
Data manipulation with Rcell (Version 1.1-7)

Alan Bush

December 12, 2011

1 Introduction

Once you have your data loaded into R, you can filter it and plot it as shown in “Getting Started with
Rcell”. To read that document type in the console

> vignette('Rcell')

But many times we want to do some manipulation or transformations on the data before plotting it. In
this document you’ll see how this can be done using Rcell.

2 Transforming variables

If you haven’t done so, load the Rcell package and the example dataset with

> library(Rcell)

> data(ACL394filtered)

The easiest way to modify your dataset is to create new variables from existing ones. For example, its
desirable to correct the fluorescence measure of a cell by the background fluorescence. To do this for the
YFP channel we can use the f.bg.y variable, that contains the most common value (mode) for pixels not
associated with any cell. If a cell has no fluorophores, we expect it to have a total fluorescence equivalent
to f.bg.y times the number of pixels of the cell, a.tot. So the background corrected fluorescence can be
calculated as f.tot.y - f.bg.y*a.tot. To creare a new variable called f.total.y with the corrected value
for fluorescence we can use the transform funcion. As all other Rcell functions, the first argument is the
cell.data object to tranform.

> X<-transform(X,f.total.y=f.tot.y - f.bg.y*a.tot)

Once created, you can use the new variable as any other variable of the dataset. You can create several
variables in a single call to transform, as shown next for the fluorescence density variables.

> X<-transform(X,f.density.y=f.tot.y/a.tot,f.density.c=f.tot.c/a.tot)

You can keep track of the variables you’ve created with the summary function, that will display among
other things the “transformed” variables with their definition.

> summary(X)

1

pos alpha.factor
1 1.25
2 1.25
3 1.25
8 2.50
9 2.50

10 2.50
15 5.00
16 5.00
17 5.00
22 10.00
23 10.00
24 10.00
29 20.00
30 20.00
31 20.00

Table 1: example data.frame to merge

3 Merging variables

Sometimes there is no formula to specify the new variable you want to create. For example, you might
want to create a variable that describes the treatment each position received. In the example dataset
(help(ACL394)) each position received a different dose of alpha-factor pheromone, according to the Table 1.

You can create this table in Excel1 and save it as a tab delimited text file. If you name it “mytable.txt”,
then you can loaded into R with read.table. The best option is to save the file in your working directory,
or to change your working directory to where you saved the file (see ?setwd).

> mytable<-read.table("mytable.txt",head=TRUE)

If the first row of your text file contains the column names (recommended), you have to set head to
TRUE in read.table. Once loaded you can add the new data to your dataset using the merge function.
This function looks for common variables between X and mytable and, if it finds them it merges the dataset
according to those common variables. Be aware that the names of the columns of mytable have to match
EXACTLY2 to the variables of X3. In this case it will merge by pos. You can also specify the variable to
merge by with the by argument.

> X<-merge(X,mytable)

merging by pos

merged vars:

alpha.factor: numeric w/values 1.25, 2.5, 5, 10, 20

4 Transform By

A common transformation is normalization, i.e. dividing the value of a variable by the “basal” level. For
example, we might be interested in the fold icrease of YFP fluorescence through time. So we need to divide
the measured value at each time by the value at time cero, and we need to this for every cell. How can we
do this? The steps we should follow are the following:

1or from R: mytable<-data.frame(pos=with(X,unique(pos)),alpha.factor=rep(c(1.25,2.5,5,10,20),each=3))
2R is case-sensitive so "pos" is different to "Pos"
3You can see these variables with summary(X)

2

t.frame

f.t
ot

.y

2e+06

4e+06

6e+06

8e+06

1e+07

0 2 4 6 8 10 12
t.frame

no
rm

.f.
to

t.y

5

10

15

20

25

0 2 4 6 8 10 12

Figure 1: Left: raw single cell time course for YFP fluorescence. Right: Same data normalized to each cells
value at time cero.

1. Divide the dataset by cell, creating a table for each cell.

2. Indentify the value of fluorescence for time cero.

3. Create a new variable by dividing the fluorescence at each time by the value at time cero.

4. Join the cells datasets back together to retrieve the original dataset with the new variable.

All these steps are done by the function transform.by, but it requires information on how each step
should be done. For the first step, it needs to know how to partition the dataset. This is specified by passing
a quoted list of variable, whos combination of levels specify a group. For example, if you want to divide
the datset by position, the second argument of transform.by should be .(pos). If you want to divide
your dataset by cell use .(pos,cellID). Note that cells in different position can have the same cellID, so
the combination of pos and cellID uniquely identifies a cell. The variable ucid (for Unique Cell ID) is
another way to uniquely identify a cell. Next we need to specify the name of the new variable to be created
(norm.f.tot.y for example), and the definition for this variable, f.tot.y/f.tot.y[t.frame==0]. With the
square brackets we are selecting the value of f.tot.y when t.frame is cero. Remember to use the logical
operator == and not the assignation operator = within the brackets.

> X<-transform.by(X,.(pos,cellID),norm.f.tot.y=f.tot.y/f.tot.y[t.frame==0])

You can see the raw and normalized data in Figure 1. Another way to normalize the data, is dividing by
the mean of the first three values.

> X<-transform.by(X,.(pos,cellID),norm2.f.tot.y=f.tot.y/mean(f.tot.y[t.frame<=2]))

3

5 Aggregating your data

To calculate summary statistics you can use the aggregate function, that returns an aggregated table.
That means that the value of each cell of this aggregated table is caculated from more than one cell of the
original table. For example you might be intereset in getting the mean YFP fluroescence for each pheromone
dose. aggregate accepts two notations that give equivalent results.

> aggregate(X,.(alpha.factor),select="f.total.y")

> aggregate(X,f.total.y~alpha.factor) #formula notation

AF.nM f.total.y

1 1.25 1071898

2 2.50 1622198

3 5.00 2234246

4 10.00 2393427

5 20.00 2377602

You can calculate other statistics using the FUN argument, and you can include more than one variable.
Here we calculate the median for f.tot.y, f.tot.c and a.tot. Note the use of the wildcard in the select
argument.

> aggregate(X,.(alpha.factor),select=c("f.tot.*","a.tot"),FUN=median)

alpha.factor f.tot.c f.tot.y a.tot

1 1.25 1047808.5 1212391 415.5

2 2.50 1055751.0 1564543 415.0

3 5.00 1037465.0 2032817 407.0

4 10.00 1001638.5 2224172 398.0

5 20.00 961167.5 2083660 380.0

The partition of the dataset can be done by more than one variable, for example by dose and time. Using
the function funstofun from the reshape package, you can calculate more than one statistic at once.

> aggregate(X,f.density.y~t.frame+alpha.factor,FUN=funstofun(median,sd),subset=t.frame%%3==0)

t.frame alpha.factor f.density.y.median f.density.y.sd

1 0 1.25 1037.6060 162.4781

2 3 1.25 2103.6828 420.8901

3 6 1.25 3646.6715 892.4902

4 9 1.25 3916.8426 1112.6042

5 12 1.25 4081.6656 1295.7236

6 0 2.50 1043.6030 141.9683

7 3 2.50 2283.6054 577.7679

8 6 2.50 4663.5886 1387.7653

9 9 2.50 5809.6937 1895.5383

10 12 2.50 6715.9285 2200.4825

11 0 5.00 1057.4033 163.5038

12 3 5.00 2519.7817 662.3112

13 6 5.00 5619.7677 1633.4406

14 9 5.00 8206.8911 2418.8710

15 12 5.00 9600.1285 2859.8918

16 0 10.00 1009.4154 131.5840

17 3 10.00 2686.9785 508.3823

4

18 6 10.00 5883.8167 1218.5057

19 9 10.00 9131.4531 2018.9390

20 12 10.00 10792.7466 2478.7091

21 0 20.00 1022.5990 120.6829

22 3 20.00 2730.6114 571.0274

23 6 20.00 6440.7103 1645.1310

24 9 20.00 9512.2292 2497.7941

25 12 20.00 11746.9381 3383.9809

6 Evaluating expressions in your dataset

Using the with function, you can evaluate a expression in a enviroment created from your dataset. That
means that you can use the names of your variables directly, without any prefix. For example to calculate
the mean of f.tot.y from position 1

> with(X,mean(f.tot.y[pos==1]))

[1] 1372297

If you don’t use with you have to write the full identifier of the variable, and the code becomes longer
and harder to understand. For exaple, the same result can be obtained with

> mean(X$data$f.tot.y[X$data$pos==1])

7 Exporting your data

Although you can do much of your analysis using Rcell functions, you might need to export the data to
some other application or use another package within R. To retrieve the entire dataset in a data.frame, use
the double square brackets notation. This returns the registers that pass the QC.filter.

> df<-X[[]]

This dataset is usually big, and has many varaibles or registers you are not interested in. You can subset
the datset as you would a data.frame (but using double brackets)

> df<-X[[pos==1,c("cellID","f.tot.y","a.tot")]]

You can then save the data.frame to a file with write.table, or use it in another R package.
For some kinds of data analysis you need your data in a different form than the one Rcell uses. You can

use the reshape function to reshape your data. For instance, a common restructuring is to display time as
different columns, and individual cells as different rows. You can obtain this sort of data.frames with the
following command.

> reshape(X,pos+cellID~variable+t.frame,select="f.tot.y",subset=pos<=2&cellID<=10&t.frame%%2==0)

pos cellID f.tot.y_0 f.tot.y_2 f.tot.y_4 f.tot.y_6 f.tot.y_8 f.tot.y_10 f.tot.y_12

1 1 1 378752 748712 1350707 2028179 2155404 2072739 2214004

2 1 2 176429 300842 448582 535334 549019 562208 512430

3 1 3 384393 665472 1234888 1913377 2036718 2217148 2071306

4 1 4 245876 510412 887509 1493615 1692185 1987466 2137951

5 1 6 347597 629056 1000791 1533244 1788453 2188437 2381668

6 1 7 325715 558893 998972 1740997 2080686 2575011 2845928

7 1 8 276242 481790 842095 1310683 1464268 1735160 1826068

5

8 1 10 314574 559742 1050029 1832519 2166170 2765528 2981627

9 2 2 387551 620656 1049458 1327046 1317000 1409672 1742833

10 2 3 428014 655421 1239405 1616264 1942105 2268256 2583064

11 2 4 452047 718126 1381880 1808801 2260311 2624726 3127893

12 2 5 330852 228660 285463 294746 357041 354951 308372

13 2 6 166711 139176 173661 184098 201449 202782 223541

14 2 7 453124 665657 1288083 1847586 2532047 2676930 2793809

15 2 8 137043 232664 448551 652693 830410 957173 1094667

16 2 9 504990 632012 961822 1340065 1640487 1769006 1929912

17 2 10 317594 440622 763946 1221629 1711411 1788251 1834715

see help(reshape.cell.data) for more details.

References

Pau, Fuchs et al. (2010). EBImage: an R package for image processing with applications to cellular pheno-
types. Bioinformatics, 26(7):979-981.

Colman-Lerner, Gordon et al. (2005). Regulated cell-to-cell variation in a cell-fate decision system. Nature,
437(7059):699-706.

Chernomoretz, Bush et al. (2008). Using Cell-ID 1.4 with R for Microscope-Based Cytometry. Curr Protoc
Mol Biol., Chapter 14:Unit 14.18.

6

