
Styling R plots with cascading style sheets and Rcssplot

Tomasz Konopka

February 25, 2018

Abstract

Package Rcssplot provides a framework for customizing R plots in a way that separates data-
handling code from appearance-determining settings.

1 Introduction
The R environment provides provides numerous ways to fine-tune the appearance of plots and charts.
Taking advantage of these features can make complex data visualizations more appealing and mean-
ingful. For example, customization can make some components in a composite visualization stand
out from the background. However, such tuning can result in code that is long and complex.

A specific problem with code for graphics is that it often mixes operations on data with book-
keeping of visual appearance. The mixture makes such code difficult to maintain and extend. A
similar problem in web develpment is addressed by separating style settings from content using
cascading style sheets. The Rcssplot package implements a similar mechanism for the R environment.

This vignette is organized as follows. The next section reviews how to create composite visual-
izations with base graphics. Later sections describe how to manage visual style using Rcssplot. The
vignette ends with a summary and a few pointers to other graphics frameworks and packages.

2 Styling plots with base graphics
To start, let’s look at styling plots using R’s built-in capabilities, called ‘base graphics’. For concrete-
ness, let’s use an example with a bar chart and a small data vector with made-up numbers.

a <- setNames(c(35, 55, 65, 75, 80, 80), letters[1:6])
a

a b c d e f
35 55 65 75 80 80

The function to draw a bar chart in R is barplot. We can apply it on our data, a, to obtain a chart
with R’s default visual style (Figure 1A).

barplot(a, main="Base graphics")

The output contains many of the elements that we expect from a bar chart (bars, axes, etc.). But there
is room for improvement. At a minimum, the chart requires a title and a label for the vertical axis.
We might also like to change some colors and spacings. Many of these features can be tuned directly
through the barplot function (Figure 1B).

barplot(a, main="Manual tuning", ylab="y label", col="#000080", border=NA, space=0.35)

The function call is now longer, but the output is more complete.
It is possible to tune the plot a little further using other arguments to barplot. However, some

aspects of the chart, for example margins, are not accessible in this manner. Furthermore, we may
wish to add other custom elements to the chart area, for example a subtitle. To adjust or to create
these elements, it is necessary to issue several function calls. In practice it is convenient to encapsulate
such commands in a custom function.

1

a b c d e f

Base graphics

0
20

40
60

80

A

a b c d e f

Manual tuning

y
la

be
l

0
20

40
60

80

B

a b c d e f
0

20

40

60

80

Custom plot function
Data range is [35, 80]

y
la

be
l

C

Figure 1: Charts created with base graphics using: (A) R’s barplot function and default settings;
(B) R’s barplot function and some custom settings; (C) a custom plot function that styles bars, axes,
and labels individually.

helper builds a string describing a range
range.string <- function(x) {

paste0("Data range is [", min(x), ", ", max(x), "]")
}
barplot with several custom settings and components
base.barplot.1 <- function(x, main="Custom plot function", ylab="y label") {

start with a plot with bars, but nothing else
barpos <- barplot(x, col="#000080", axes=FALSE, axisnames=FALSE,

border=NA, space=0.35)
add custom components
axis(1, at=barpos[,1], labels=names(x), lwd=0, col="#111111", cex.axis=1.2,

line=-0.35)
axis(2, col.ticks="#444444", col.axis="#444444", cex.axis=1.2, lwd=1.2, las=1,

tck=-0.03, lwd.ticks=1.2)
mtext(main, adj=0, line=2.2, cex=1.1)
mtext(range.string(x), adj=0, line=0.9, cex=0.8, col="#444444")
mtext(ylab, side=2, cex=0.8, line=3, col="#444444")

}

The first block above is a helper function to construct a subtitle. The second block is a definition of
function base.barplot.1. It takes as input a data vector x and two strings for the title and y-axis
label. The first line of the function body creates a chart without excess decorations. Subsequent lines
add axes and labels. Each command carries several custom settings.

We can now apply the custom function on our data (Figure 1C).

base.barplot.1(a)

The function call is concise, yet its output is a bar chart that looks legible and sophisticated.
Coding custom functions like base.barplot.1 is the usual way for making composite charts with

R’s base graphics. However, this approach has some disadvantages.

• The custom function is now so specialized that it may only be fit for one-time use. Although we
can produce many charts by passing different data vectors and labels, we cannot easily change
any visual aspects without updating the function definition.

• Because the function mixes code that manipulates data with code that adjusts visual appearance,
there are opportunities to introduce bugs during tuning or maintenance.

• It is rather difficult to create a second function with the same visual style and to maintain these
styles consistent throughout the lifetime of a long project.

These observations stem from the fact that the custom function performs several distinct roles. First,
it combines graphical commands to create a composite visualization. Second, it performs some
useful manipulations on the data (here, compute the range). Third, the function styles graphical
components. The difficulties in maintenance all arise from the styling role. Thus, it would be useful
to separate this role from the others, i.e. to provide styling settings that are independent from the
data-handling instructions.

2

3 Styling with cascading style sheets
The Rcssplot package provides a mechanism to style R’s graphics that is inspired by cascading style
sheets (css) used in web-page design. In this approach, settings for visual representation are stored
in a file that is separate from both the raw data and the code that creates visualizations.

3.1 Using Rcss styles
Let’s adopt a convention where style definitions have Rcss extensions. Let’s begin with a style file
called vignettes.bar1.Rcss. This file is available in a sub-folder along with the package vignette.

barplot {
border: NA;
col: #000080;
space: 0.35;

}

The file contains a block with the name barplot. This corresponds to R’s function for bar charts.
Elements within the block are property/value pairs that correspond to the function arguments.

We can read the style definition into the R environment using function Rcss.

library("Rcssplot")
style1 <- Rcss("Rcss/vignettes.bar1.Rcss")

We can look inside the object to check that it loaded correctly.

style1

Rcssplot:
Defined selectors: barplot
Use function printRcss() to view details for individual selectors

printRcss(style1, "barplot")

Rcssplot: barplot
| border: NA
| col: #000080
| space: 0.35
##
Defined classes:

The first command displays some basic information about the newly loaded style. The second com-
mand shows more details for the barplot component (called a selector). In this case, we recognize
the three property/value pairs from the Rcss file.

Next, let’s use the style object in a plot. The Rcssplot package provides wrappers for many of
R’s graphics functions. These wrappers have prefixes Rcss and accept the same arguments as their
base-graphics parents. For example, to create a barplot, we invoke Rcssbarplot (Figure 2A).

Rcssbarplot(a, main="Rcssbarplot, unstyled", ylab="y label")

When used in plain form as above, the output of the wrapper is exactly the same as from base
graphics barplot. But we can add styling by passing our style object as an argument (Figure 2B).

Rcssbarplot(a, main="Rcssbarplot, styled", ylab="y label", Rcss=style1)

The output is analogous to one of the previous examples (c.f. Figure 1B). Previously, we achieved the
effect by specifying three arguments within a barplot function call (border, col, and space). The
Rcssplot alternative requires only one argument: custom settings are extracted automatically from
the style object, style1.

In some cases it is useful to override settings defined in a style sheet (Figure 2C).

Rcssbarplot(a, main="Rcssbarplot, override", ylab="y label", space=1, Rcss=style1)

Here, the bar width is determined by space=1 in the function call despite this property being also
specified in the style object. Thus, values set manually take precedence over cascading style sheets.

3

a b c d e f

Rcssbarplot, unstyled

y
la

be
l

0
20

40
60

80

A

a b c d e f

Rcssbarplot, styled

y
la

be
l

0
20

40
60

80

B

a b c d e f

Rcssbarplot, override

y
la

be
l

0
20

40
60

80

C

Figure 2: Charts created with base graphics and Rcssplot using: (A) the default style; (B) a style
determined through a style sheet; (C) a style sheet, but with the bar width over-ridden by a setting
within a function call.

3.2 Using Rcss classes
Next, let’s implement the entire custom bar plot using style sheets and introduce a new feature, style
classes. We need additional css definitions. These are encoded in another file vignettes.bar2.Rcss.

axis {
cex.axis: 1.2;

}
axis.x {

line: -0.35;
lwd: 0;

}
mtext.ylab, mtext.submain, axis.y {

col: #444444;
}
axis.y {

col.axis: #444444;
col.ticks: #444444;
las: 1;
lwd: 1.2;
lwd.ticks: 1.2;
tck: -0.03;

}
mtext {

cex: 0.8;
adj: 0;

}
mtext.main {

line: 2.2;
cex: 1.1;

}
mtext.ylab {

line: 3;
adj: 0.5;

}
mtext.submain {

line: 0.9;
}

The definitions are again arranged into blocks that correspond to R’s base graphics commands. It is
worth noting a few features.

• The values in the style sheet match the settings hard-coded into function base.barplot.1. The
format of the style sheet makes it easy to identify property/value pairs.

• Some blocks contain names with dots followed by a string, e.g. axis.x. This notation defines
property/value pairs that are activated only in particular circumstances. In the case of axis.x,
the definitions pertain to function Rcssaxis, but only when accompanied by class label x. This
will become clearer below.

4

• Some blocks contain names for several base graphics components separated by commas, e.g.
mtext.ylab, mtext.submain, axis.y. This syntax defines property/value pairs for several
components at once. In this case, it is convenient to specify a common color.

We can now write a new function based on Rcssplot wrappers.

barplot using Rcssplot, version 1
rcss.barplot.1 <- function(x, main="Custom Rcss plot", ylab="y label",

Rcss="default", Rcssclass=c()) {
create an empty barplot
barpos <- Rcssbarplot(x, axes=FALSE, axisnames=FALSE, Rcss=Rcss, Rcssclass=Rcssclass)
add custom components
Rcssaxis(1, at=barpos[,1], labels=names(x), Rcss=Rcss, Rcssclass=c(Rcssclass,"x"))
Rcssaxis(2, Rcss=Rcss, Rcssclass=c(Rcssclass,"y"))
Rcssmtext(main, Rcss=Rcss, Rcssclass=c(Rcssclass,"main"))
Rcssmtext(range.string(x), Rcss=Rcss, Rcssclass=c(Rcssclass, "submain"))
Rcssmtext(ylab, side=2, Rcss=Rcss, Rcssclass=c(Rcssclass,"ylab"))

}

The structure mirrors base.barplot.1, but also accepts an Rcss object and a vector Rcssclass.
Within the function body, all the custom graphical settings are replaced by an Rcss argument and a
vector for Rcssclass. When there are multiple calls to one graphic function (e.g. Rcssaxis for the
x and y axes), the Rcssclass vector contains some distinguishing labels. These labels match the css
subclasses we saw previously.

The output from the new function is a complete plot with all our custom settings (Figure 3A).

style2 <- Rcss(c("Rcss/vignettes.bar1.Rcss", "Rcss/vignettes.bar2.Rcss"))
rcss.barplot.1(a, main="Rcss style2", Rcss=style2)

The first line creates a new style object, style2, using the Rcss definitions from both files displayed
above. The call to rcss.barplot.1 then creates the chart.

The advantage of this approach is that we can now change the visual output by replacing the Rcss
style object by another one without re-coding the custom function. One way to change the style is
to edit the Rcss files (or use differet files), load the definitions into a new style object, and generate
a new figure with the new style. Another way, which we discuss next, is to define multiple styles
within one Rcss object.

3.3 Using multiple styles
Let’s look at another set Rcss file, vignettes.bar3.Rcss.

barplot.typeB {
col: #449944;
space: 0.6;

}
mtext.typeB.main {

cex: 1.0;
font: 2;

}

The two blocks are decorated with a subclass called typeB. This class name is not explicitly used
within the code of the plot function rcss.barplot.1. However, we can prime the plot function to
use these definition by providing the class name during the function call (Figure 3B).

style3 <- Rcss(paste0("Rcss/vignettes.bar", c(1, 2, 3), ".Rcss"))
rcss.barplot.1(a, main="Rcss style3, class typeB", Rcss=style3, Rcssclass="typeB")

The output now incorporates settings defined in the generic barplot and mtext css blocks, but also
those settings targeted using the typeB subclass. As in conventional cascading style sheets, when a
parameter is specified in multiple locations with an Rcss object, the definition with the more specific
class takes precedence.

When the Rcssclass argument contains items that are not recognized, these items are just ignored
(Figure 3C).

5

a b c d e f
0

20

40

60

80

Rcss style2
Data range is [35, 80]

y
la

be
l

A

a b c d e f
0

20

40

60

80

Rcss style3, class typeB
Data range is [35, 80]

y
la

be
l

B

a b c d e f
0

20

40

60

80

Rcss style3, class typeC
Data range is [35, 80]

y
la

be
l

C

Figure 3: Charts created by custom plot functions with base graphics and Rcssplot using: (A) a style
determined by css; (B) a style sub-class defined in css; (C) a style sub-class that is not defined in css
(equivalent to (A)).

rcss.barplot.1(a, main="Rcss style3, class typeC", Rcss=style3, Rcssclass="typeC")

Here, the class name typeC does not appear in the underlying style sheet files, so the output is the
same as if this subclass was not specified at all.

In summary, we saw in this section how to use cascading style sheets to determine visual appear-
ance. This approach has several advantages over using base graphics alone.

• The new function separates the details of visualization from the R code. This makes it easier to
tweak aesthetics (in the Rcss files) without worrying about the code structure.

• The new function is shorter because calls to commands that generate structure (e.g. axis and
mtext) are not interspersed with details of graphical parameters. This makes it easier to see the
organization of the composite graphic.

• The styles can be reused in several custom functions. Thus, it is straightforward to maintain a
uniform style across a family of functions.

In the next section we will look at additional tricks that can simplify creation of custom graphics.

4 Additional features
This section covers some “advanced” features. The first three subsections deal with reducing repeti-
tive code. The last subsection introduces usage of css objects as general data stores.

4.1 Overloading base graphics
Although our custom function rcss.barplot.1 provides us with opportunities to tune the chart, its
code has a number of inelegant repetitive elements. One of these is the Rcss prefix before each of the
plot commands. It is possible to avoid this prefix by overloading the base graphics functions with
their Rcssplot wrappers. Overloading is achieved using function RcssOverload.

barplot using Rcssplot, version 2 (using overloading)
rcss.barplot.2 <- function(x, main="Custom Rcss plot", ylab="y label",

Rcss="default", Rcssclass=c()) {
overload base graphics function by Rcssplot wrappers
RcssOverload()
create a barplot (without Rcss prefixes)
barpos <- barplot(x, axes=FALSE, axisnames=FALSE, Rcss=Rcss, Rcssclass=Rcssclass)
axis(1, at=barpos[,1], labels=names(x), Rcss=Rcss, Rcssclass=c(Rcssclass, "x"))
axis(2, Rcss=Rcss, Rcssclass=c(Rcssclass, "y"))
mtext(main, Rcss=Rcss, Rcssclass=c(Rcssclass, "main"))
mtext(range.string(x), Rcss=Rcss, Rcssclass=c(Rcssclass, "submain"))
mtext(ylab, side=2, Rcss=Rcss, Rcssclass=c(Rcssclass, "ylab"))

}

Here, the first step signals that subsequent calls to e.g. axis should actually invoke the corresponding
wrappers, e.g. Rcssaxis. The subsequent code thus omits the Rcss prefixes.

6

Note that executing RcssOverload masks several commands from base graphics; the step carries
numerous side effects for the working environment. Such behavior is typically undesirable. In this
case, however, the net effect is similar as could be achieved by masking base graphics functions within
the package and taking effect automatically when the package is loaded. This implementation with
an explicit overload step provides a mechanism to activate the masking only when needed. It is
provides a means to use both base graphics and Rcssplot wrappers within a single project.

4.2 Using a default style and compulsory classes
Other repetitive elements are the constructions Rcss=Rcss and Rcssclass=Rcssclasss. They ensure
that the style object and the class specified through the function call are passed on to the individual
wrappers. We can avoid this repetition by setting a default style and a compulsory class.

Handling of default values is achieved through objects RcssDefaultStyle and RcssCompulsoryClass.
These objects can be defined in any environment, for example in the global environment in the con-
sole or inside a function. When present, the package wrappers detect them and use information
therein to influence plot behavior. Consider, for example, the following custom function.

barplot using Rcssplot, version 3 (using defaults & compulsory classes)
rcss.barplot.3 <- function(x, main="Custom Rcss plot", ylab="y label",

Rcss="default", Rcssclass=c()) {
overload base graphics, set defaults and compulsory classes
RcssOverload()
RcssDefaultStyle <- RcssGetDefaultStyle(Rcss)
RcssCompulsoryClass <- RcssGetCompulsoryClass(Rcssclass)
create a barplot (without Rcss arguments)
barpos <- barplot(x, axes=FALSE, axisnames=FALSE)
axis(1, at=barpos[,1], labels=names(x), Rcssclass="x")
axis(2, Rcssclass="y")
mtext(main, Rcssclass="main")
mtext(range.string(x), Rcssclass="submain")
mtext(ylab, side=2, Rcssclass="ylab")

}

The preparation steps here perform overloading, and then set a default style and compulsory class.
Subsequent calls to graphics functions do not to refer to object Rcss or the class Rcssclass. Nonethe-
less, the output of the custom function can exhibit styling.

• Calls to axis and mtext in the above function still carry Rcssclass arguments. These are
necessary to distinguish styling between the x- and y-axis, and between the title and sub-title.
However, setting the compulsory class reduces clutter (no need to write Rcssclass=Rcssclass).

• It is important to note that the preparation steps set RcssDefaultStyle and RcssCompulsoryClass
with the help of function calls. Their use will become more clear in the next section. In short,
those functions help preserve defaults that may have been set outside of the custom function.

4.3 Using Rcssplot globally
In the previous two examples, rcss.barplot.2 and rcss.barplot.3, we used overloading and
changes to defaults within those custom functions, i.e. in environments local to those functions.
In some cases, it may be reasonable to apply these changes in the global environment instead. This
can be achieved by running the preparation outside of the custom function.

RcssOverload()
RcssDefaultStyle <- style3
RcssCompulsoryClass <- c()

Subsequent to these commands, the custom function can be simplified further.

barplot using Rcssplot, version 4 (assumes global use of Rcssplot)
rcss.barplot.4 <- function(x, main="Custom Rcss plot", ylab="y label",

Rcssclass="typeB") {
adjust compulsory class
RcssCompulsoryClass <- RcssGetCompulsoryClass(Rcssclass)

7

create a barplot
barpos <- barplot(x, axes=FALSE, axisnames=FALSE)
axis(1, at=barpos[,1], labels=names(x), Rcssclass="x")
axis(2, Rcssclass="y")
mtext(main, Rcssclass="main")
mtext(range.string(x), Rcssclass="submain")
mtext(ylab, side=2, Rcssclass="ylab")

}

There are a couple of points to note.

• Function rcss.barplot.4 assumes that overloading has taken place. This is evidenced by calls
to, for example, axis, with Rcssclass arguments. Thus, if this function is ever invoked without
a prior overloading step, those calls will generate errors.

• The function definition no longer carries an argument Rcss. The style is assumed to come
entirely from the default style.

• The function still carries an argument Rcssclass. Keeping the argument is a mechanism that
allows functions within a project to use different sub-classes without the need to repeatedly
redefine the compulsory class in the global environment.

Sometimes, we may want to reset the default style and/or the compulsory style class(es). This is
simply achieved by setting those objects to NULL.

RcssDefaultStyle <- NULL
RcssCompulsoryClass <- NULL

Now that we’ve adjusted default settings within custom functions as well as in the global en-
vironment, let’s revisit revisit the functions RcssGetDefaultStyle and RcssGetCompulsoryClass.
Consider the following snippet.

RcssCompulsoryClass <- "bar0"
RcssCompulsoryClass

[1] "bar0"

foo1 <- function() {
RcssCompulsoryClass <- "bar1"
RcssCompulsoryClass

}
foo1()

[1] "bar1"

The first result is bar0; let’s think of this as a css class that we wish to employ at a global level. In
the first function, foo1, the compulsory class is set with a naive assignment. The return value reveals
that within that function, the compulsory class becomes bar1 and our previous value bar0 is lost.
This is normal behavior, but it does not reflect our intention to keep bar0 as a global style class.

To keep the intended global class, we can use function RcssGetCompulsoryClass.

foo2 <- function() {
RcssCompulsoryClass <- RcssGetCompulsoryClass("bar2")
RcssCompulsoryClass

}
foo2()

[1] "bar0" "bar2"

RcssCompulsoryClass

[1] "bar0"

Here, f002 looks up the compulsory class set in parent environments and augments it with the new
label. The effective compulsory class within that function thus becomes a combination of the global
and local settings. The final command show that RcssCompulsoryClass in the global environment
remains unaffected. The use of the labels bar1 and bar2 are thus localized to the custom functions.

8

The function RcssGetDefaultStyle fulfills an analogous role for style objects. Using a function
call RcssGetDefaultStyle("default") returns an object equivalent to the one set in a parent envi-
ronment.

4.4 Using custom selectors
In this section, let’s switch our focus toward using cascading style sheets as general data structures.
From an abstract viewpoint, Rcss objects are just stores of property/value pairs. Consider style file
vignettes.bar4.Rcss.

baraxis {
stripe: 1;

}
barplot.dotted {

col: #9999cc;
}
baraxis.dotted {

stripe: 1;
ylim: 0 101;

}
abline.dotted {

col: #666666;
lty: 2;

}

The first block is named baraxis, but this does not correspond to any of R’s base graphics commands.
Therefore, this block does not affect any of the Rcssplot wrapper functions. But we can write code to
exploit information in baraxis by extracting values manually. The package provides two functions
for this purpose, RcssProperty and RcssValue.

style4 <- Rcss(paste0("Rcss/vignettes.bar", c(1, 2, 4), ".Rcss"))
RcssProperty("baraxis", "stripe", Rcss=style4)

$defined
[1] TRUE
##
$value
[1] 1

The output signals that the stripe property in a baraxis block is indeed defined, and provides its
value. A related command automatically substitutes undefined values with a provided default.

RcssValue("baraxis", "stripe", default=0, Rcss=style4)

[1] 1

RcssValue("baraxis", "strpe", default=0, Rcss=style4)

[1] 0

The result here is 1 for stripe because we saw this property is defined; the suggestion default=0 is
ignored. The second result is 0 because the misspelling is not present in the file.

We can now exploit this feature to augment our bar chart with an option to draw horizontal rules
instead of a y-axis.

barplot using Rcssplot, version 5 (uses custom css selectors)
rcss.barplot.5 <- function(x, main="", ylab="Proportion (%)",

Rcss="default", Rcssclass=c()) {
use overloading, custom style, compulsary class
RcssOverload()
RcssDefaultStyle <- RcssGetDefaultStyle(Rcss)
RcssCompulsoryClass <- RcssGetCompulsoryClass(Rcssclass)
extract custom properties - show axis? force ylim?
stripes <- RcssValue("baraxis", "stripe", default=0)
ylim <- RcssValue("baraxis", "ylim", default=NULL)

9

a b c d e f
0

20

40

60

80

Stripes
Data range is [35, 80]

P
ro

po
rt

io
n

(%
)

A

a b c d e f
0

20

40

60

80

100

Stripes, y−scale 100
Data range is [35, 80]

P
ro

po
rt

io
n

(%
)

B

u v w x y z
0

20

40

60

80

100

... new data
Data range is [12, 94]

P
ro

po
rt

io
n

(%
)

C

Figure 4: Charts using custom css selectors: (A) horizontal rules instead of a y-axis; (B) styled rules
with a fixed vertical scale; (C) again styled rules with a fixed vertical scale, showing new data.

create background
barpos <- barplot(x, axes=FALSE, axisnames=FALSE, ylim=ylim,

col="#ffffff", border=NA)
draw a bar chart
axis(1, at=barpos[,1], labels=names(x), Rcssclass="x")
if (stripes) {

stripevals <- axis(2, lwd=0, labels=NA)
labpos <- axis(2, lwd=0, lwd.ticks=0, Rcssclass="y")
abline(h=labpos)

} else {
axis(2, Rcssclass="y")

}
barplot(x, axes=FALSE, axisnames=FALSE, add=TRUE)
mtext(main, Rcssclass="main")
mtext(range.string(x), Rcssclass="submain")
mtext(ylab, side=2, Rcssclass="ylab")

}

Two commands near the top fetch values for stripes and ylim. The subsequent code produces
output conditional to these new variables (Figure 4A).

rcss.barplot.5(a, main="Stripes", Rcss=style4)

The style we loaded also defines a class dotted (Figure 4B).

rcss.barplot.5(a, main="Stripes, y-scale 100", Rcss=style4, Rcssclass="dotted")

In addition to providing styling for the horizontal rules, the class dotted also defines a property
ylim. Its value is used within rcss.barplot.5 to force limits on the vertical axis. This behavior can
be desirable for several reasons. If the plotted values are proportions in percentages, it may be useful
to show the full range from 0% to 100%. A fixed range can also be useful when displaying plots
side-by-side (Figure 4C).

a2 <- setNames(c(12, 20, 26, 72, 88, 94), tail(letters, 6))
rcss.barplot.5(a2, main="... new data", Rcss=style4, Rcssclass="dotted")

In this example, the new data are easily compared with the old because the vertical scales in the
charts are recognizably the same.

5 Summary
This vignette introduced the Rcssplot package through an extended example based on a bar chart.
We started with a visualization implemented using R’s base graphics, and then adapted this design
using Rcssplot.

At the technical level, the package provides a framework for customizing R graphics through a
system akin to cascading style sheets. One part of the framework consists of functions that manage
information in style sheets. These functions parse Rcss files, extract property/value pairs relevant
in various contexts, and manage default styles and classes. Another part of the framework consists

10

of wrapper functions that mimick base graphics functions (plot, axis, text, etc.), but extract styling
details from the cascading style objects.

From a useability perspective, the Rcssplot package breaks building composite visualizations
down into distinct tasks. Fine-tuning of aesthetics is delegated to cascading style sheets, which
become external to R code. They can thus be adjusted safely without compromising data analysis
and they can be shared between projects. The R code that is left is focused on data analysis and on
the structure of the composite visualization. It is thus easier to understand and maintain.

The Rcssplot package is intended to provide a straightforward and familiar means to tune graph-
ics (given background in conventional cascading-style sheets). It is important to note, however, that
this is not the only graphics framework available for R. Indeed, other approaches have served as in-
spirations and models. In the space of static graphics, package ggplot2 provides a mature approach
to creating complex charts [1]. It supports tuning via themes; package ggthemes provides several
examples [2]. In the space of interactive visualizations, packages shiny [3] and plotly [4] create very
compelling results.

Acknowledgements
Many thanks to R’s documentation and manuals. A particularly valuable resource is [5].

Rcssplot is developed on github with contributions from (in alphabetical order): cuche27, nfultz.

References
[1] Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009.

[2] Jeffrey B. Arnold. ggthemes: Extra Themes, Scales and Geoms for ’ggplot2’. R package version 3.3.0,
2016.

[3] Winston Chang and Joe Cheng and JJ Allaire and Yihui Xie and Jonathan McPherson. shiny: Web
Application Framework for R. R package version 1.0.0, 2017.

[4] Carson Sievert and Chris Parmer and Toby Hocking and Scott Chamberlain and Karthik Ram
and Marianne Corvellec and Pedro Despouy. plotly: Create Interactive Web Graphics via ’plotly.js’ R
package version 4.5.6, 2016.

[5] Hadley Wickham. Advanced R. http://adv-r.had.co.nz/

A Appendix

A.1 Grammar
Parsing of cascading style sheets is performed within the Rcssplot based on the grammar below.

stylesheet
: [ruleset]*
;

ruleset
: simple_selector [',' simple_selector]*

'{' declaration? [';' declaration?]* '}'
;

simple_selector
: IDENT [class]*
| [class]+
;

class
: '.' IDENT
;

declaration
: property ':' expr
;

property

11

: IDENT
;

expr
: term [term]*
;

term
: NUMBER | STRING | IDENT | HEXCOLOR
;

This formal definition is a summary and guide, and can serve as a comparison to the full css grammar
of web design. However, actual parsing within the package is carried out manually, not using an
auto-generated parser.

A.2 Package versions

v0.3.0
• New functions for getting and setting values from Rcss objects: RcssValue, RcssUpdate. These

functions are complementary to previously exisitng functions, but are less verbose, epsecially
forfetching values from a default style.

• Better parsing and handling of special values in css files, e.g. TRUE/FALSE, NA, NULL.

v0.2.0
First version submitted to CRAN.

A.3 Session info

sessionInfo()

R version 3.4.1 (2017-06-30)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.4 LTS
##
Matrix products: default
BLAS: /software/opt/R/R-3.4.1/lib/libRblas.so
LAPACK: /software/opt/R/R-3.4.1/lib/libRlapack.so
##
locale:
[1] LC_CTYPE=en_GB.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_GB.UTF-8 LC_COLLATE=C
[5] LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=en_GB.UTF-8
[7] LC_PAPER=en_GB.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C
##
attached base packages:
[1] stats graphics grDevices utils datasets methods base
##
other attached packages:
[1] knitr_1.17 Rcssplot_0.3.0
##
loaded via a namespace (and not attached):
[1] compiler_3.4.1 magrittr_1.5 tools_3.4.1 stringi_1.1.5
[5] highr_0.6 stringr_1.2.0 evaluate_0.10.1

12

	Introduction
	Styling plots with base graphics
	Styling with cascading style sheets
	Using Rcss styles
	Using Rcss classes
	Using multiple styles

	Additional features
	Overloading base graphics
	Using a default style and compulsory classes
	Using Rcssplot globally
	Using custom selectors

	Summary
	Appendix
	Grammar
	Package versions
	Session info

