
Rd2roxygen: Convert Rd to roxygen documentation and
utilities to enhance roxygen

Yihui Xie∗

January 9, 2011

The package Rd2roxygen (Wickham and Xie, 2010) helps R package developers who used to write
R documentation in the raw LATEX-like commands but want to switch their documentation to roxy-
gen (Danenberg and Eugster, 2009), which is a convenient tool for developers, since we can write
documentation as inline comments, e.g.

> ## the source code of the function ‘parse_and_save‘

> ex.file = system.file("examples", "parse_and_save.R", package = "Rd2roxygen")

> cat(readLines(ex.file), sep = "\n")

##' Parse the input Rd file and save the roxygen documentation into a file.

##'

##' @param path the path of the Rd file

##' @param file the path to save the roxygen documentation

##' @param usage logical: whether to include the usage section in the output

##' @return a character vector if \code{file} is not specified, or write the vector

##' into a file

##' @export

##' @author Hadley Wickham; modified by Yihui Xie <\url{http://yihui.name}>

parse_and_save <- function(path, file, usage = FALSE) {

parsed <- parse_file(path)

output <- create_roxygen(parsed, usage = usage)

if (missing(file)) output else

cat(paste(output, collapse = "\n"), file = file)

}

With roxygen (typically using roxygenize()), we can create the real Rd file from the above source
code like this:

> rd.file = system.file("examples", "parse_and_save.Rd", package = "Rd2roxygen")

> cat(readLines(rd.file), sep = "\n")

\name{parse_and_save}

\alias{parse_and_save}

\title{Parse the input Rd file and save the roxygen documentation into a file.}

\usage{parse_and_save(path, file, usage=FALSE)}

\description{Parse the input Rd file and save the roxygen documentation into a file.}

∗Department of Statistics, Iowa State University. Email: xie@yihui.name

1

mailto:xie@yihui.name

\value{a character vector if \code{file} is not specified, or write the vector

into a file}

\author{Hadley Wickham; modified by Yihui Xie <\url{http://yihui.name}>}

\arguments{\item{path}{the path of the Rd file}

\item{file}{the path to save the roxygen documentation}

\item{usage}{logical: whether to include the usage section in the output}}

The Rd2roxygen package goes exactly in the opposite way – it parses the Rd files and turns them
back to roxygen comments. We can either do this job on single Rd files, or just convert the whole
package. The latter might be more useful for developers who are considering the switch.

1 Convert a whole package

The function Rd2roxygen() can take a path of a source package, parse all the Rd files under the man

directory, and write the roxygen comments right above the source code of the functions under the R

directory.

> library(Rd2roxygen)

> args(Rd2roxygen)

function (pkg, nomatch, usage = FALSE)

NULL

> ## e.g. Rd2roxygen(’somewhere/to/source/pkg’)

> ## there must be ’man’ and ’R’ directories under this path

2 Parse a single Rd file

We can parse a single Rd file and create the roxygen comments as well with parse_file() and cre-
ate_roxygen(), e.g.:

> ## we can specify the roxygen comments prefix (#’ by default)

> options(roxygen.comment = "##’ ")

> (info = parse_file(rd.file))

$title

[1] "Parse the input Rd file and save the roxygen documentation into a file."

$usage

[1] "parse_and_save(path, file, usage=FALSE)"

$desc

[1] "Parse the input Rd file and save the roxygen documentation into a file."

$value

[1] "a character vector if \\code{file} is not specified, or write the vector\ninto a file"

$author

[1] "Hadley Wickham; modified by Yihui Xie <\\url{http://yihui.name}>"

2

$name

[1] "parse_and_save"

$keywords

list()

$params

[1] "path the path of the Rd file"

[2] "file the path to save the roxygen documentation"

[3] "usage logical: whether to include the usage section in the output"

> create_roxygen(info)

[1] "##' Parse the input Rd file and save the roxygen documentation into a file."

[2] "##' Parse the input Rd file and save the roxygen documentation into a file."

[3] "##' "

[4] "##' "

[5] "##' @param path the path of the Rd file"

[6] "##' @param file the path to save the roxygen documentation"

[7] "##' @param usage logical: whether to include the usage section in the output"

[8] "##' @return a character vector if \\code{file} is not specified, or write the"

[9] "##' vector into a file"

[10] "##' @author Hadley Wickham; modified by Yihui Xie <\\url{http://yihui.name}>"

[11] "\n"

> ## parse_and_save() combines the above two steps

3 Roxygenize and build a package

This package also provides a tool roxygen_and_build() (or in short rab()) to help us build the package.

> args(roxygen_and_build)

function (pkg, roxygen.dir = NULL, install = FALSE, check = FALSE,

check.opts = "", remove.check = TRUE, escape = TRUE, reformat = TRUE,

use.Rd2 = TRUE, ...)

NULL

By default, roxygen will generate Rd files for all the objects in the package, which is sometimes
not necessary, e.g. the functions which are not exported to the user. These Rd files are removed from
the roxygenized package; in fact, we can also use Rd2 in roxygen and specify the tag @nord (no Rd)
to suppress Rd creation. Another problem is, we often forget to escape the percent symbol % in our
documentation1, which will make R treat such texts as comments; rab() will escape % by default (can
be turned off by escape = FALSE). Besides, rab() also provides options to install or check the package.

1One situation which made me crazy for a long time is, it is hard to debug the R documentation when we have % in the
arguments of the function or in the examples. Image you write a function like this: f = function(a = ’%03d’) {}, and it
is really easy to forget to escape the percent symbol correctly in your documentation as \usage{f(a = ’\%03d’)}! Besides,
roxygen will generate the documentation without escaping percent symbols, which is often error-prone. That is the reasoning
behind the default value escape = TRUE.

3

Yet another feature to mention about rab() is that it has an option to “reformat” the code in the
usage and example sections; this is due to the fact that roxygen will remove all the leading spaces and
indent in the R code, which makes it difficult to read especially when the code is long. If we specify
reformat = TRUE in rab(), the code will be reformated like this:

original code

roxygen_and_build=function(pkg,roxygen.dir=NULL,install=FALSE,check=FALSE,

check.opts='',remove.check=TRUE,escape=TRUE,reformat=TRUE,...){}

the reformatted code

roxygen_and_build = function(pkg, roxygen.dir = NULL, install = FALSE,

check = FALSE, check.opts = "", remove.check = TRUE, escape = TRUE,

reformat = TRUE, ...) {

}

Note this functionality depends on the package formatR (Xie, 2010), and sometimes it might be
not be appropriate to reformat the code, e.g. the \dontrun{} command in Rd can contain arbitrary
texts, which means there could be illegal R expressions and formatR will be unable to format the
code. In case of errors, we can consider turning this feature off.

About this vignette

You might be curious about how this vignette was generated, because it looks different from other
Sweave-based vignettes. The answer is pgfSweave (Bracken and Sharpsteen, 2010). The real vignette
is in LYX, which can be found here:

> system.file("doc", "Rd2roxygen.lyx", package = "Rd2roxygen")

Read this blog entry for details and how to reproduce the vignette: http://yihui.name/en/?p=
602.

References

Bracken C, Sharpsteen C (2010). pgfSweave: Quality speedy graphics compilation with Sweave. R package
version 1.1.3, URL http://CRAN.R-project.org/package=pgfSweave.

Danenberg P, Eugster M (2009). roxygen: Literate Programming in R. R package version 0.1-2, URL
http://CRAN.R-project.org/package=roxygen.

Wickham H, Xie Y (2010). Rd2roxygen: Convert Rd to roxygen documentation. R package version 0.1-5,
URL https://github.com/yihui/Rd2roxygen.

Xie Y (2010). formatR: Format R Code Automatically. R package version 0.1-7, URL http://CRAN.

R-project.org/package=formatR.

4

http://yihui.name/en/?p=602
http://yihui.name/en/?p=602
http://CRAN.R-project.org/package=pgfSweave
http://CRAN.R-project.org/package=roxygen
https://github.com/yihui/Rd2roxygen
http://CRAN.R-project.org/package=formatR
http://CRAN.R-project.org/package=formatR

	1 Convert a whole package
	2 Parse a single Rd file
	3 Roxygenize and build a package

