
Layout cell images with Rcell (Version 1.1-8)

Alan Bush

March 15, 2012

1 Introduction

Rcell uses the functions of EBImage package to manipulate and display the images processed by Cell-
ID. The main purpose of the functions described in this document is to get a quick look at cells in different
conditions, channels and times. cimage function crops images from single cells and displays them according
to a user define arrangement.

If you haven’t done so, read the “Getting Started with Rcell” document before proceeding.

> vignette('Rcell')

Make sure you have the EBImage package installed in your system. This package is quite hard to install,
follow instructions from the VCell-ID-Rcell-Installation-Guide at http://sourceforge.net/projects/cell-id/
files/ or from http://bioconductor.wustl.edu/bioc/html/EBImage.html. To test if the package is
working correctly try the following commands. A picture of Lena should be displayed.

> library(EBImage)

> example(display)

2 Display cell images

If you haven’t done so, load the Rcell package and the filtered example dataset with

> library(Rcell)

> data(ACL394filtered)

When analyzing a dataset, you usually want to take a look at the cell’s images that correspond to the
data points. This helps to interpret the data and gives you confidence on the result. To visualize a random
set of cells from a image, you have to specify position, channel and time frame (if you are dealing with a
time course). For example, to visualize some BF images of cells from position 29 and time frame 11 use the
following command1.

> cimage(X,subset=pos==29&t.frame==11,channel="BF")

This function displays the image shown in Figure 1, and returns a Image object that can be saved to disk
using the writeImage function.

As all Rcell functions, the first argument of cimage is the cell.data object that you wish to visualize.
This function first subsets the cell.data object X according to the subset argument, as many other Rcell
functions. This is useful to select cells and times, but you can’t use this argument to select the channel you

1To save space, only some images of the example datatset were included in the package. Changing the subset or the channel
arguments might result in errors if the specified images are not found.

1



Figure 1: BF images of random cells selected from position 29, t.frame 11

Figure 2: Time course strips for cell 5 of position 29

want to see. Instead you can use the channel argument for this. Note that you can select several channels
(see below). cimage then takes a random sample of cells from those selected by the subset argument. The
default sample size is seven, but you can specify it with the N argument. If you set N to NA, no sampling is
applied and all selected cells are shown. The position each cell took in the image was arbitrary in Figure 1,
they were just tiled together to make a square arrangement. But position can have a meaning. A normal
way to display cell images is to show a time course strips, where different channels are stacked one over the
other. cimage can easily produce this kind of images (Figure 2).

> cimage(X,channel~t.frame,subset=pos==29&cellID==5,channel=c("BF","YFP"))

The second argument cimage is the formula that specifies the position of individual images. The first
term indicates the y variable, channel in this example, so different channels will have different y coordinates.
The right term specifies which variable is going to be used as the x coordinate, t.frame in this case. In this
example a single cell was explicitly selected with the subset argument. When you select more than one cell
per group2, you have to specify how you want them to be layout on the image. To specify different cells
within a sample you can use the cell3 keyword, as shown in Figure 3.

> cimage(X,cell+channel~t.frame,subset=pos==29,channel=c("BF","YFP"),N=4)

Note that you can use more than one variable in each term of the formula, separated by the plus operator
(+). The order matters, the last variable to the right varies faster. In this example (Figure 3) channel is
anidated in each cell.

The channel.subset argument allows you to do complex selection of channels and t.frame. For example
you might be interested in the YFP channel, but would like to see the cell boundary found by Cell-ID on a
BF image for a single time frame (Figure 4).

> cimage(X,cell~channel+t.frame,subset=pos==29,N=4,

+ channel.subset=channel=="YFP"|(channel=="BF.out"&t.frame==11))

You can select the “out” images generated by Cell-ID by appending “.out” to the channel name.

2the groups are defined by the interaction (combinations) of the terms of the formula
3note that cell is different from cellID. You can also use the alternative keywords sample or thre dots(. . . )

2



Figure 3: Time course strips for 4 randomly chosen cells. The position and cellID of each cell are shown in
the pos.cellID format.

Figure 4: YFP time course strips for 4 randomly chosen cells, with a single BF image

3



Figure 5: sample against channel, faceted by position

3 Faceting your image layout

In the same way as for cplot, you can define facets for the image layout. The facets are specified with
formula notation, just as the positions of the images within a facet. If only one term of the formula is
specified, the facets will be wrapped around the image to save space4 (Figure 5).

> cimage(X,cell~channel,facets=~pos,subset=t.frame==11&pos%in%c(1,8,15,22,29)

+ ,channel=c("YFP","BF"),N=3,facets.nx=5)

4 Image layout for continuous variables

An interesting plot can be obtained if we choose the position of the image according to a continuous
variable. First suitable bins of the continuous variables have to be created, we can use the cut function for
this.

> X<-transform(X,cut.fft.stat=cut(fft.stat,20))

> X<-transform(X,cut.f.tot.y=cut(f.tot.y,20))

Once these variables are created we can use them to arrange the images of the cells (Figure 6).

> cimage(X,cut.f.tot.y~cut.fft.stat,facets=~channel,subset=t.frame==11 & pos %in% c(1,8,15,22,29)

+ ,channel=c("YFP","BF.out"),N=1)

You can compare the image layout with a scatter plot side by side. This can hep you interpret the scatter
plot (Figure 7).

> cplot(X,f.tot.y~fft.stat,subset=t.frame==11 & pos %in% c(1,8,15,22,29))

References

Pau, Fuchs et al. (2010). EBImage: an R package for image processing with applications to cellular pheno-
types. Bioinformatics, 26(7):979-981.

Colman-Lerner, Gordon et al. (2005). Regulated cell-to-cell variation in a cell-fate decision system. Nature,
437(7059):699-706.

Chernomoretz, Bush et al. (2008). Using Cell-ID 1.4 with R for Microscope-Based Cytometry. Curr Protoc
Mol Biol., Chapter 14:Unit 14.18.

4In this case the facets.nx argument can be used to define the number of facets columns

4



Figure 6: f.tot.y vs fft.stat, faceted by channel

2e+06

4e+06

6e+06

8e+06

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

0.1 0.2 0.3 0.4
fft.stat

f.t
ot

.y

Figure 7: Scatter plot to be compared to the image layouts of Figure 6

5


