
RcppGSL: Easier GSL use from R via Rcpp

Dirk Eddelbuettel Romain François

Version 0.0.5 as of November 30, 2010

Abstract

The GNU Scientific Library, or GSL, is a collection of numerical routines for scientifc computing (Galassi
et al., 2010). It is particularly useful for C and C++ programs as it provides a standard C interface to a wide
range of mathematical routines such as special functions, permutations, combinations, fast fourier transforms,
eigensystems, random numbers, quadrature, random distributions, quasi-random sequences, Monte Carlo in-
tegration, N-tuples, differential equations, simulated annealing, numerical differentiation, interpolation, series
acceleration, Chebyshev approximations, root-finding, discrete Hankel transforms physical constants, basis
splines and wavelets. There are over 1000 functions in total with an extensive test suite.

The RcppGSL package provides an easy-to-use interface between GSL data structures and R using concepts
from Rcpp (Eddelbuettel and François, 2010) which is itself a package that eases the interfaces between R and
C++.

1 Introduction

The GNU Scientific Library, or GSL, is a collection of numerical routines for scientifc computing (Galassi
et al., 2010). It is a rigourously developed and tested library providing support for a wide range of scientific
or numerical tasks. Among the topics covered in the GSL are complex numbers, roots of polynomials, special
functions, vector and matrix data structures, permutations, combinations, sorting, BLAS support, linear
algebra, fast fourier transforms, eigensystems, random numbers, quadrature, random distributions, quasi-
random sequences, Monte Carlo integration, N-tuples, differential equations, simulated annealing, numerical
differentiation, interpolation, series acceleration, Chebyshev approximations, root-finding, discrete Hankel
transforms least-squares fitting, minimization, physical constants, basis splines and wavelets.

Support for C programming with the GSL is readily available: the GSL itself is written in C and provides
a C-language Application Programming Interface (API). Access from C++ is therefore possible, albeit not at
the abstraction level that can be offered by dedicated C++ implementations.1

The GSL is somewhat unique among numerical libraries. Its combination of broad coverage of scientific
topics, serious implementation effort and the use of a FLOSS license have lead to a fairly wide usage of the
library. As a concrete example, we can consider the the CRAN repository network for the R language and
environment (R Development Core Team, 2010). CRAN contains over a dozen packages interfacing the GSL:
copula, dynamo, gsl, gstat, magnets, mvabund, QRMlib, RBrownie, RDieHarder, RHmm, segclust, surveillance,
and topicmodels. This is a clear indication that the GSL is popular among programmers using either the C
or C++ language for solving problems applied science.

At the same time, the Rcpp package (Eddelbuettel and François, 2010) offers a higher-level abstraction
between R and underlying C++ (or C) code. Rcpp permits R objects like vectors, matrices, lists, functions,
environments, . . ., to be manipulated directly at the C++ level, alleviates the needs for complicated and
error-prone parameter passing and memory allocation. It also permits compact vectorised expressions similar
to what can be written in R directly at the C++ level.

The RcppGSL package discussed here aims the help close the gap. It tries to offer access to GSL functions,
in particular via the vector and matrix data structures used throughout the GSL, while staying closer to the
‘whole object model’ familar to the R programmer.

The rest of paper is organised as follows. The next section shows a motivating example of a fast linear
model fit routine using GSL functions. The following section discusses support for GSL vector types, which is
followed by a section on matrices.

1Several C++ wrappers for the GSL have been written over the years yet none reached a state of completion comparable to the
GSL itself. Three such wrapping library are http://cholm.home.cern.ch/cholm/misc/gslmm/, http://gslwrap.sourceforge.net/
and http://code.google.com/p/gslcpp/.

1

http://cholm.home.cern.ch/cholm/misc/gslmm/
http://gslwrap.sourceforge.net/
http://code.google.com/p/gslcpp/

2 Motivation: FastLm

Fitting linear models is a key building block of analysing data and modeling. R has a very complete and feature-
rich function in lm() which can provide a model fit as we a number of diagnostic measure, either directly or
via the corresponding summary() method for linear model fits. The lm.fit() function also provides a faster
alternative (which is however recommend only for for advanced users) which provides estimates only and fewer
statistics for inference. This sometimes leads users request a routine which is both fast and featureful enough.
The fastLm routine shown here provides such an implementation. It uses the GSL for the least-squares fitting
functions and therefore provides a nice example for GSL integration with R.

#include <RcppGSL.h>

#include <gsl/gsl_multifit.h>

#include <cmath>

extern "C" SEXP fastLm(SEXP ys, SEXP Xs) {

try {

RcppGSL::vector<double> y = ys; // create gsl data structures from SEXP
RcppGSL::matrix<double> X = Xs;

int n = X.nrow(), k = X.ncol();

double chisq;

RcppGSL::vector<double> coef(k); // to hold the coefficient vector
RcppGSL::matrix<double> cov(k,k); // and the covariance matrix

// the actual fit requires working memory we allocate and free
gsl_multifit_linear_workspace *work = gsl_multifit_linear_alloc (n, k);

gsl_multifit_linear (X, y, coef, cov, &chisq, work);

gsl_multifit_linear_free (work);

// extract the diagonal as a vector view
gsl_vector_view diag = gsl_matrix_diagonal(cov) ;

// currently there is not a more direct interface in Rcpp::NumericVector
// that takes advantage of wrap, so we have to do it in two steps
Rcpp::NumericVector std_err ; std_err = diag;

std::transform(std_err.begin(), std_err.end(), std_err.begin(), sqrt);

Rcpp::List res = Rcpp::List::create(Rcpp::Named("coefficients") = coef,

Rcpp::Named("stderr") = std_err,

Rcpp::Named("df") = n - k);

// free all the GSL vectors and matrices -- as these are really C data structures
// we cannot take advantage of automatic memory management
coef.free(); cov.free(); y.free(); X.free();

return res; // return the result list to R

} catch(std::exception &ex) {

forward_exception_to_r(ex);

} catch(...) {

::Rf_error("c++ exception (unknown reason)");

}

return R_NilValue; // -Wall
}

We first initialize a RcppGSL vector and matrix, each templated to the standard numeric type double

(and the GSL supports other types ranging from lower precision floating point to signed and unsigned integers

2

as well as complex numbers). We the reserve another vector and matrix to hold the resulting coefficient
estimates as well as the estimate of the covariance matrix. Next, we allocate workspace using a GSL routine,
fit the linear model and free the workspace. The next step involves extracting the diagonal element from the
covariance matrix. We then employ a so-called iterator—a common C++ idiom from the Standard Template
Library (STL)—to iterate over the vector of diagonal and transforming it by applying the square root function
to compute our standard error of the estimate. Finally we create a named list with the return value before
we free temporary memory allocation (a step that has to be done because the underlying objects are really
C objects conforming to the GSL interface and hence without the automatic memory management we could
have with C++ vector or matrix structures as used through the Rcpp package) and return the result to R.

We should note that RcppArmadillo (François, Eddelbuettel, and Bates, 2010) implements a matching
fastLm function using the Armadillo library by Sanderson (2010), and can do so with more compact code due
to C++ features.

3 Vectors

This section details the different vector represenations, starting with their definition inside the GSL. We then
discuss our layering before showing how the two types map. A discussion of read-only ‘vector view’ classes
concludes the section.

3.1 GSL Vectors

GSL defines various vector types to manipulate one-dimensionnal data, similar to R arrays. For example the
gsl_vector and gsl_vector_int structs are defined as:

typedef struct{

size_t size;

size_t stride;

double * data;

gsl_block * block;

int owner;

} gsl_vector;

typedef struct {

size_t size;

size_t stride;

int * data;

gsl_block_int * block;

int owner;

}

gsl_vector_int;

A typical use of the gsl_vector struct is given below:

int i;

gsl_vector * v = gsl_vector_alloc (3); // allocate a gsl vector of size 3

for (i = 0; i < 3; i++) { // fill the vector
gsl_vector_set (v, i, 1.23 + i);

}

double sum = 0.0 ; // access elements
for (i = 0; i < 3; i++) {

sum += gsl_vector_set(v, i) ;

}

gsl_vector_free (v); // free the memory

3

3.2 RcppGSL::vector

RcppGSL defines the template RcppGSL::vector<T> to manipulate gsl_vector pointers taking advantage of
C++ templates. Using this template type, the previous example now becomes:

int i;

RcppGSL::vector<double> v(3); // allocate a gsl vector of size 3

for (i = 0; i < 3; i++) { // fill the vector
v[i] = 1.23 + i ;

}

double sum = 0.0 ; // access elements
for (i = 0; i < 3; i++) {

sum += v[i] ;

}

v.free() ; // free the memory

The class RcppGSL::vector<double> is a smart pointer, that can be used anywhere where a raw pointer
gsl_vector can be used, such as the gsl_vector_set and gsl_vector_get functions above.

Beyond the convenience of a nicer syntax for allocation and release of memory, the RcppGSL::vector

template faciliates interchange of GSL vectors with Rcpp objects, and hence R objects. The following example
defines a .Call compatible function called sum_gsl_vector_int that operates on a gsl_vector_int through
the RcppGSL::vector<int> template specialization:

RCPP_FUNCTION_1(int, sum_gsl_vector_int, RcppGSL::vector<int> vec){

int res = std::accumulate(vec.begin(), vec.end(), 0) ;

vec.free() ; // we need to free vec after use
return res ;

}

The function can then simply be called from R :

> .Call("sum_gsl_vector_int", 1:10)

[1] 55

A second example shows a simple function that grabs elements of an R list as gsl_vector objects using
implicit conversion mechanisms of Rcpp

4

RCPP_FUNCTION_1(double, gsl_vector_sum_2, Rcpp::List data){

// grab ”x” as a gsl vector through the RcppGSL::vector<double> class
RcppGSL::vector<double> x = data["x"] ;

// grab ”y” as a gsl vector through the RcppGSL::vector<int> class
RcppGSL::vector<int> y = data["y"] ;

double res = 0.0 ;

for(size_t i=0; i< x->size; i++){

res += x[i] * y[i] ;

}

// as usual with GSL, we need to explicitely free the memory
x.free() ;

y.free() ;

// return the result
return res ;

}

called from R :

> data <- list(x = seq(0,1,length=10), y = 1:10)

> .Call("gsl_vector_sum_2", data)

[1] 36.66667

3.3 Mapping

Table 1 shows the mapping between types defined by the GSL and their corresponding types in the RcppGSL
package.

gsl vector RcppGSL

gsl_vector RcppGSL::vector<double>

gsl_vector_int RcppGSL::vector<int>

gsl_vector_float RcppGSL::vector<float>

gsl_vector_long RcppGSL::vector<long>

gsl_vector_char RcppGSL::vector<char>

gsl_vector_complex RcppGSL::vector<gsl_complex>

gsl_vector_complex_float RcppGSL::vector<gsl_complex_float>

gsl_vector_complex_long_double RcppGSL::vector<gsl_complex_long_double>

gsl_vector_long_double RcppGSL::vector<long double>

gsl_vector_short RcppGSL::vector<short>

gsl_vector_uchar RcppGSL::vector<unsigned char>

gsl_vector_uint RcppGSL::vector<unsigned int>

gsl_vector_ushort RcppGSL::vector<insigned short>

gsl_vector_ulong RcppGSL::vector<unsigned long>

Table 1: Correspondance between GSL vector types and templates defined in RcppGSL.

3.4 Vector Views

Several GSL algorithms return GSL vector views as their result type. RcppGSL defines the template class
RcppGSL::vector_view to handle vector views using C++ syntax.

5

extern "C" SEXP test_gsl_vector_view(){

int n = 10 ;

RcppGSL::vector<double> v(n) ;

for(int i=0 ; i<n; i++){

v[i] = i ;

}

RcppGSL::vector_view<double> v_even = gsl_vector_subvector_with_stride(v,0,2,n/2);

RcppGSL::vector_view<double> v_odd = gsl_vector_subvector_with_stride(v,1,2,n/2);

List res = List::create(

_["even"] = v_even,

_["odd"] = v_odd

) ;

v.free() ; // we only need to free v, the views do not own data
return res ;

}

As with vectors, C++ objects of type RcppGSL::vector_view can be converted implicitly to their associated
GSL view type. Table 2 displays the pairwise correspondance so that the C++ objects can be passed to
compatible GSL algorithms.

gsl vector views RcppGSL

gsl_vector_view RcppGSL::vector_view<double>

gsl_vector_view_int RcppGSL::vector_view<int>

gsl_vector_view_float RcppGSL::vector_view<float>

gsl_vector_view_long RcppGSL::vector_view<long>

gsl_vector_view_char RcppGSL::vector_view<char>

gsl_vector_view_complex RcppGSL::vector_view<gsl_complex>

gsl_vector_view_complex_float RcppGSL::vector_view<gsl_complex_float>

gsl_vector_view_complex_long_double RcppGSL::vector_view<gsl_complex_long_double>

gsl_vector_view_long_double RcppGSL::vector_view<long double>

gsl_vector_view_short RcppGSL::vector_view<short>

gsl_vector_view_uchar RcppGSL::vector_view<unsigned char>

gsl_vector_view_uint RcppGSL::vector_view<unsigned int>

gsl_vector_view_ushort RcppGSL::vector_view<insigned short>

gsl_vector_view_ulong RcppGSL::vector_view<unsigned long>

Table 2: Correspondance between GSL vector view types and templates defined in RcppGSL.

The vector view class also contains a conversion operator to automatically transform the data of the view
object to a GSL vector object. This enables use of vector views where GSL would expect a vector.

4 Matrices

The GSL also defines a set of matrix data types : gsl_matrix, gsl_matrix_int etc ... for which RcppGSL
defines a corresponding convenience C++ wrapper generated by the RcppGSL::matrix template.

4.1 Creating matrices

The RcppGSL::matrix template exposes three constructors.

6

// convert an R matrix to a GSL matrix
matrix(SEXP x) throw(::Rcpp::not_compatible)

// encapsulate a GSL matrix pointer
matrix(gsl_matrix* x)

// create a new matrix with the given number of rows and columns
matrix(int nrow, int ncol)

4.2 Implicit conversion

RcppGSL::matrix defines implicit conversion to a pointer to the associated GSL matrix type, as well as
dereferencing operators, making the class RcppGSL::matrix look and feel like a pointer to a GSL matrix type.

gsltype* data ;

operator gsltype*(){ return data ; }

gsltype* operator->() const { return data; }

gsltype& operator*() const { return *data; }

4.3 Indexing

Indexing of GSL matrices is usually the task of the functions gsl_matrix_get, gsl_matrix_int_get, ... and
gsl_matrix_set, gsl_matrix_int_set, ...

RcppGSL takes advantage of both operator overloading and templates to make indexing a GSL matrix
much more convenient.

RcppGSL::matrix<int> mat(10,10); // create a matrix of size 10x10

for(int i=0; i<10: i++) { // fill the diagonal
mat(i,i) = i ;

}

4.4 Methods

The RcppGSL::matrix type also defines the following member functions:

nrow extracts the number of rows

ncol extract the number of columns

size extracts the number of elements

free releases the memory

4.5 Matrix views

Similar to the vector views discussed above, the RcppGSL also provides an implicit conversion operator which
returns the underlying matrix stored in the matrix view class.

5 Using RcppGSL in your package

The RcppGSL package contains a complete example providing a single function colNorm which computes a
norm for each column of a supplied matrix. This example adapts a matrix example from the GSL manual
that has been chose merely as a means to showing how to set up a package to use RcppGSL.

Needless to say, we could compute such a matrix norm easily in R using existing facilities. One such
possibility is a simple apply(M, 2, function(x) sqrt(sum(x^2))) as shown on the corresponding help page

7

in the example package inside RcppGSL. One point in favour of using the GSL code is that it employs a
BLAS function so on sufficiently large matrices, and with suitable BLAS libraries installed, this variant could
be faster due to the optimised code in high-performance BLAS libraries and/or the inherent parallelism a
multi-core BLAS variant which compute compute the vector norm in parallel. On all ‘reasonable’ matrix
sizes, however, the performance difference should be neglible.

5.1 The configure script

5.1.1 Using autoconf

Using RcppGSL means employing both the GSL and R. We may need to find the location of the GSL headers
and library, and this done easily from a configure source script which autoconf generates from a config-

ure.in source file such as the following:

AC_INIT([RcppGSLExample], 0.1.0)

Use gsl-config to find arguments for compiler and linker flags
##
Check for non-standard programs: gsl-config(1)
AC_PATH_PROG([GSL_CONFIG], [gsl-config])

If gsl-config was found, let’s use it
if test "${GSL_CONFIG}" != ""; then

Use gsl-config for header and linker arguments (without BLAS which we get from R)
GSL_CFLAGS=‘${GSL_CONFIG} --cflags‘

GSL_LIBS=‘${GSL_CONFIG} --libs-without-cblas‘

else
AC_MSG_ERROR([gsl-config not found, is GSL installed?])

fi

Use Rscript to query Rcpp for compiler and linker flags
link flag providing libary as well as path to library, and optionally rpath
RCPP_LDFLAGS=‘${R_HOME}/bin/Rscript -e ’Rcpp:::LdFlags()’‘

Now substitute these variables in src/Makevars.in to create src/Makevars
AC_SUBST(GSL_CFLAGS)

AC_SUBST(GSL_LIBS)

AC_SUBST(RCPP_LDFLAGS)

AC_OUTPUT(src/Makevars)

Such a source configure.in gets converted into a script configure by invoking the autoconf program.

5.1.2 Using functions provided by RcppGSL

RcppGSL provides R functions that allows one to retrieve the same information. Therefore the configure
script can also be written as:

#!/bin/sh

GSL_CFLAGS=‘${R_HOME}/bin/Rscript -e "RcppGSL:::CFlags()"‘

GSL_LIBS=‘${R_HOME}/bin/Rscript -e "RcppGSL:::LdFlags()"‘

RCPP_LDFLAGS=‘${R_HOME}/bin/Rscript -e "Rcpp:::LdFlags()"‘

sed -e "s|@GSL_LIBS@|${GSL_LIBS}|" \
-e "s|@GSL_CFLAGS@|${GSL_CFLAGS}|" \
-e "s|@RCPP_LDFLAGS@|${RCPP_LDFLAGS}|" \
src/Makevars.in > src/Makevars

8

Similarly, the configure.win for windows can be written as:

GSL_CFLAGS=‘${R_HOME}/bin${R_ARCH_BIN}/Rscript.exe -e "RcppGSL:::CFlags()"‘

GSL_LIBS=‘${R_HOME}/bin${R_ARCH_BIN}/Rscript.exe -e "RcppGSL:::LdFlags()"‘

RCPP_LDFLAGS=‘${R_HOME}/bin${R_ARCH_BIN}/Rscript.exe -e "Rcpp:::LdFlags()"‘

sed -e "s|@GSL_LIBS@|${GSL_LIBS}|" \
-e "s|@GSL_CFLAGS@|${GSL_CFLAGS}|" \
-e "s|@RCPP_LDFLAGS@|${RCPP_LDFLAGS}|" \
src/Makevars.in > src/Makevars.win

5.2 The src directory

The C++ source file takes the matrix supplied from R and applies the GSL function to each column.

#include <RcppGSL.h>

#include <gsl/gsl_matrix.h>

#include <gsl/gsl_blas.h>

extern "C" SEXP colNorm(SEXP sM) {

try {

RcppGSL::matrix<double> M = sM; // create gsl data structures from SEXP
int k = M.ncol();

Rcpp::NumericVector n(k); // to store results

for (int j = 0; j < k; j++) {

RcppGSL::vector_view<double> colview = gsl_matrix_column (M, j);

n[j] = gsl_blas_dnrm2(colview);

}

M.free() ;

return n; // return vector

} catch(std::exception &ex) {

forward_exception_to_r(ex);

} catch(...) {

::Rf_error("c++ exception (unknown reason)");

}

return R_NilValue; // -Wall
}

The Makevars.in file governs the compilation and uses the values supplied by configure during build-time:

set by configure
GSL_CFLAGS = @GSL_CFLAGS@

GSL_LIBS = @GSL_LIBS@

RCPP_LDFLAGS = @RCPP_LDFLAGS@

combine with standard arguments for R
PKG_CPPFLAGS = $(GSL_CFLAGS)

PKG_LIBS = $(GSL_LIBS) $(RCPP_LDFLAGS)

The variables surrounded by will be filled by configure during package build-time.

9

5.3 The R directory

The R source is very simply: a single matrix is passed to C++:

colNorm <- function(M) {

stopifnot(is.matrix(M))
res <- .Call("colNorm", M, package="RcppGSLExample")

}

6 Using RcppGSL with inline

The inline package (Sklyar, Murdoch, Smith, Eddelbuettel, and François, 2010) is very helpful for prototyping
code in C, C++ or Fortran as it takes care of code compilation, linking and dynamic loading directly from R.
It is being used extensively by Rcpp, for example in the numerous unit tests.

The example below shows how inline can be deployed with RcppGSL. We implement the same column
norm example, but this time as an R script which is compiled, linked and loaded on-the-fly. Compared to
standard use of inline, we have to make sure to add a short section declaring which header files from GSL we
need to use; the RcppGSL then communicates with inline to tell it about the location and names of libraries
used to build code against GSL.

require(inline)

inctxt=’

#include <gsl/gsl_matrix.h>

#include <gsl/gsl_blas.h>

’

bodytxt=’

RcppGSL::matrix<double> M = sM; // create gsl data structures from SEXP

int k = M.ncol();

Rcpp::NumericVector n(k); // to store results

for (int j = 0; j < k; j++) {

RcppGSL::vector_view<double> colview = gsl_matrix_column (M, j);

n[j] = gsl_blas_dnrm2(colview);

}

M.free() ;

return n; // return vector

’

foo <- cxxfunction(signature(sM="numeric"), body=bodytxt, inc=inctxt, plugin="RcppGSL")

see Section 8.4.13 of the GSL manual: create M as a sum of two outer products
M <- outer(sin(0:9), rep(1,10), "*") + outer(rep(1, 10), cos(0:9), "*")

print(foo(M))

The RcppGSL inline plugin supports creation of a package skeleton based on the inline function.

> package.skeleton("mypackage", foo)

7 Summary

The GNU Scientific Library (GSL) by Galassi et al. (2010) offers a very comprehensive collection of rigorously
developed and tested functions for applied scientific computing under a common Open Source license. This
has lead to widespread deployment of GSL among a number of disciplines.

10

Using the automatic wrapping and converters offered by the RcppGSL package presented here, R users
and programmers can now deploy algorithmns provided by the GSL with greater ease.

References

Dirk Eddelbuettel and Romain François. Rcpp R/C++ interface package, 2010. URL http://CRAN.

R-project.org/package=Rcpp. R package version 0.8.8.

Romain François, Dirk Eddelbuettel, and Douglas Bates. RcppArmadillo: Rcpp integration for Armadillo
templated linear algebra library, 2010. URL http://cran.r-project.org//package=RcppArmadillo. R
package version 0.2.9.

Mark Galassi, Jim Davies, James Theiler, Brian Gough, Gerard Jungman, Patrick Alken, Michael Booth, and
Fabrice Rossi. GNU Scientific Library Reference Manual, 3rd edition, 2010. URL http://www.gnu.org/

software/gsl. Version 1.14.

R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2010. URL http://www.R-project.org/. ISBN 3-900051-07-0.

Conrad Sanderson. Armadillo: An open source C++ algebra library for fast prototyping and computationally
intensive experiments. Technical report, NICTA, 2010. URL http://arma.sf.net.

Oleg Sklyar, Duncan Murdoch, Mike Smith, Dirk Eddelbuettel, and Romain François. inline: Inline C, C++,
Fortran function calls from R, 2010. URL http://cran.r-project.org//package=inline. R package
version 0.3.7.

11

http://CRAN.R-project.org/package=Rcpp
http://CRAN.R-project.org/package=Rcpp
http://cran.r-project.org//package=RcppArmadillo
http://www.gnu.org/software/gsl
http://www.gnu.org/software/gsl
http://www.R-project.org/
http://arma.sf.net
http://cran.r-project.org//package=inline

	Introduction
	Motivation: FastLm
	Vectors
	GSL Vectors
	RcppGSL::vector
	Mapping
	 Vector Views

	Matrices
	Creating matrices
	Implicit conversion
	Indexing
	Methods
	Matrix views

	Using RcppGSL in your package
	The configure script
	Using autoconf
	Using functions provided by RcppGSL

	The src directory
	The R directory

	Using RcppGSL with inline
	Summary

