0.69 - 1.05). In section 5, we used AICc to determine the
best-fitting detection function and used that function to estimate sparrow density again. Our new estimate
was 1.15 sparrows per ha (95% CI = 0.9 - 1.5). (Note, recall that your estimates may vary slightly from these
due to minor ‘simulation slop’ inherent in bootstrapping methods). Thus we see that choosing an appropriate
detection function is critical to accurately estimating abundance. The F.automated.CDA function can help
you select a detection function that fits your data well.

That concludes this Rdistance tutorial. You are now ready to read in your own data, fit a detection function,
and estimate abundance.
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