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RandomFields Simulation and Analysis of Random Fields VERSION 2

Description

THIS IS SOME PARTIAL DOCUMENTATION OF THE FORMER VERSION 2. THIS

VERSION IS OUT OF DATE AND NOT MAINTAINED ANYMORE.

The package RandomFields allows for simulating various kinds of random fields, including anisotropic

processes. Furthermore, algorithms for conditional simulation and simulation of max-stable random

fields are provided.

Additionally, the package includes tools for analysing spatial data: Hurst parameter, fractal dimen-

sion, empirical variogram, interactive fitting of parameters, LSQ and MLE estimation of parameters.

Basic kriging procedures are also provided.

Starting with version 2.0, it also allows for the simulation of random fields that are non-stationary

or multivariate or sophisticated space-time fields. fitvario allows for multivariate models and mixed

effect models.

There are some changings in the definitions and in the output, see help("changings")

Details

The following random fields and related functionalities are provided by the package.

1. stationary and isotropic Gaussian random fields

• CondSimu : conditional simulation

• CovarianceFct, sophisticated models: covariance functions and variogram models

• EmpiricalVariogram : empirical variogram

• GaussRF : simulation of Gaussian random fields; nice examples to get familiar with the

simulation features of the package;

• Kriging : simple and ordinary kriging

• fitvario : variogram/covariance function fit by least squares, maximum likelihood and

cross validation techniques
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2 RandomFields

2. stationary (and isotropic) max-stable random fields

• CovarianceFct : covariance models for extremal Gaussian random fields

• MaxStableRF : simulation of max-stable random fields

3. Special Functions

• FileExists : used for simple parallel evaluation

• hostname : hostname of the computer

• pid : PID of the R process

• sleep : sleeping/waiting for a certain period
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CondSimu Conditional Simulation

Description

the function returns conditional simulations of a Gaussian random field

Usage

CondSimu(krige.method, x, y=NULL, z=NULL, T=NULL, grid,

gridtriple=FALSE, model, param, method=NULL, given, data,

trend, n=1, register=0,

err.model=NULL, err.param=NULL, err.method=NULL,

err.register=1, tol=1E-5, pch=".", paired=FALSE, na.rm=FALSE)

Arguments

krige.method Assumptions on the random field which corresponds to the respective kriging

method; currently ’S’ (simple kriging) and ’O’ (ordinary kriging) are imple-

mented.

x matrix or vector of x coordinates; points to be kriged.

y vector of y coordinates.

z vector of z coordinates.

T vector in grid triple form for the time coordinates.

grid logical; determines whether the vectors x, y, and z should be interpreted as a

grid definition, see Details.

gridtriple logical. Only relevant if grid=TRUE. If gridtriple=TRUE then x, y, and z are

of the form c(start,end,step); if gridtriple=FALSE then x, y, and z must

be vectors of ascending values.

model string; covariance model of the random field. See CovarianceFct, or type

PrintModelList() to get all options for model.

See CovarianceFct for model being a list.

param parameter vector: param=c(mean, variance, nugget, scale,...); the pa-

rameters must be given in this order; further parameters are to be added in case

of a parametrised class of covariance functions, see CovarianceFct; the value

of mean must be finite in the case of simple kriging, and is ignored otherwise.

See CovarianceFct for param being NULL or list.

method NULL or string; method used for simulating, see RFMethods, or type PrintMethodList()

to get all options.

given matrix or vector of locations where data are available; note that it is not possible

to give the points in form of a grid definition.

data the values measured.

trend Not programmed yet. (used by universal kriging)
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n number of realisations to generate. If paired=TRUE then n must be even.

register 0:9; place where intermediate calculations are stored; the numbers are aliases

for 10 internal registers; see GaussRF for further details.

err.model covariance function for the error model. String or list. See model for details.

err.param parameters for the error model. See also param.

err.method Only relevant if err.model is not NULL. Then it must be given if and only if

method is given; see method for details.

err.register see register for details.

tol considered only if grid=TRUE; tolerated distances of a given point to the nearest

grid point to be regarded as being zero; see Details.

pch character. The included kriging procedure can be quite time consuming. The

character pch is printed after roughly each 80th part of calculation.

paired logical. logical. If TRUE then every second simulation is obtained by only chang-

ing the signs of the standard Gaussian random variables, the simulation is based

on (“antithetic pairs”).

na.rm logical. If TRUE then NAs are removed from the given data.

Details

The same way as GaussRF the function CondSimu allows for simulating on grids or arbitrary lo-

cations. However simulation on a grid is sometimes performed as if the points were at arbitrary

locations, what may imply a great reduction in speed. This happens when the given locations do

not lay on the specified grid, since in an intermediate step simulation has to be performed simulta-

neously on both the grid defined by x, y, z, and the locations of given.

Comments on specific parameters

• grid=FALSE : the vectors x, y, and z are interpreted as vectors of coordinates

• (grid=TRUE) && (gridtriple=FALSE) : the vectors x, y, and z are increasing sequences with

identical lags for each sequence. A corresponding grid is created (as given by expand.grid).

• (grid=TRUE) && (gridtriple=TRUE) : the vectors x, y, and z are triples of the form

(start,end,step) defining a grid (as given by expand.grid(seq(x$start,x$end,x$step), seq(y$start,y$end,y$step),

Value

The returned object depends on the parameters n and grid:

n=1:

* grid=FALSE. A vector of simulated values is returned (independent of the dimension of the ran-

dom field)

* grid=TRUE. An array of the dimension of the random field is returned.

n>1:

* grid=FALSE. A matrix is returned. The columns contain the realisations.

* grid=TRUE. An array of dimension d + 1, where d is the dimension of the random field as given

by x, y, and z, is returned. The last dimension contains the realisations.
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See Also

CovarianceFct, GaussRF, Kriging RandomFields,

Examples

## creating random variables first

## here, a grid is chosen, but any arbitrary points for which

## data are given are fine. Indeed if the data are given on a

## grid, the grid has to be expanded before calling CondSimu,

## see below.

## However, locations where values are to be simulated,

## should be given in form of a grid definition whenever

## possible

param <- c(0, 1, 0, 1)

model <- "exponential"

RFparameters(PracticalRange=FALSE)

p <- 1:7

data <- GaussRF(x=p, y=p, grid=TRUE, model=model, param=param)

for (i in 1:3) do.call(getOption("device"), list(height=4,width=4))

# another grid, where values are to be simulated

step <- 0.25 # or 0.3

x <- seq(0, 7, step)

# standardisation of the output

lim <- range( c(x, p) )

zlim <- c(-2.6, 2.6)

colour <- rainbow(100)

## visualise generated spatial data

dev.set(2)

image(p, p, data, xlim=lim, ylim=lim, zlim=zlim, col=colour)

#conditional simulation

krige.method <- "O" ## random field assumption corresponding to

## those of ordinary kriging
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cz <- CondSimu(krige.method, x, x, grid=TRUE,

model=model, param=param,

given=expand.grid(p,p),# if data are given on a grid

# then expand the grid first

data=data)

range(cz)

dev.set(3)

image(x, x, cz, col=colour, xlim=lim, ylim=lim, zlim=zlim)

#conditional simulation with error term

cze <- CondSimu(krige.method, x, x, grid=TRUE,

model=model, param=c(0, 1/2, 0, 1),

err.model="gauss", err.param=c(0, 1/2, 0, 1),

given=expand.grid(p,p),

data=data)

range(cze)

dev.set(4)

image(x, x, cze, col=colour, xlim=lim, ylim=lim, zlim=zlim)

Sophisticated Models Sophicated Covariance And Variogram Models

Description

Covariance returns the values of complex stationary and nonstationary covariance functions; see

CovarianceFct for basic isotropic models

Details

Here only the non-isotropic and hyper models are listed; see CovarianceFct for basic isotropic

models.

The implemented models are in standard notation for a covariance function (variance 1, nugget 0,

scale 1) and for positive real arguments h (and t) for the stationary models or parts:

• +

Operator that adds up at most 10 submodels

• *

Operator that multiplies at most 10 submodels

• $

C(x, y) = vC(x/s, y/s)

C(x, y) = vC(xa, ya)

C(x, y) = vC(Ax,Ay)

C(x, y) = vC(px, py)

Operator that modifies the the variance (v =var) and the coordinates or distances by
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– the scale (s =scale) or

– the anisotropy matrix a =anisoT multiplied from the right or

– the anisotropy matrix A multiplied from the left or

– p =proj on a lower dimensional space along the coordinate axis

The parameter scale is positive, aniso and A are matrices, and proj is a vector indices with

between 1 and the dimension of x. Note, at most one of the parameters, anisoT, A, proj may

be given at the same time.

The operator $ has 1 submodel. If the dimension of the field is 1 or aniso is not given, the

operator allows for derivatives.

• ave1

C(h, u) = |E +2AhhtA|−1/2φ(
√

(‖h‖2/2+ (zth+ u)2(1− 2htA(E +2AhhtA)−1Ah)))

where E is the identity matrix.

A is a symmetric positive definite (d − 1) × (d − 1) and z is a d − 1 dimensional vec-

tor. The function φ is normal mixture model, e.g. whittle model, see CovarianceFct and

PrintModelList().

• ave2 (nonstationary)

Here C(h) = C0(h, 0) where C0 is the ave1 model.

• biWM (bivariate model)

Cij(h) = cijWνij
(h/sij)

where Wnu is the whittle model and i, j = 1, 2. For (i=j) the constants νii, sii, cii > 0.

For the offdiagonal elements with have C12 = C21, s12 = s21 > 0, ν12 = ν21 = 0.5(ν11 +
ν22)/νred for some constant νred ∈ (0, 1]. The scalar c12 = c21 = ρred

√
fmc11c22 where

f = Γ(ν11+d/2)∗Γ(ν22+d/2)/Γ(ν11)/Γ(ν22)∗(Γ(ν12)/Γ(ν12+d/2))2∗(s2∗ν12

12 /sν11

11 /s
ν22

22 /)
2

and Γ is the Gamma function and d is the dimension of the space. The constant m is the

infimum of the function g on [0,∞),

g(t) = (1/s212 + t2)2ν12+d(1/s211 + t2)−ν11−d/2(1/s222 + t2)−ν22−d/2

see the reference below for details on the infimum.

The model now has the parameters

nu = (nu11, nu22)
nured12 = νred
s = (s11, s22)
s12 = s12 = s21\ c = (c11, c22)
rhored = ρred See also parsbiWM.

• constant

This model is designes for the use in fitvario as a part of a linear model definition. Its only

parameter is a covariance matrix of appropriate size to match the number of (non-repeated)

observations or the number of columns of parameters X in model mixed, see sophisticated.
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• coxisham

C(h, u) = |E + uβD|−1/2φ([(h− uµ)t(E + uβD)−1(h− uµ)]1/2)

Here $mu is vector; E is the identity matrix and D is a correlation matrix with |D| > 0.

Currently implementation is done only for d = 2. The parameter β is in (0, 2] and equals 2 by

default.

• curlfree (multivariate)

(−∇x∇T
x )C0(x, t)

C0 is a univariate covariance model that is motion invariant and at least twice differentiable

in the first component. The operator is applied to the first component only. The model returns

the potential field in the first component, the corresponding curlfree field and field of sources

and sinks in the last component. The above formula for the covariance function only gives

the part for the curlfree field. The complete matrix-valued correlation function, including all

components, is more complicated.

C0 is either a spatiotemporal model (then t is the time component) or it is an isotropic model.

Then, the first Dspace coordinates are considered as x coordinates and the remaining ones as

t coordinates. By default, Dspace equals the dimension of the field (and t is identically 0).

See also the models divfree and vector.

• cutoff

C(h) = φ(h), 0 ≤ h ≤ d

C(h) = b0((dr)
a − ha)2a, d ≤ h ≤ dr

C(h) = 0, dr ≤ h

The cutoff model is a functional of the covariance function φ.

Here, d > 0 should be the diameter of the domain on which simulation is done . The parameter

a > 0 has been shown to be optimal for a = 1/2 or a = 1.

The parameters r and b0 are chosen internally such that C is a smooth function.

NOTE: The algorithm that checks the given parameters knows only about some few necessary

conditions. Hence it is not ensured that the cutoff-model is a valid covariance function for any

choice of phi and the parameters.

For certain models φ, i.e. stable, whittle and gencauchy, some sufficient conditions are

known.

• delayeffect (bivariate)

C11(h) = C22(h) = C0(h) C12(h) = C0(h+ r), C21(h) = C0(−h+ r)

Here r is a vector of the dimension of the random field, and C0 is a translation invariant,

univariate covariance model.

• divfree (multivariate)

(−∆E +∇∇T )C0(x, t)

C0 is a univariate covariance model that is motion invariant and at least twice differentiable

in the first component. The operator is applied to the first component only. The model returns

the potential field in the first component, the corresponding divfree field and the field of curl

strength in the last component. The above formula for the covariance function only gives
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the part for the divfree field. The complete matrix-valued correlation function, including all

components, is more complicated.

C0 is either a spatiotemporal model (then t is the time component) or it is an isotropic model.

Then, the first Dspace coordinates are considered as x coordinates and the remaining ones as

t coordinates. By default, Dspace equals the dimension of the field (and t is identically 0).

See also the models curlfree and vector.

• EtAxxA (auxiliary function)

S(x) = E +RtAtxxtAR, x ∈ R3

where E and A are arbitrary 3× 3 matrices and R is a rotation matrix,

R =





cos(αx3) − sin(αx3) 0
sin(αx3) cos(αx3) 0
0 0 1





This is not a covariance function, but can be used as a submodel for certain classes of non-

stationary covariance functions.

• Exp

C(h) = exp(−γ(h))
where γ is a valid variogram. If a stationary covariance model Cis given in stead of γ, this is

automatically turned into a variogram model, i.e. C(h) = exp(−C(0) + C(h)).

• M

C(h) =M tφ(h)M

Here phi is a k-variate variogram or covariance, and M is any m× k matrix.

• ma1

C(h) = (θ/(1− (1− θ) ∗ C0(h)))
α

Here, C0 is any correlation function, α ∈ (0,∞) and θ ∈ (0, 1).

• ma2

C(h) = (1− exp(−γ(h)))/γ(h)
Here γ is a variogram model.

• mastein

C(h, t) =
Γ(ν + γ(t))Γ(ν + δ)

Γ(ν + γ(t) + δ)Γ(ν)
Wν+γ(t)(‖h− V t‖)

Γ is the Gamma function; γ(t) is a variogram on the real axis; W is the Whittle-Matern

model. Here, the names of covariance models can also be used; the algorithm chooses the

corresponding variograms then. The parameter ν is the smoothness parameter of the Whittle-

Matern model (for t = 0) and must be positive. Finally, δ must be greater than or equal to

half the dimension of h. Instead of the velocity parameter V in original model description, a

preceeding anisotropy matrix is chosen appropriately:

(

A −V
0 1

)

A is a spatial transformation matrix. (I.e. (x,t) is multiplied from left on the above matrix and

the first elements of the obtained vector are intepreted as new spatial components and only
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these components are used to form the argument in the Whittle-Matern function.) The last

component in the new coordinates is the time which is passed to γ. (Velocity is assumed to be

zero in the new coordinates.)

Note, that for numerical reasons, ν + γ + d may not exceed the value 80.0. If exceeded the

algorithm fails.

• mixed This model is designed for the use in fitvario to build up linear regression models

with fixed effects, mixed effects, including geoadditive parts.

The model has two parameters. The first, X is a matrix of independent variables. The second, b,

is a vector of regression coefficients. Furthermore a submodel, covb, may give the covariance

structure for b.

Let n the number of (non-repeated) observations. The following combinations are allowed:

– only X is given. Then X is a scalar or a vector of length n, and X defines a known mean.

– X and b are given. Then X is a (n×m) matrix where m is the length of the vector b. Then

a fixed effect is defined.

– X and covb are given.

* if covb is the model constant, then we have a random model (maybe with preceeding

model $).

* if covb is any other model then we have a geoadditive part

The data in the fitvario may contain NAs, but not X.

• mqam (multivariate quasi-arithmetic mean)

Cij(h) = ρijφ(θφ
−1(Ci(h)) + (1− θ)φ−1(Cj(h)))

where φ is a completely monotone function and Ci are suitable covariance functions.

The submodel φ is given (by name) as first submodel. Since φ is completely monotone if

and only if φ(‖.‖2) is a valid covariance function for all dimensions, e.g. stable, gauss,

exponential, φ is given by the name of the corresponding covariance functionC, i.e. phi(.) =
C(sqrt(.)).

Warning: RandomFields cannot check whether the combination of φ and Ci is valid.

• natsc

C(h) = C0(h/s)

Where C0 is any stationary and isotropic model. The parameter s is chosen by natsc such

that the practical range (or the mathematical range, if finite) is 1.

• nonstWM

C(x, y) = Γ(µ)Γ(ν(x))−1/2Γ(ν(y))−1/2Wµ(‖x− y‖)
= 21−µΓ(ν(x))−1/2Γ(ν(y))−1/2‖x− y‖µKν(‖x− y‖)

where µ = [ν(x) + ν(y)]/2 and ν is a positive function. If ν is a scalar use the variable nu. If

ν is a function, use the submodel Nu. Note that for Nu the usual list structure applies and only

the defined covriance models can be used.

• nsst (Non-Separable Space-Time model)

C(h, u) = (ψ(u) + 1)−δ/2φ(h/
√

(ψ(u) + 1))

The parameter δ must be greater than or equal to the spatial dimension of the field. φ is normal

mixture model and ψ is a variogram.

This model is used for space-time modelling where the spatial component is isotropic.
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• nugget (multivariat model)

C(h) = diag(1, . . . , 1)1{0}(h)

The components of the multivariate vector are always independent. The models adapts the

multivariate dimension to the calling model.

• parsbiWM (bivariate model)

Cij(h) = cijWνij
(h/s)

where Wnu is the whittle model and i, j = 1, 2. For (i=j) the constants νii, cii ≥ 0 and

s > 0. For the offdiagonal elements with have C12 = C21. Furthermore, ν12 = ν21 =
0.5(ν11 + ν22) and the scalar c12 = c21 = ρred

√
fmc11c22 where

f = Γ(ν11 + d/2) ∗ Γ(ν22 + d/2)/Γ(ν11)/Γ(ν22) ∗ (Γ(ν12)/Γ(ν12 + d/2))2

and Γ is the Gamma function and d is the dimension of the space. The constant m is the

infimum of the function g on [0,∞),

g(t) = (1/s212 + t2)2ν12+d(1/s211 + t2)−ν11−d/2(1/s222 + t2)−ν22−d/2

see the reference below for details on the infimum.

The model now has the parameters

nu = (ν11, ν22)
s = (s11, s22)
s12 = s12 = s21
c = (c11, c22)
rhored = ρred

See also biWM.

• Pow

γ(h) = (γ0(h))
α

or

C(h) = C0(0)− [C0(0)− C0(h)]
α

where γ0 is a valid variogram or C0 is a valid covariance function, and α ∈ [0, 1].

• qam (Quasi-arithmetic mean)

C(h) = φ(
∑

i

θiφ
−1(Ci(h)))

where φ is a completely monotone function and Ci are suitable covariance functions.

The submodel φ is given (by name) as first submodel. Since φ is completely monotone if

and only if φ(‖.‖2) is a valid covariance function for all dimensions, e.g. stable, gauss,

exponential, φ is given by the name of the corresponding covariance functionC, i.e. phi(.) =
C(sqrt(.)).

Warning: RandomFields cannot check whether the combination of φ and Ci is valid.
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• rational (auxiliary)

S(x) = (a0 + a1 ∗ xtAAtx)/(1 + xtAAtx)

where is some d× d matrix and a = (a0, a1) is a 2-dimensional vector.

• Rotat(auxiliary function)

St(x) = xtR, x ∈ R3

where and R is a rotation matrix,

R =





cos(αx3) − sin(αx3) 0
sin(αx3) cosαx3 0
0 0 1





This is not a covariance function, but can be used a submodel for certain classes of non-

stationary covariance functions.

• Stein

C(h) = a0 + a2(h)
2 + φ(h), 0 ≤ h ≤ D

C(h) = b0(rD − h)3/(h), r ≤ h ≤ rD

C(h) = 0, rD ≤ h

The Stein model is a functional of the covariance function φ.

Here, D > 0 should be the diameter of the domain on which simulation is done,r ≥ 1. The

parameters a0, a2 and b0 are chosen internally such that C becomes a smooth function.

NOTE: The algorithm that checks the given parameters knows only about some few necessary

conditions. Hence it is not ensured that the Stein-model is a valid covariance function for any

choice of phi and the parameters.

For certain models φ, i.e. stable, whittle, gencauchy, and the variogram model fractalB

some sufficient conditions are known.

• steinst1 (non-separabel space time model)

C(h, t) =Wν(y)−
〈h, z〉t

(ν − 1)(2ν + d)
Wν−1(y)

Here, Wν is the Whittle-Matern model with smoothness parameter ν; y = ‖(h, t)‖. z is a

vector whose norm must less than or equal to 1.

• stp

C(x, y) = |Sx|1/4|Sy|1/4|A|−1/2φ(Q(x, y)1/2)

where

Q(x, y) = c2 −m2 + ht(Sx + 2(m+ c)M)A−1(Ay + 2(m− c)M)h,

c = −zth+ ξ2(x)− ξ2(y),

A = Sx + Sy + 4MhhtM

m = htMh.

h = H(x)−H(y)

The parameters are
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– Sx (strictly) positive definite matrices for x ∈ Rd

– M an arbitrary d× d matrix

– z ∈ Rd arbitrary

– H arbitrary d-variate function on Rd

– ξ arbitrary univariate function on Rd

– φ a normal mixture model

The model allows for mimicking cyclonic behaviour.

• tbm2

C(h) =
d

dh

∫ h

0

uφ(u)√
h2 − u2

du

for some stationary and isotropic covariance φ that is valid in at least 2 dimensions.

This operator is currently only designed for internal use!

• tbm3

C(h) = φ(h) + hφ′(h)/n

which, for n=1 reduced to the standard TBM operator

C(h) =
d

dh
hφ(h)

for some stationary and isotropic covariance φ that is valid in at least n + 2 dimensions. n

should be an integer.

This operator is currently only designed for internal use!

• vector (multivariate)

(−0.5 ∗ (a+ 1)∆E + a∇∇T )C0(x, t)

C0 is a univariate covariance model that is motion invariant and at least twice differentiable in

the first component. The operator is applied to the first component only. The parameter a is in

[−1, 1]. If a = −1 then the field is curl free; if a = 1 then the field is divergence free.

C0 is either a spatiotemporal model (then t is the time component) or it is an isotropic model.

Then, the first Dspace coordinates are considered as x coordinates and the remaining ones as

t coordinates. By default, Dspace equals the dimension of the field (and t is identically 0).

See also the models divfree and curlfree

See CovarianceFct for comments on the use of a covariance model.

However, for the above sophicated models, the following differences should be considered:

• RFparameters()$PracticalRange is usually not defined for the above models

• only the list notation can be used, but not the simple model definitions with model="name"

and param=c(mean, variance, nugget, scale,...).

• the use of Covariance is obligatory if the model is non-stationary.

• the anisotropy matrix belonging to a hypermodel is applied first to the coordinates before any

call of the submodels.
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To use the above models, a new, very flexible, straight forward list notation is needed. Background

of this notation is that we have ‘primitives’, i.e. functions that are positive definite. And we have

‘operators’, i.e. functionals that make out of given variograms, covariance functions etc. new

models. Examples are "+", "*", or Gneiting’s "nsst". Consequently, we need also an operator,

called "$", that changes the variance and the scale.

E.g. a standard exponential model (variance=1, scale=1, nugget=0) is now simply written as

list("exponential")

(And no param must be given!)

Further, a standard exponential model with a nugget effect, nugget variance 3, is now written as

list("+",

list("exponential"),

list("$", var=3, list("nugget"))

)

Here, only the relevant parameters need to be given; the missing parameters get standard values

whenever standard values exist, e.g. variance equals 1 if not given. Further, the parameters can

(and must) be called by names, which makes complex models much more readable. Submodels, as

list("exponential") in the second example above, can (but need not) be called by name.

Value

CovarianceFct and Covariance return a vector of values of the covariance function.

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de> http://ms.math.uni-mannheim.de

References

Overviews:

• see reference list in CovarianceFct

ave1, ave2

• Schlather, M. (2010) On some covariance models based on normal scale mixtures. Bernoulli,

16, 780-797. (Example 13)

biWM, parsbiWM

• Gneiting, T., Kleiber, W., Schlather, M. (2010) Matern covariance functions for multivariate

random fields JASA

coxisham

• Cox, D.R., Isham, V.S. (1988) A simple spatial-temporal model of rainfall. Proc. R. Soc.

Lond. A, 415, 317-328.
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• Schlather, M. (2010) On some covariance models based on normal scale mixtures. Bernoulli,

16, 780-797.

curlfree

• see vector

cutoff

• Gneiting, T., Sevecikova, H, Percival, D.B., Schlather M., Jiang Y. (2006) Fast and Exact

Simulation of Large Gaussian Lattice Systems in $R^2$: Exploring the Limits. J. Comput.

Graph. Stat. 15, 483-501.

• Stein, M.

delayeffect

• Wackernagel, H. (2003) Multivariate Geostatistics. Berlin: Springer, 3nd edition.

divfree

• see vector

Iaco-Cesare model

• de Cesare, L., Myers, D.E., and Posa, D. (2002) FORTRAN programs for space-time model-

ing. Computers \& Geosciences 28, 205-212.

• de Iaco, S.. Myers, D.E., and Posa, D. (2002) Nonseparable space-time covariance models:

some parameteric families. Math. Geol. 34, 23-42.

vector

• Fuselier, E.J. (2006) Refined Error Estimates for Matrix-Valued Radial Basis Functions PhD

thesis. Texas A&M University

• Scheuerer, M. and Schlather, M. (2011) Covariance Models for Random Vector Fields Sub-

mitted

Ma-Stein model

• Ma, C. (2003) Spatio-temporal covariance functions generated by mixtures. Math. Geol., 34,

965-975.

• Stein, M.L. (2005) Space-time covariance functions. JASA, 100, 310-321.

ma1/ma2

•

mixed

• Ober, U., Erbe, M., Porcu, E., Schlather, M. and Simianer, H. (2011) Kernel-Based Best

Linear Unbiased Prediction with Genomic Data. Submitted.

nonstWM/hyperbolic/cauchy

• Stein, M. (2005) Nonstationary Spatial Covariance Functions. Tech. Rep., 2005
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nsst

• Gneiting, T. (1997) Normal scale mixtures and dual probability densitites, J. Stat. Comput.

Simul. 59, 375-384.

• Gneiting, T. (2002) Nonseparable, stationary covariance functions for space-time data, JASA

97, 590-600.

• Gneiting, T. and Schlather, M. (2001) Space-time covariance models. In El-Shaarawi, A.H.

and Piegorsch, W.W.: The Encyclopedia of Environmetrics. Chichester: Wiley.

• Zastavnyi, V. and Porcu, E. (2011) Caracterization theorems for the Gneiting class space-time

covariances. Bernoulli, ??.

• Schlather, M. (2010) On some covariance models based on normal scale mixtures. Bernoulli,

16, 780-797.

Quasi-arithmetic means (qam, mqam)

• Porcu, E., Mateu, J. & Cchristakos, G. (2007) Quasi-arithmetic means of covariance functions

with potential applications to space-time data. Submitted to Journal of Multivariate Analysis.

•

Paciorek-Stein (steinst1)

• Stein, M. (2005) Nonstationary Spatial Covariance Functions. Tech. Rep., 2005

• Paciorek, C. (2003) Nonstationary Gaussian Processes for Regression and Spatial Modelling,

Carnegie Mellon University, Department of Statistics, PhD thesis.

Stein

• Stein, M.

stp

• Schlather, M. (2008) On some covariance models based on normal scale mixtures. Submitted

tbm

• Gneiting, T. (1999) On the derivatives of radial positive definite function. J. Math. Anal. Appl,

236, 86-99

• Matheron, G. (1973). The intrinsic random functions and their applications. Adv . Appl.

Probab., 5, 439-468.

See Also

CovarianceFct, EmpiricalVariogram, GetPracticalRange, parameter.range, RandomFields,

RFparameters, ShowModels.
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Examples

PrintModelList(op=TRUE)

## the subsequent model can be used to model rainfall...

y <- x <- seq(0, 10, len=25) # better 256 -- but will take a while

T <- c(0, 10, 1) # better 0.1

col <- c(topo.colors(300)[1:100], cm.colors(300)[c((1:50) * 2, 101:150)])

model <- list("coxisham", mu=c(1, 1), D=matrix(nr=2, c(1, 0.5, 0.5, 1)),

list("whittle", nu=1)

)

system.time(z <- GaussRF(x, y, T=T, grid =TRUE, spectral.lines=1500,

model = model))

zlim <- range(z)

time <- dim(z)[3]

for (i in 1:time) {

Print(i)

sleep.milli(100)

image(x, y, z[, , i], add=i>1, col=col, zlim=zlim)

}

####################################################

####################################################

# the following five model definitions are the same!

## (1) very traditional form

(cv <- CovarianceFct(x, model="bessel", param=c(NA, 2 , 1, 5, 0.5)))

## (2) traditional form in list notation

model <- list(model="bessel", param=c(NA, 2, 1, 5, 0.5))

cv - CovarianceFct(x, model=model)

## (3) nested model definition

cv - CovarianceFct(x, model="bessel",

param=rbind(c(2, 5, 0.5), c(1, 0, 0)))

#### most general notation in form of lists

## (4) isotropic notation

model <- list("+",

list("$", var=2, scale=5, list("bessel", 0.5)),

list("nugget"))

cv - CovarianceFct(x, model=model)

## (5) anisotropic notation

model <- list("+",

list("$", var=2, aniso=0.2, list("bessel", 0.5)),

list("nugget"))
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cv - CovarianceFct(as.matrix(x), model=model)

####################################################

####################################################

# The model gneitingdiff was defined in RandomFields v1.0.

# This isotropic covariance function is valid for dimensions less

# than or equal to 3 and has two positive parameters.

# It is a class of models with compact support that allows for

# smooth parametrisation of the differentiability up to order 6.

# The former model gneitingdiff should now be coded as

gneitingdiff <- function(p){

list("+",

list("$", var=p[3], list("nugget")),

list("$", scale=p[4],

list("*",

list("$", var=p[2], scale=p[6], list("gneiting")),

list("whittle", nu=p[5])

)

)

)

}

# and then

param <- c(NA, runif(5, max=10))

CovarianceFct(0:100, model=gneitingdiff(param))

## instead of formerly CovarianceFct(x,"gneitingdiff",param)

CovarianceFct Basic Covariance And Variogram Models

Description

CovarianceFct returns the values of a covariance function; see Covariance for sophisticated mod-

els

Variogram returns the values of a variogram model

Usage

Covariance(x, y=NULL, model, param=NULL, dim=ifelse(is.matrix(x),ncol(x),1),

Distances, fctcall=c("Cov", "Variogram", "CovMatrix"))

CovarianceFct(...)

CovMatrix(...)

Variogram(x, model, param, dim=ifelse(is.matrix(x),ncol(x),1))
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Arguments

x vector or (n× dim)-matrix. In particular, if the model is isotropic or dim=1 then

x is a vector.

y second vector or matrix in case of non-stationary covariance functions

model for basic models, model is one of the names given in the Details.

param The simplest form of param is the vector param=c(mean,variance,nugget,scale,...),

in this order;

The dots ... stand for additional parameters of the model, e.g. the smoothing

parameter in the whittle model. Within this function mean is not interpreted

and can take an arbitrary value.

dim dimension of the space in which the model is applied

Distances for covariance matrices, the lower triangular part of the distance matrix can be

given instead of the values x themselves

fctcall internal. This parameter should not be considered by the user

... The function CovarianceFct is identical to the function Covariance.

Details

Here, only the basic, isotropic models are listed; see sophisticated models for nonisotropic

and hyper models.

See GetModel for commands in R to get information about implemented models and currently used

ones.

The implemented models are in standard notation for a covariance function (variance 1, nugget 0,

scale 1) and for positive real arguments h:

• + see ‘sophisticated’

• * see ‘sophisticated’

• $ see ‘sophisticated’

• ave1 see ‘sophisticated’

• ave2 see ‘sophisticated’

• bessel

C(h) = 2νΓ(ν + 1)h−νJν(h)

The parameter ν is greater than or equal to d−2
2 , where d is the dimension of the random field.

• Brownian motion

see fractalB

• cardinal sine

see wave

• cauchy (normal scale mixture)

C(h) =
(

1 + h2
)−β

The parameter β is positive. The model possesses two generalisations, the gencauchy model

and the hyperbolic model. See also nonstatcauchy in Covariance.
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• cauchytbm

C(h) = (1 + (1− β/γ)hα)(1 + hα)( − β/α− 1)

The parameter α is in (0,2] and β is positive. The model is valid for dimensions d ≤ γ; this

has been shown for integer γ, but the package allows real values of γ.

It allows for simulating random fields where fractal dimension and Hurst coefficient can be

chosen independently. It has negative correlations for β > γ and large h.

This model is equivalent to the model list("tbm3", n=gamma, list("gencauchy", alpha=alpha, beta=beta))

• circular

C(h) =

(

1− 2

π

(

h
√

1− h2 + arcsin(h)
)

)

1[0,1](h)

This isotropic covariance function is valid only for dimensions less than or equal to 2.

• cone

This model is used only for methods based on marked point processes (see RFMethods); it

is defined only in two dimensions. The corresponding (boolean) function is a truncated cone

with socle. The base has radius 1
2 . The model has three parameters, r, s, and h:

r gives the radius of the top circle of the cone, given as part of the socle radius; r ∈ [0, 1).
s gives the height of the socle.

h gives the height of the truncated cone.

• coxisham see sophisticated.

• cutoff see sophisticated.

• cubic

C(h) = (1− 7h2 + 8.75h3 − 3.5h5 + 0.75h7)1[0,1](h)

This model is valid only for dimensions less than or equal to 3. It is a 2 times differentiable

covariance functions with compact support.

• dagum

C(h) = 1− (1 + h−β)−γ/β

RandomFields allows to vary the parameters β and γ within the intervals (0, 1] and (0, 1),
respectively.

• dampedcosine (hole effect model)

C(h) = e−λh cos(h), h ≥ 0

This model is valid for dimension 1 iff λ ≥ 1, for dimension 2 iff λ ≥ 1, and for dimension 3

iff λ ≥
√
3.

• DeWijsian

γ(h) = log(‖h‖α + 1)

generalised version of the DeWijsian model with α ∈ (0, 2]

• EAxxA and see ‘sophisticated’

• EtAxxA and see ‘sophisticated’

• exponential (normal scale mixture)

C(h) = e−h, h ≥ 0

This model is a special case of the whittle model (for ν = 1
2 there) and the stable class (for

α = 1).
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• FD

C(k) =
(−1)kΓ(1− a/2)2

Γ(1− a/2 + k)Γ(1− a/2− k), k ∈ N

and linearly interpolated otherwise. Here, Γ is the Gamma function and a ∈ [−1, 1). The

model is defined in 1 dimension only.

Remark: the fractionally differenced process stems from time series modelling where the grid

locations are multiples of the scale parameter.

• fractalB (fractal Brownian motion)

gamma(h) = hα

Here, α ∈ (0, 2]. (Implemented for up to three dimensions). See also genB.

• fractgauss

C(h) = 0.5(|h+ 1|α − 2|h|α + |h− 1|α)
This model is the covariance function for the fractional Gaussian noise with Hurst parameter

H = α/2, α ∈ (0, 2]. In particular, the model is valid only in one dimension.

• gauss (normal scale mixture)

C(h) = e−h2

This model is a special case of the stable class (for κ = 2 there). Note that the corresponding

function for the random coins method (cf. the methods based on marked point processes in

RFMethods) is

e−2h2

.

See gneiting for an alternative model that does not have the disadvantages of the Gaussian

model.

• genB (generalised fractal Brownian motion)

γ(h) = (hα + 1)δ − 1

Here, α ∈ (0, 2] and δ ∈ (0, 1). (Implemented for up to three dimensions). See also fractalB.

• gencauchy (generalised cauchy; normal scale mixture)

C(h) = (1 + hα)
( − β/α)

The parameter α is in (0,2], and β is positive.

This model allows for simulating random fields where fractal dimension and Hurst coefficient

can be chosen independently.

• gengneiting (generalised gneiting)

If n = 1 then

C(h) = (1 + (α+ 1)h) ∗ (1− h)α+11[0,1](h)

If n = 2 then

C(h) =
(

1 + (α+ 2)h+
(

(α+ 2)2 − 1
)

h2/3
)

(1− h)α+21[0,1](h)

If n = 3 then

C(h) =
(

1 + (α+ 3)h+
(

2(α+ 3)2 − 3
)

h2/5 +
(

(α+ 3)2 − 4
)

(α+ 3)h3/15
)

(1−h)α+31[0,1](h)

The parameter n is a positive integer; here only the cases n = 1, 2, 3 are implemented. The

parameter α is greater than or equal to (d+2n+1)/2 where d is the dimension of the random

field.
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• gneiting

C(h) =
(

1 + 8sh+ 25(sh)2 + 32(sh)3
)

(1− sh)81[0,1](sh)

where s = 0.301187465825. This isotropic covariance function is valid only for dimensions

less than or equal to 3. It is a 6 times differentiable covariance functions with compact support.

It is an alternative to the gaussian model since its graph is visually hardly distinguishable

from the graph of the Gaussian model, but possesses neither the mathematical and nor the

numerical disadvantages of the Gaussian model.

This model is a special case of gengneiting (for n = 3 and α = 5 there). Note that, in

the original work by Gneiting (1999), s = 10
√
2

47 ≈ 0.3008965, a numerical value slightly

deviating from the optimal one.

• gneitingdiff is obsolete, see the last example in Sophisticated for a user’s definition of gneitingdiff.

C(h) = (1 + 8hα−1 + 25h2α−2 + 32h3α−3)(1− hα−1)821−ν(Γ(ν))−1hνKν(h)1[0,α](h)

This isotropic covariance function is valid only for dimensions less than or equal to 3. The

parameters ν and α are positive.

This class of models with compact support allows for smooth parametrisation of the differen-

tiability up to order 6.

• hyperbolic (normal scale mixture)

C(h) = δ−λ(Kλ(νδ))
−1(δ2 + h2)λ/2Kλ(ν[δ

2 + h2]1/2)

The parameters are such that

δ ≥ 0, ν > 0 and λ > 0, or

δ > 0, ν > 0 and λ = 0, or

δ > 0, ν ≥ 0, and λ < 0.

Note that this class is over-parametrised; always one of the three parameters ν, δ, and scale

can be eliminated in the formula. Therefore, one of these parameters should be kept fixed in

any simulation study.

The model contains as special cases the whittle model and the cauchy model, for δ = 0 and

ν = 0, respectively.

See also nonstathyperbolic in Covariance.

• iacocesare (non-separabel space time model)

C(h, t) = (1 + ‖h‖ν + |t|λ)−δ

The parameters ν and λ take values in [1, 2]; the parameters δ must be greater than or equal to

half the space-time dimension.

• J-Bessel

see bessel

• K-Bessel

see whittle and matern

• linear with sill

See power (a=1 there).

• lgd1 (local-global distinguisher)

C(h) = 1− β

α+ β
|h|α, |h| ≤ 1 and

α

α+ β
|h|−β , |h| > 1
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Here β > 0 and α is in (0, (3 − d)/2] for dimension d = 1, 2. The random field has fractal

dimension d+ 1− α/2 and Hurst coefficient 1− β/2 for β ∈ (0, 1]

• matern (normal scale mixture)

C(x) =Wa(x) = 21−νΓ(ν)−1(
√
2νx)νKν(

√
2νx)

The parameter ν is positive.

This is the model of choice if the smoothness of a random field is to be parametrised: if ν > m
then the graph is m times differentiable.

In contrast to the whittle model this model separates the effects of the scaling parameter

and the shape parameter. For ν = 0.5 we get the exponential model; for ν = ∞ we get

C(x) = exp(0.5x2).

The model C(x
√
2) equals the Handcock-Wallis (1994) parameterisation.

The model allows further to replace nu by 1/ν, setting the second parameter invnu=TRUE.

See also whittle, and nonstatwhittle in Covariance.

• M and see ‘sophisticated’

• mastein see ‘sophisticated’

• mixed see ‘sophisticated’

• nugget

C(h) = 1{0}(h)

If the model is used in param-definition mode, either param[2], the variance, or param[3],

the nugget, must be zero. If the model is used in the list-definition mode, the anisotropy

matrix must be given in an anisotropic context, but not the scale parameter in an isotropic

context. See also sophisticated.

• penta

C(x) =

(

1− 22

3
x2 + 33x4 − 77

2
x5 +

33

2
x7 − 11

2
x9 +

5

6
x11

)

1[0,1](x)

valid only for dimensions less than or equal to 3. This is a 4 times differentiable covariance

functions with compact support.

• power

C(x) = (1− x)a1[0,1](x)

This covariance function is valid for dimension d if a ≥ (d + 1)/2. For κ = 1 we get the

well-known triangle (or tent) model, which is valid on the real line, only.

• powered exponential

See stable.

• qexponential

C(x) = (2e−x − αe−2x)/(2− α)

The parameter α takes values in [0, 1].

• rational and see ‘sophisticated’

• spherical

C(x) =
(

1− 1.5x+ 0.5x3
)

1[0,1](x)

This isotropic covariance function is valid only for dimensions less than or equal to 3.
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• stable

C(x) = exp (−xα)
The parameter α is in (0, 2]. See exponential and gaussian for special cases.

• Stein and see ‘sophisticated’

• steinst1 and see ‘sophisticated’

• symmetric stable

See stable.

• tbm2 and see ‘sophisticated’

• tbm3 and see ‘sophisticated’

• tent model

See power.

• triangle

See power.

• wave

C(x) =
sinx

x
, x > 0 and C(0) = 1

This isotropic covariance function is valid only for dimensions less than or equal to 3. It is a

special case of the bessel model (for κ= 0.5).

• whittle (normal scale mixture)

C(x) =Wν(x) = 21−νΓ(ν)−1xνKν(x)

The parameter ν is positive.

This is the model of choice if the smoothness of a random field is to be parametrised: if ν > m
then the graph is m times differentiable.

The model is a special case of the hyperbolic model (for ν3 = 0 there).

See also nonstWM in sophisticated.

Let cov be a model given in standard notation. Then the covariance model applied with arbitrary

variance and scale equals

variance ∗ cov((·)/scale).
The parameters can be passed by the vector param, param=c(mean, variance, nugget, scale, ...).

Here ‘...’ stands for additional parameters such as ν in the whittle model. In case a model has

several parameters, as in hyperbolic, the parameters must be given in the sequence they are

explained aboved. However, it is strongly recommended to use the list notation explained in

sophisticated. The list definition available in RandomFields V 1.x, is depreciated!

For a given covariance function cov the variogram γ equals

γ(x) = cov(0)− cov(x).

Note:

• The value of the covariance function or variogram depends also on RFparameters()$PracticalRange.

If the latter is TRUE and the covariance model is isotropic then the covariance function is inter-

nally rescaled such that cov(1) ≈ 0.05 for standard parameters (scale=1).

• Some models allow certain parameter combinations only for certain dimensions. As any

model valid in d dimensions is also valid in 1 dimension, the default in CovarianceFct and

Variogram is dim=1.
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Value

CovarianceFct returns a vector of values of the covariance function.

Variogram returns a vector of values of the variogram model.

CovMatrix return a covariance matrix. Here a matrix of of coordinates (x) or a vector or a matrix of

Distances is expected. CovMatrix allows also for variogram models. Then negative of variogram

matrix is returned.

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de> http://ms.math.uni-mannheim.de

References

Overviews:

• Chiles, J.-P. and Delfiner, P. (1999) Geostatistics. Modeling Spatial Uncertainty. New York:

Wiley.

• Gneiting, T. and Schlather, M. (2004) Statistical modeling with covariance functions. In

preparation.

• Schlather, M. (1999) An introduction to positive definite functions and to unconditional simu-

lation of random fields. Technical report ST 99-10, Dept. of Maths and Statistics, Lancaster

University.

• Schlather, M. (2002) Models for stationary max-stable random fields. Extremes 5, 33-44.

• Yaglom, A.M. (1987) Correlation Theory of Stationary and Related Random Functions I,

Basic Results. New York: Springer.

• Wackernagel, H. (2003) Multivariate Geostatistics. Berlin: Springer, 3nd edition.

Cauchy models, generalisations and extensions

• Gneiting, T. and Schlather, M. (2004) Stochastic models which separate fractal dimension and

Hurst effect. SIAM review 46, 269-282.

Dagum model

• Porcu, E., Zini, A. and Pini, R. (2007) Modelling spatio-temporal data: A new variogram and

covariance structure proposal Stats. Probab. Lett., 77, 83-89.

• Berg, C., Mateu, J. and Porcu, E. (2008) The Dagum family of isotropic correlation functions

Bernoulli, 14, 1134-1149.

Generalised fractal Brownian motion

• Gneiting, T. (2002) Nonseparable, stationary covariance functions for space-time data, JASA

97, 590-600.

Gneiting’s models

• Gneiting, T. (1999) Correlation functions for atmospheric data analysis. Q. J. Roy. Meteor.

Soc., Part A 125, 2449-2464.

Holeeffect model
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• Zastavnyi, V.P. (1993) Positive definite functions depending on a norm. Russian Acad. Sci.

Dokl. Math. 46, 112-114.

Hyperbolic model

• Shkarofsky, I.P. (1968) Generalized turbulence space-correlation and wave-number spectrum-

function pairs. Can. J. Phys. 46, 2133-2153.

fractalB

• Stein, M.L. (2002) Fast and exact simulation of fractional Brownian surfaces. J. Comput.

Graph. Statist. 11, 587-599.

genB

• Schlather, M. (2010) On some covariance models based on normal scale mixtures. Bernoulli,

16, 780-797.

lgd

• Gneiting, T. and Schlather, M. (2004) Stochastic models which separate fractal dimension and

Hurst effect. SIAM review

Power model

• Golubov, B.I. (1981) On Abel-Poisson type and Riesz means, Analysis Mathematica 7, 161-

184.

• Zastavnyi, V.P. (2000) On positive definiteness of some functions, J. Multiv. Analys. 73,

55-81.

See Also

sophisticated, EmpiricalVariogram, GetModel, GetPracticalRange, parameter.range, RandomFields,

RFparameters, ShowModels.

Examples

PrintModelList()

x <- 0:100

## the following five model definitions are the same!

##

## (1) very traditional form

(cv <- CovarianceFct(x, model="bessel", param=c(NA,2,1,5,0.5)))

plot(x, cv)

## (2) above model in the very general list definition

model <- list("+",

list("$", var=2, scale=5, list("bessel", 0.5)),

list("nugget"))

cv <- CovarianceFct(x, model=model)
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points(x, cv, col="red", pch=20) ## no differnce to first

## (3) nested model definition

## this kind of definiton models is depreciated from Version 2.0 on

cv <- CovarianceFct(x, model="bessel",

param=rbind(c(2, 5, 0.5), c(1, 0, 0)))

points(x, cv, col="blue", pch=20, cex=0.5)

## (4) anisotropic notation

model <- list("+",

list("$", var=2, aniso=as.matrix(0.2),

list("bessel", nu=0.5)

),

list("nugget")

)

cv <- CovarianceFct(as.matrix(x), model=model)

points(x, cv, col="green", pch=4)

## Depreciated list defintions in Version 1.x

## this way of defining a model still works, but

## is not supported anymore

## (isotropic version)

model <- list(list(model="bessel", var=2, kappa=0.5, scale=5),

"+",

list(model="nugget", var=1, scale=1))

cv <- CovarianceFct(x, model=model)

points(x, cv, col="black", pch=5)

EmpiricalVariogram Empirical (Semi-)Variogram

Description

EmpiricalVariogram calculates the empirical (semi-)variogram of a random field realisation

Usage

EmpiricalVariogram(x, y=NULL, z=NULL, T=NULL, data, grid, bin,

gridtriple=FALSE, phi, theta, deltaT)

Arguments

x vector of x-coordinates, or matrix

y vector of y-coordinates
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z vector of z-coordinates

T vector of time components; here T is given in grid format, see GaussRF.

data vector or matrix of data; if data has a multiple number of components as ex-

pected by the definition of the coordinates then it is assumed that the data stem

from repeated, independent measurements at the given locations; the empirical

variogram is calculated for the repeated data.

grid logical; if TRUE then x, y, and z define a grid; otherwise x, y, and z are interpreted

as points

bin vector of ascending values giving the bin boundaries

gridtriple logical. Only relevant if grid=TRUE. If gridtriple=TRUE then x, y, and z are

of the form c(start,end,step); if gridtriple=FALSE then x, y, and z must

be vectors of ascending values

phi vector of two components. First component gives the angle for the first line of

midpoints of an angular variogram. The second component gives the number of

directions (on the half circle). The spatial dimension must be at least 2.

theta vector of two components. First component gives the angle for the first line of

midpoints of an angular variogram (angle is zero for the xy-plane). The sec-

ond component gives the number of directions (on the half circle). The spatial

dimension must be at least 3.

deltaT vector of two components. First component gives the largest temporal distance;

the second component the grid length, that must be a multiple of T[3].

Details

Comments on specific parameters:

• data: the number of values must match the number of points (given by x, y, z, grid, and

gridtriple). That is, it must equal the number of points or be a multiple of it. In case the

number of data equals n times the number of points, the data are interpreted as n independent

realisations for the given set of points.

• (grid=FALSE): the vectors x, y, and z, are interpreted as vectors of coordinates

• (grid=TRUE) && (gridtriple=FALSE): the vectors \ codex, y, and z are increasing se-

quences with identical lags for each sequence. A corresponding grid is created (as given by

expand.grid).

• (grid=TRUE) && (gridtriple=TRUE): the vectors x, y, and z are triples of the form (start,end,step)

defining a grid (as given by expand.grid(seq(x$start,x$end,x$step), seq(y$start,y$end,y$step), seq(z$start,z$end,z$step))

• The bins are left open, right closed intervals, i.e., (bi, bi+1] for i = 1, . . . ,length(bin)−1.

Hence, to include zero, bin[1] must be negative.

Value

The function returns a list:

centers central points of the bins
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emp.vario empirical variogram; vector or matrix or array, depending on the anisotropy

definitions. The sequence is distances, phi, theta, Tbins. If phi, theta, or Tbins

below are not given, the respective dimensions are missing.

sd sd of the variogram cloud within each bin

n.bin number of points within a bin

phi vector of angles in xy plane

theta vector of angles in the third dimensions

Tbins vector of temporal distances

The first four elements are vectors of length (length(bin)-1).

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de> http://ms.math.uni-mannheim.de

See Also

GaussRF, fitvario,and RandomFields

Examples

#############################################################

## this example checks whether a certain simulation method ##

## works well for a specified covariance model and ##

## a configuration of points ##

#############################################################

x <- seq(0, 10, 0.5)

y <- seq(0, 10, 0.5)

gridtriple <- FALSE ## see help("GaussRF")

model <- "whittle" ## whittlematern

bins <- seq(0, 5, 0.001)

realisations <- 5 ## by far too small to get reliable results!!

## It should be of order 500, but then it will

## take some time to do the simulations

param <- c(mean=1, variance=10, nugget=5, scale=2, alpha=2)

f <- GaussRF(x=x, y=y, grid=TRUE, gridtriple=gridtriple,

model=model, param=param, method="TBM3",

n=realisations)

binned <- EmpiricalVariogram(x=x, y=y, data=f, grid=TRUE,

gridtriple=gridtriple, bin=bins)

truevariogram <- Variogram(binned$c, model, param)

matplot(binned$c, cbind(truevariogram,binned$e), pch=c("*","e"))

##black curve gives the theoretical values
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FileExists Files

Description

The function FileExists checks whether a file or a lock-file exists

The function LockRemove removes a lock-file

Usage

FileExists(file, PrintLevel=RFparameters()$Print)

LockRemove(file)

Arguments

file name of the data file

PrintLevel if PrintLevel<=1 no messages are displayed

Details

FileExists checks whether file or file.lock exists. If none of them exists file.lock is created

and hostname and PID are written into file.lock. This is useful if several processes use the same

directory. Further, it is checked whether another process has tried to create the same file in the

same instance. In this case FileExists returns for at least one of the processes that file.lock has

already been created.
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Value

FileExists returns

1 if file already exists

2 if file.lock already exists

3 if file.lock was tried to be created, but another process inferred and got priority

0 otherwise, file and file.lock did not exist and file.lock has been created

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de> http://ms.math.uni-mannheim.de

fitvario LSQ and Maximum Likelihood Estimation of Random Field Parame-

ters

Description

The function estimates arbitrary parameters of a random field specification with various methods.

Usage

fitvario(x, y=NULL, z=NULL, T=NULL, data, model, param,

lower=NULL, upper=NULL, sill=NA, grid=!missing(gridtriple),

gridtriple, ...)

fitvario.default(x, y=NULL, z=NULL, T=NULL, data, model, param,

grid=!missing(gridtriple), gridtriple=FALSE,

trend = NULL,

BC.lambda, ## if missing then no BoxCox-Trafo

BC.lambdaLB=-10, BC.lambdaUB=10,

lower=NULL, upper=NULL, sill=NA,

use.naturalscaling=FALSE, PrintLevel,

optim.control=NULL, bins=20, nphi=1, ntheta=1, ntime=20,

distance.factor=0.5,

upperbound.scale.factor=3, lowerbound.scale.factor=3,

lowerbound.scale.LS.factor=5,

upperbound.var.factor=10, lowerbound.var.factor=100,

lowerbound.sill=1E-10, scale.max.relative.factor=1000,

minbounddistance=0.001, minboundreldist=0.02,

approximate.functioncalls=50, refine.onborder=TRUE,

minmixedvar=1/1000, maxmixedvar=1000,

pch=RFparameters()$pch,

transform=NULL, standard.style=NULL,

var.name="X", time.name="T",

lsq.methods=c("self", "plain", "sqrt.nr", "sd.inv", "internal"),



32 fitvario

mle.methods=c("ml"),

cross.methods=NULL,

users.guess=NULL, only.users = FALSE,

Distances=NULL, truedim,

solvesigma = NA, # if NA then use algorithm -- ToDo

allowdistanceZero = FALSE,

na.rm = TRUE)

Arguments

x (n× 2)-matrix of coordinates, or vector of x-coordinates. All locations must be

given explicitely and cannot be passed via a grid definition as in GaussRF

y vector of y coordinates

z vector of z coordinates

T vector of T coordinates; these coordinates are given in triple notation, see GaussRF

data vector or matrix of values measured at coord; If a matrix is given then the

columns are interpreted as independent realisations.

If also a time component is given, then in the data the indices for the spatial

components run the fastest.

If an n-variate model is used, then each realisation is given as n consecutive

columns of data.

model string or list; covariance model, see CovarianceFct and Covariance, or type

PrintModelList() to get all options.

If model is a list, then the parameters with value NA are estimated. Parameters

that have value NaN should be explicitely be defined by the function transform.

An alternative to define NaN values and the function transform, is to replace the

NaN by a real-valued function with solely parameter a list defining a covariance

model. In case of the anisotropy matrix, the matrix must be replaced by a list

if functions are introduced. Only the list elements variance, scale or anisotropy,

and kappas can be used, and not the mean or the trend. Further, the mean or the

trend cannot be set by such a function. See also transform below.

param vector or matrix or NULL. If vector then param=c(mean, variance, nugget, scale,...);

the parameters must be given in this order. Further parameters are to be added

in case of a parametrised class of covariance functions, see CovarianceFct and

Covariance. Any components set to NA are estimated; the others are kept fix.

See also model above.

lower list or vector. Lower bounds for the parameters. If param is a vector, lower has

to be a vector as well and its length must equal the number of parameters to be

estimated. The order of param has to be maintained. A component being NA

means that no manual lower bound for the corresponding parameter is set.

If param is a list, lower has to be of (exactly) the same structure.

upper list or vector. Upper bounds for the parameters. See also lower.

sill If not NA the sill is kept fix. Only used if the standard format for the covariance

model is given. See Details.
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grid boolean. Weather coordinates give a grid

gridtriple boolean. Format, see GaussRF

BC.lambda a vector of at most two numerical components (just one component corresponds

to two identical ones) which are the parameters of the box-cox-transformation:
xλ
1
−1
λ 1

+ λ2 If the model is univariate, the first parameter can be estimated by

using NA.

BC.lambdaLB lower bound for the first box-cox-parameter

BC.lambdaUB upper bound for the first box-cox-parameter

trend If a univariate model is used, the following trend types are possible:

number: the constant mean (not to be estimated any more)

NA: there is a constant mean to be estimated

formula : uses X1, X2,... and T as internal

parameters for the coordinates; all parameters are estimated

list of matrices: length of the list must be the number of realisations; each matrix

must have the same number of rows as x

list of matrices and formula: trend is a list of matrices (see above) and one addi-

tional entry which is a formula

In an n-variate model trend can be either a list of n trends for univariate models

or a list of n ∗ d matrices (d: number of independent realisations) where each

entry of trend corresponds to a column of data.

... arguments as given in fitvario.default and listed in the following.

use.naturalscaling

logical. Only used if model is given in standard (simple) way. If TRUE then

internally, rescaled covariance functions will be used for which cov(1)≈0.05.

use.naturalscaling has the advantage that scale and the form parameters

of the model get ‘orthogonal’, but use.naturalscaling does not work for all

models. See Details.

PrintLevel level to which messages are shown. See Details.

optim.control control list for optim, which uses ’L-BFGS-B’. However ’parscale’ may not be

given.

bins number of bins of the empirical variogram. See Details.

nphi scalar or vector of 2 components. If it is a vector then the first component gives

the first angle of the xy plane and the second one gives the number of directions

on the half circle. If scalar then the first angle is assumed to be zero. Note that

a good estimation of the variogramm by LSQ with a anisotropic model a large

value for ntheta might be needed (about 20).

ntheta scalar or vector of 2 components. If it is a vector then the first component gives

the first angle in the third direction and the second one gives the number of

directions on the half circle. If scalar then the first angle is assumed to be zero.

Note that a good estimation of the variogramm by LSQ with a anisotropic model

a large value for ntheta might be needed (about 20).

ntime scalar or vector of 2 components. if ntimes is a vector, then the first component

are the maximum time distance (in units of the grid length T[3]) and the second
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component gives the step size (in units of the grid length T[3]). If scalar then

the step size is assumed to 1 (in units of the grid length T[3]).

distance.factor

relative right bound for the bins. See Details.

upperbound.scale.factor

relative upper bound for scale in LSQ and MLE. See Details.

lowerbound.scale.factor

relative lower bound for scale in MLE. See Details.
lowerbound.scale.LS.factor

relative lower bound for scale in LSQ. See Details.

upperbound.var.factor

relative upper bound for variance and nugget. See Details.

lowerbound.var.factor

relative lower bound for variance. See Details.
lowerbound.sill

absolute lower bound for variance and nugget. See Details.

scale.max.relative.factor

relative lower bound for scale below which an additional nugget effect is de-

tected. See Details.
minbounddistance

absolute distance to the bounds below which a part of the algorithm is considered

as having failed. See Details.

minboundreldist

relative distance to the bounds below which a part of the algorithm is considered

as having failed. See Details.

approximate.functioncalls

approximate evaluations of the ML target function on a grid. See Details.

refine.onborder

logical. If refine.onborder=TRUE and if the result of any maximum likelihood

method or cross validation method is on a borderline, then the optimisation is

redone in a modified way (which takes about double extra time)

minmixedvar lower bound for variance in a mixed model; so, the covariance model for mixed

model part might be calibrated appropriately

maxmixedvar upper bound for variance in a mixed model; so, the covariance model for mixed

model part might be calibrated appropriately

pch character shown before evaluating any method; if pch!="" then one or two ad-

ditional steps in the MLE methods are marked by “+” and “#”. Default: "*".

var.name basic name for the coordinates in the formula of the trend. Default: ‘X’

time.name basic name for the time component in the formula of the trend. Default: ‘X’

transform function. Essentially, transform allows for the definition of a parameter as a

function of other estimated parameters. All the parameters are supposed to be in

a vector called ‘param’ where the positions are given by parampositions. An

example of transform is function(param) {param[3] <- 5 - param[1]; param}.

Note that the mean and the trend of the model can be neither set nor used in

transform. See also standard.style.
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Note further that many internal checks cannot be performed in case of the very

flexible function transform. Hence, it is completely up to the user to get users.guess,

lower and upper right. The parameter users.guess must be given; lower and

upper should be given.

Default: NULL

standard.style logical or NULL. This variable should only be set by the advanced user. If NULL

then standard.style will be TRUE if the covariance model allows for a ‘stan-

dard’ definition (see CovarianceFct) and transform is NULL.

If a ‘standard’ definition is given and both the variance and the nugget are either

not estimated or do not appear on the right hand side of the transform, then

standard.style might be set to TRUE by the user. This accelerates the MLE

algorithm. The responsibility is completely left to the user, then.

lsq.methods variants of the least squares fit of the variogram. See Details.

mle.methods variants of the maximum likelihood fit of the covariance function. See Details.

cross.methods Not implemented yet.

users.guess User’s guess of the parameters. All the parameters must be given using the same

rules as for either param (except that no NA’s should be contained) or model.

only.users boolean. If true then only users.guess is used as a starting point for the fitting

algorithms

Distances alternatively to coordinates x, y, and z the distances themselves can be given.

Then truedim must be indicated.

truedim see Distances

solvesigma Boolean – experimental stage! If a mixed effect part is present where the vari-

ance has to be estimated, then this variance parameter is solved iteratively within

the profile likelihood function, if solvesigma=TRUE.This makes sense if the

number of independent variables is very small. If solvesigma=FALSE then the

variance parameter is treated as any other parameter to be estimated.

allowdistanceZero

boolean. If true, then multiple observations are allowed within a single data set.

In this case, the coordinates are slightly scattered, so that the points have some

tiny distances.

na.rm boolean – experimental stage. Only the data may have missing values. If

na.rm=TRUE then lines of (repeated) data are deleted if at least one missing value

appears. If na.rm=FALSE then the repetitions are treated sepeartely.

Details

The optimisations are performed using optimize if one parameter has to be estimated only and

optim, otherwise.

First, by means of various control parameters, see below, the algorithm first tries to estimate the

bounds for the parameters to be estimated, if the bounds for the parameters are not given.

Independently whether users.guess is given, the algorithm guesses initial values for the parame-

ters. The automatic guess and the user’s guess will be called primitive methods in the following.
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Second, the variogram model is fitted by various least squares methods (according to the value

of lsq.methods) using the best parameter set among the primitive methods as initial value if the

effective number of parameters is greater than 1.

[Remarks: (i) “best” with respect to the target value of the respective lsq method; (ii) the effective

number of parameters in the optimisation algorithm can be smaller than the number of estimated

parameters, since in some cases, some parameters can be calculated explicitely; relevant for the

choice between optimize and optim is the effective number of parameters; (iii) optim needs]

Third, the model is fitted by various maximum likelihood methods (according to the value of

mle.methods) using the best parameter set among the primitive methods and the lsq methods as

initial value (if the effective number of parameters is greater than 1).

Comments on specific parameters:

• BC.lambda If you want to estimate BC.lambda you should assert that all data values are posi-

tive;

otherwise errors will probably occur because of the box-cox-transformation.

The second parameter of the box-cox-transformation cannot be estimated since it corresponds

to the mean. So the mean should be estimated instead.

• trend Among the formes mentioned above it is possible to use just one matrix for the trend

instead of a list of identical ones.

• lower

The lower bounds are technical bounds that should not really restrict the domaine of the value.

However, if these values are too small the optimisation algorithm will frequently run into local

minima or get stuck close the border of the parameter domain. It is advised to limit seriously

the domain of the additional parameters of the covariance model and/or the total number of

parameters to be estimated, if “many” parameters of the covariance model are estimated.

If the model is given in standard form, the user may supply the lower bounds for the whole

parameter vector, or only for the additional form parameters of the model. The lower bound

for the mean will be ignored. lower may contain NAs, then these values are generated by the

If a nested model is given, the bounds may again be supplied for all parameters or only for the

additional form parameters of the model. The bounds given apply uniformely to all submodels

of the nested model.

If the model is given in list format, then lower is a list, where components may be missing or

NA. These are generated by the algorithm, then.

If lower is NULL all lower bounds are generated automatically.

• upper.kappa

See lower.kappa.

• sill

Additionally to estimating nugget and variance separately, they may also be estimated to-

gether under the condition that nugget + variance = sill. For the latter a finite value for

sill has to be supplied, and nugget and variance are set to NA.

sill is only used for the standard model.

• use.naturalscaling

logical. If TRUE then internally, rescaled covariance functions will be used for which cov(1)≈0.05.

However this parameter does not influence the output of fitvario: the parameter vector re-

turned by fitvario refers always to the standard covariance model as given in CovarianceFct.

(In contrast to PracticalRange in RFparameters.)

Advantages if use.naturalscaling=TRUE:
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– scale and the shape parameter of a parameterised covariance model can be estimated

better if they are estimated simultaneously.

– The estimated bounds calculated by means of upperbound.scale.factor and lowerbound.scale.factor,

etc. might be more realistic.

– in case of anisotropic models, the inverse of the elements of the anisotropy matrix should

be in the above bounds.

Disadvantages if use.naturalscaling=TRUE:

– For some covariance models with additional parameters, the rescaling factor has to be

determined numerically. Then, more time is needed to perform fitvario.

Default: TRUE.

• PrintLevel

0 : no message

1 : error messages

2 : warnings

3 : minimum debugging information

5 : extended debugging information, including graphics

Default: 0.

• trace.optim

see control parameter trace of optim. Default: 0.

• bins

vector of explicit boundaries for the bins or the number of bins for the empirical variogram

(used in the LSQ target function, which is described at the beginning of the Details). Note that

for anisotropic models, the value of bins might be enlarged. Default: 20.

• distance.factor

right boundary of the last bin is calculated as distance.factor * (maximum distance be-

tween all pairs of points). Only used if bins is a scalar. Default: 0.5.

• upperbound.scale.factor

The upper bound for the scale is determined as upperbound.scale.factor * (maximum

distance between all pairs of points). Default: 10.

• lowerbound.scale.factor

The lower bound for the scale is determined as

(minimum distance between different pairs of points)/lowerbound.scale.factor.

Default: 20.

• lowerbound.scale.LS.factor

For the LSQ target function a different lower bound for the scale is used. It is determined as

(minimum distance between different pairs of points)/lowerbound.scale.LS.factor.

Default: 5.

• upperbound.var.factor

The upper bound for the variance and the nugget is determined as

upperbound.var.factor ∗ var(data).

Default: 10.
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• lowerbound.var.factor

The lower bound for the variance and the nugget is determined as

var(data)/lowerbound.var.factor.

If a standard model definition is given and either the nugget or the variance is fixed, the

parameter to be estimated must also be greater than lowerbound.sill. If a non-standard

model definition is given then lowerbound.var.factor is only used for the first model; the

other lower bounds for the variance are zero. Default: 100.

• lowerbound.sill

See lowerbound.var.factor. Default: 1E-10.

• scale.max.relative.factor

If the initial scale value for the ML estimation obtained by the LSQ target function is less than

(minimum distance between different pairs of points)/scale.max.relative.factor

a warning is given that probably a nugget effect is present. Note: if scale.max.relative.factor

is greater than lowerbound.scale.LS.factor then no warning is given as the scale has the

lower bound (minimum distance between different pairs of points) / lowerbound.scale.LS.factor.

Default: 1000.

• minbounddistance

If any value of the parameter vector returned from the ML estimation is closer than minbounddistance

to any of the bounds or if any value has a relative distance smaller than minboundreldist,

then it is assumed that the MLE algorithm has dropped into a local minimum, and it will be

continued with evaluating the ML target function on a grid, cf. the beginning paragraphs of

the Details. Default: 0.001.

• minboundreldist

See minbounddistance. Default: 0.02.

• approximate.functioncalls

In case the parameter vector is too close to the given bounds, the ML target function is eval-

uated on a grid to get a new initial value for the ML estimation. The number of points of the

grid is approximately approximate.functioncalls. Default: 50.

• lsq.methods

Variogram fit by least squares methods; first, a preliminary trend is estimated by a simple

regression; second, the variogram is fitted; third, the trend is fitted using the estimated covari-

ance structure.

– "self" weighted lsq. Weights are the values of the fitted variogram to the power of -2

– "plain" model fitted by least squares; trends are never taken into account

– "sqrt.nr" weighted lsq. Weight is the square root of the number of points in the bin

– "sd.inv" weighted lsq. Weight is the inverse the standard deviation of the variogram

cloud within the bin

• mle.methods

Model fit by various maximum likelihood methods (according to the value of mle.methods)

using the best parameter set among the primitive methods and the lsq methods as initial value

(if the effective number of parameters is greater than 1). If the best parameter vector of the

MLE found so far is too close to some given bounds, see the specific parameters above, it is

assumed that optim ran into a local minimum because of a bad starting value. In this case and

if refine.onborder=TRUE the MLE target function is calculated on a grid, the best parameter

vector is taken, and the optimisation is restarted with this parameter vector.



fitvario 39

– "ml" maximum likelihood; since ML and REML give the same result if there are not any

covariates, ML is performed in that case, independently whether it is given or not.

– "reml" restricted maximum likelihood

Value

The function returns a list with the following elements

ev list returned by EmpiricalVariogram

table Matrix. The first rows contain the estimated parameters, followed by the target

values of all methods for the given set of parameters; the last rows give the

lower and upper bounds used in the estimations. The columns correspond to the

various estimation methods for the parameters.

lowerbounds lower bounds

lowerbounds upper bounds

transform transformation function

vario obsolete

self list containing

• modelthe variogram or covariance model

• residualsNULL

• ml.valuethe likelihood value for the model

plain, sqrt.nr, sd.inv, internal, ml, reml

see self; excepetion is ml, where the residuals are given instead of NULL.

Acknowledgement

Thanks to Paulo Ribeiro for hints and comparing the perliminary versions of fitvario in Ran-

domFields V1.0 to likfit of the package geoR whose homepage is at http://www.est.ufpr.br/

geoR/.

Note

This function does not depend on the value of RFparameters()$PracticalRange. The function

fitvario always uses the standard specification of the covariance model as given in CovarianceFct.

Further, the function has implemented accelerations if the model is simple. E.g., if there is a com-

mon variance to estimated and the definition by lists is used, then the leading model should be ‘$’

with var=NA.

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de> http://ms.math.uni-mannheim.de
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See Also

Covariance, CovarianceFct, GetPracticalRange, parampositions RandomFields, weather.

Examples

model <-"gencauchy"

param <- c(0, 1, 0, 1, 1, 2)

estparam <- c(0, NA, 0, NA, NA, 2) ## NA means: "to be estimated"

## sequence in estparam is

## mean, variance, nugget, scale, (+ further model parameters)

## So, mean, variance, and scale will be estimated here.

## Nugget is fixed and equals zero.

points <- 100

x <- runif(points,0,3)

y <- runif(points,0,3) ## 300 random points in square [0, 3]^2

## simulate data according to the model:

d <- GaussRF(x=x, y=y, grid=FALSE, model=model, param=param, n=1000) #1000

## fit the data:

Print(fitvario(x=cbind(x,y), data=d, model=model, param=estparam,

lower=c(0.1, 0.1, 0.1), upper=c(1.9, 5, 2)))

#########################################################

## The next two estimations give about the same result.

## For the first the sill is fixed to 1.5. For the second the sill

## is reached if the estimated variance is smaller than 1.5

estparam <- c(0, NA, NA, NA, NA, NA)

## Not run:

Print(v <- fitvario(x=cbind(x,y), data=d, model=model, param=estparam,

sill=1, use.nat=FALSE)) ## gencauchy works better with use.nat=FALSE

## End(Not run)
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estmodel <- list("+",

list("$", var=NA, scale=NA,

list("gencauchy", alpha=NA, beta=NA)

),

list("$", var=NA, list("nugget"))

)

parampositions(model=estmodel, dim=2)

f <- function(variab) c(variab, max(0, 1.0 - variab[1]))

## Not run:

Print(v2 <- fitvario(x=cbind(x,y), data=d, model=estmodel,

lower = c(TRUE, TRUE, TRUE, TRUE, FALSE),

transform=f, use.nat=FALSE))

## End(Not run)

#########################################################

## estimation of coupled parameters (alpha = beta, here)

# source("RandomFields/tests/source.R")

f <- function(param) param[c(1:3,3,4)]

## Not run:

Print(fitvario(x=cbind(x,y), data=d, model=estmodel,

lower=c(TRUE, TRUE, TRUE, FALSE, TRUE),

transform=f))

## End(Not run)

#########################################################

## estimation in a anisotropic framework

x <- y <- (1:6)/4

model <- list("$", aniso=matrix(nc=2, c(4,2,-2,1)), var=1.5,

list("exp"))

z <- GaussRF(x=x, y=y, grid=TRUE, model=model, n=10)

estmodel <-list("$", aniso=matrix(nc=2, c(NA,NA,-2,1)), var=NA,

list("exp"))

Print(fitvario(as.matrix(expand.grid(x, y)), data=z,

model=estmodel, nphi=20))

#########################################################

## estimation with trend (formula)

model <- list("$", var=1, scale=2, list("gauss"))

estmodel <- list("$", var=NA, scale=NA, list("gauss"))

x <- seq(-pi,pi,pi/2)

n <- 5

data <- GaussRF(x, x, gridtri=FALSE, model=model,

trend=function(X1,X2) sin(X1) + 2*cos(X2),n=n)

Print(v <- fitvario(x, x, data=data, gridtrip=FALSE,
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model=estmodel,

trend=~sin(X1)+cos(X1)+sin(X2)+cos(X2)))

########################################################

## estimation of anisotropy matrix with two identical ##

## diagonal elements ##

## Not run:

x <- c(0, 5, 0.4)

model <- list("$", var=1, scale=1, list("exponential"))

z <- GaussRF(x, x, x, model=model, gridtriple=TRUE, n=10, Print=2)

est.model <- list("+",

list("$", var=NA, aniso=diag(c(NA, NA, NA)), list("exponen")),

list("$", var=NA, list("nugget")))

parampositions(est.model, dim=3)

trafo <- function(variab) {variab[c(1:2, 2:4)]}

lower <- c(TRUE, TRUE, FALSE, TRUE, TRUE) # which parameter to be estimated

fitlog <- fitvario(x, x, x, gridtriple=TRUE, data=z, model=est.model,

transform=trafo, lower=lower)

str(fitlog$ml)

## End(Not run)

GaussRF Gaussian Random Fields

Description

These functions simulate stationary spatial and spatio-temporal Gaussian random fields using turn-

ing bands/layers, circulant embedding, direct methods, and the random coin method.

Usage

GaussRF(x, y=NULL, z=NULL, T=NULL, grid=!missing(gridtriple), model, param,

trend=NULL, method=NULL, n=1, register=0, gridtriple,

paired=FALSE, ...)

InitGaussRF(x, y=NULL, z=NULL, T=NULL, grid=!missing(gridtriple), model,

param, trend=NULL, method=NULL, register=0, gridtriple)

Arguments

x matrix of coordinates, or vector of x coordinates

y vector of y coordinates

z vector of z coordinates
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T vector of time coordinates, may only be given if the random field is defined as an

anisotropic random field, i.e. if model=list(list(model=,var=,k=,aniso=),...).

T must always be given in the gridtriple format, independently how the spatial

part is defined.

grid logical; determines whether the vectors x, y, and z should be interpreted as a

grid definition, see Details. grid does not apply for T.

model string or list; covariance or variogram model, see CovarianceFct, or type PrintModelList()

to get the list of all implemented models; see Details.

param vector or matrix of parameters or missing, see Details and CovarianceFct; The

simplest form is that param is vector of the form param=c(NA,variance,nugget,scale,...),

in this order;

The dots ... stand for additional parameters of the model.

trend trend surface: number (mean) or a vector of length d + 1 (linear trend a0 +
a1x1 + . . . + adxd), or function; you have the choice of using either x, y, z or

X1, X2, X3, ... as spatial variables, as time variable T should be chosen

method NULL or string; method used for simulating, see RFMethods, or type PrintMethodList()

to get all options. If model is given as list then method may not be set if

model[[i]]$method, i = 1, 3, .. is given, and vice versa. However, a global pa-

rameter method and specific methods may be given, e.g. list(list(model=..., method="TBM3"), ...,

then the specific ones overwrite the global method.

n number of realisations to generate

register 0:9; place where intermediate calculations are stored; the numbers are aliases

for 10 internal registers

gridtriple logical. Only relevant if grid=TRUE. If gridtriple=TRUE then x, y, and z are

of the form c(start,end,step); if gridtriple=FALSE then x, y, and z must

be vectors of ascending values

paired logical. If TRUE then the second half of the simulations is obtained by only

changing the signs of all the standard Gaussian random variables, on which the

first half of the simulations is based. (“Antithetic pairs”.)

... RFparameters that are locally used only.

Details

GaussRF can use different methods for the simulation, i.e., circulant embedding, turning bands, di-

rect methods, and random coin method. If method=NULL then GaussRF searches for a valid method.

GaussRF may not find the fastest method neither the most precise one. It just finds any method

among the available methods. (However it guesses what is a good choice.) See RFMethods for

further information. Note that some of the methods do not work for all covariance or variogram

models.

• An isotropic random field is created by GaussRF where model is the covariance or variogram

model and the parameter is param=c(mean,variance,nugget,scale, ...). Alternatively

the trend can be given; then param=c(variance,nugget,scale, ...).

• Nested models can be defined in the same way as a nested CovarianceFct. If the trend is

not given it is set to 0.
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• An anisotropic random field (i.e. zonal anisotropy, geometrical anisotropy, separable models,

non-separable space-time models) and a random field based on multiplicative or nested models

is defined as in the case of an anisotropic CovarianceFct. If the trend is not given it is set

to 0. The method may be specified by the global method or for each model separately, as

additional parameter method for each entry of the list; note that methods can not be mixed

within a multiplicative part.

If model=list(list(model=,var=,k=,aniso=),...) then a time component might be

given. In case of model="nugget", aniso must still be given as a matrix. Namely if aniso is

a singular matrix then a zonal nugget effect is obtained.

GaussRF calls initially InitGaussRF, which does some basic checks on the validity of the param-

eters. Then, InitGaussRF performs some first calculations, like the first Fourier transform in the

circulant embedding method or the matrix decomposition for the direct methods. Random numbers

are not involved. GaussRF then calls DoSimulateRF which uses the intermediate results and random

numbers to create a simulation.

When InitGaussRF checks the validity of the parameters, it also checks whether the previous simu-

lation has had the same specification of the random field. If so (and if RFparameters()$STORING==TRUE),

the stored intermediate results are used instead of being recalculated.

Comments on specific parameters:

• grid=FALSE : the vectors x, y, and z are interpreted as vectors of coordinates

• (grid=TRUE) && (gridtriple=FALSE) : the vectors x, y, and z are increasing sequences with

identical lags for each sequence. A corresponding grid is created (as given by expand.grid).

• (grid=TRUE) && (gridtriple=TRUE) : the vectors x, y, and z are triples of the form

(start,end,step) defining a grid (as given by expand.grid(seq(x$start,x$end,x$step), seq(y$start,y$end,y$step),

• register is a parameter which may never be used by most of the users (please let me know

if you use it!). In other words, the package will work fine if you ignore this parameter. The

parameter register is of interest in the following situation. Assume you wish to create

sequentially several realisations of two random fields Z1 and Z2 that have different specifica-

tions of the covariance/variogram models, i.e. Z1, Z2, Z1, Z2,... Then, without using different

registers, the algorithm will not be able to profit from already calculated intermediate results,

as the specifications of the covariance/variogram model change every time. However, using

different registers allows for profiting from up to 10 stored intermediate results.

• The strings for model and method may be abbreviated as long as the abbreviations match only

one option. See also PrintModelList() and PrintMethodList()

• Further control parameters for the simulation are set by means of RFparameters(...).

Value

InitGaussRF returns 0 if no error has occurred and a positive value if failed.

The object returned GaussRF and DoSimulateRF depends on the parameters n and grid:

if vdim > 1 the vdim-variate vector makes the first dimension

if grid=TRUE an array of the dimension of the random field makes the next dimensions. Else if no

time component is given, then the values are passed as a single vector. Else if the time component

is given the next 2 dimensions give space and time.



GaussRF 45

if n > 1 the repetitions make the last dimension

Note

The algorithms for all the simulation methods are controlled by additional parameters, see RFparameters().

These parameters have an influence on the speed of the algorithm and the precision of the result.

The default parameters are chosen such that the simulations are fine for many models and their

parameters. If in doubt modify the example in EmpiricalVariogram() to check the precision.

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de> http://ms.math.uni-mannheim.de

Yindeng Jiang <jiangyindeng@gmail.com> (circulant embedding methods ‘cutoff’ and ‘intrinsic’)

References

See RFMethods for the references.

See Also

Covariance, CovarianceFct, DeleteRegister, DoSimulateRF, GetPracticalRange, EmpiricalVariogram,

fitvario, MaxStableRF, RFMethods, RandomFields, RFparameters, ShowModels,

Examples

#############################################################

## ##

## Examples using the symmetric stable model, also called ##

## "powered exponential model" ##

## ##

#############################################################

PrintModelList() ## the complete list of implemented models

model <- "stable"

mean <- 0

variance <- 4

nugget <- 1

scale <- 10

alpha <- 1 ## see help("CovarianceFct") for additional

## parameters of the covariance functions

step <- 1 ## nicer, but also time consuming if step <- 0.1

x <- seq(0, 20, step)

y <- seq(0, 20, step)

f <- GaussRF(x=x, y=y, model=model, grid=TRUE,

param=c(mean, variance, nugget, scale, alpha))

image(x, y, f)

#############################################################

## ... using gridtriple
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step <- 1 ## nicer, but also time consuming if step <- 0.1

x <- c(0, 20, step) ## note: vectors of three values, not a

y <- c(0, 20, step) ## sequence

f <- GaussRF(grid=TRUE, gridtriple=TRUE,

x=x ,y=y, model=model,

param=c(mean, variance, nugget, scale, alpha))

image(seq(x[1],x[2],x[3]), seq(y[1],y[2],y[3]), f)

#############################################################

## arbitrary points

x <- runif(100, max=20)

y <- runif(100, max=20)

z <- runif(100, max=20) # 100 points in 3 dimensional space

(f <- GaussRF(grid=FALSE, Print=5,

x=x, y=y, z=z, model=model,

param=c(mean, variance, nugget, scale, alpha)))

#############################################################

## usage of a specific method

## -- the complete list can be obtained by PrintMethodList()

x <- runif(100, max=20) # arbitrary points

y <- runif(100, max=20)

(f <- GaussRF(method="dir", # direct matrix decomposition

x=x, y=y, model=model, grid=FALSE,

param=c(mean, variance, nugget, scale, alpha)))

#############################################################

## simulating several random fields at once

step <- 1 ## nicer, but also time consuming if step <- 0.1

x <- seq(0, 20, step) # grid

y <- seq(0, 20, step)

f <- GaussRF(n=3, # three simulations at once

x=x, y=y, model=model, grid=TRUE,

param=c(mean, variance, nugget, scale, alpha))

image(x, y, f[,,1])

image(x, y, f[,,2])

image(x, y, f[,,3])

#############################################################

## ##

## Examples using the extended definition form ##

## ##

## ##

#############################################################

#% library(RandomFields, lib="~/TMP"); RFparameters(Print=6)
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x <- (0:100)/10

m <- matrix(c(1,2,3,4),ncol=2)/5

model <- list("$", aniso=m,

list("*",

list("power", k=2),

list("sph"))

)

z <- GaussRF(x=x, y=x, grid=TRUE, model=model, me="TBM3")

Print(c(mean(as.double(z)),var(as.double(z))))

image(z,zlim=c(-3,3))

## to know more what GaussRF does, use Print

## TMB can be very slow. To trace the iteration, use every

##

z <- GaussRF(x=x, y=x, grid=TRUE, model=model, me="TBM3",

Print=3, every=100)

image(z,zlim=c(-3,3))

## here, GaussRF uses direct decomp to simulate on the line

## and the square root of the covariance matrix is

## calculated by the Cholesky decomposition

## non-separable space-time model applied for two space dimensions

## note that tbm method works in some special cases.

#% library(RandomFields, lib="~/TMP")

x <- y <- seq(0, 7, if (interactive()) 0.05 else 0.2)

T <- c(1,32,1) * 10 ## note necessarily gridtriple definition

model <- list("$", aniso=diag(c(3, 3, 0.02)),

list("nsst", k1=2,

list("gauss"),

list("genB", k=c(1, 0.5))

))

z <- GaussRF(x=x, y=y, T=T, grid=TRUE, model=model,

method="ci", CE.strategy=1,

CE.trials=if (interactive()) 4 else 1)

rl <- function() if (interactive()) readline("Press return")

for (i in 1:dim(z)[3]) { image(z[,,i], zlim=range(z)); rl();}

for (i in 1:dim(z)[2]) { image(z[,i,], zlim=range(z)); rl();}

for (i in 1:dim(z)[1]) { image(z[i,,], zlim=range(z)); rl();}

#############################################################

## ##

## Example of a 2d random field based on ##

## covariance functions valid in 1d only ##

## ##

#############################################################

x <- seq(0, 10, 1/10)

model <- list("*",
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list("$", aniso=matrix(nr=2, c(1, 0)),

list("fractgauss", k=0.5)),

list("$", aniso=matrix(nr=2, c(0, 1)),

list("fractgauss", k=0.9))

)

z <- GaussRF(x, x, grid=TRUE, gridtriple=FALSE, model=model)

image(x, x, z)

#############################################################

## ##

## Brownian motion ##

## (using Steins method) ##

## ##

#############################################################

# 1d

kappa <- 1 # in [0,2)

z <- GaussRF(x=c(0, 10, 0.001), grid=TRUE, Print=5,

model=list("fractalB", kappa))

plot(z, type="l")

# 2d

step <- 0.3 ## nicer, but also time consuming if step = 0.1

x <- seq(0, 10, step)

kappa <- 1 # in [0,2)

z <- GaussRF(x=x, y=x, grid=TRUE, model=list("fractalB", kappa))

image(z,zlim=c(-3,3))

# 3d

x <- seq(0, 3, step)

kappa <- 1 # in [0,2)

z <- GaussRF(x=x, y=x, z=x, grid=TRUE,

model=list("fractalB", kappa))

rl <- function() if (interactive()) readline("Press return")

for (i in 1:dim(z)[1]) { image(z[i,,]); rl();}

#############################################################

## This example shows the benefits from stored, ##

## intermediate results: in case of the circulant ##

## embedding method, the speed is doubled in the second ##

## simulation. ##

#############################################################

RFparameters(Storing=TRUE)

y <- x <- seq(0, 50, 0.2)

(p <- c(runif(3), runif(1)+1))

ut <- system.time(f <- GaussRF(x=x,y=y,grid=TRUE,model="exponen",

method="circ", param=p))

image(x, y, f)
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cat("system time (first call)", format(ut,dig=3),"\n")

# second call with the same parameters can be much faster:

ut <- system.time(f <- DoSimulateRF())

image(x, y, f)

cat("system time (second call)", format(ut,dig=3),"\n")

#############################################################

## ##

## Example how the cutoff method can be set ##

## explicitly using hypermodels ##

## ##

#############################################################

## NOTE: this feature is still in an experimental stage

## which has not been yet tested intensively;

## further: parameters and algorithms may change in

## future.

#% library(RandomFields, lib="~/TMP");source("~/R/cran/RandomFields/tests/source.R")

## simuation of the stable model using the cutoff method

#RFparameters(Print=8, Storing=FALSE)

x <- seq(0, 1, 1/24) # nicer pictures with 1/240

scale <- 1.0

model1 <- list("$", scale=scale, list("stable", alpha=1.0))

rs <- get(".Random.seed", envir=.GlobalEnv, inherits = FALSE)

z1 <- GaussRF(x, x, grid=TRUE, gridtriple=FALSE,

model=model1, n=1, meth="cutoff", Storing=TRUE)

(size <- GetRegisterInfo(meth=c("cutoff", "circ"))$S$size)

(cut.off.param <-

GetRegisterInfo(meth=c("cutoff", "circ"), modelname="cutoff")$param)

image(x, x, z1)

## simulation of the same random field using the circulant

## embedding method and defining the hypermodel explicitely

model2 <- list("$", scale = scale,

list("cutoff", diam=cut.off.param$diam, a=cut.off.param$a,

list("stable", alpha=1.0))

)

assign(".Random.seed", rs, envir=.GlobalEnv)

z2 <- GaussRF(x, x, grid=TRUE, gridtriple=FALSE, model=model2,

meth="circulant", n=1, CE.mmin=size, Storing=TRUE)

image(x, x, z2)

Print(range(z1-z2)) ## essentially no difference between the fields!
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#% library(RandomFields)

#############################################################

## The cutoff method simulates on a torus and a (small) ##

## rectangle is taken as the required simulation. ##

## ##

## The following code shows a whole such torus. ##

## The main part of the code sets local.dependent=TRUE and ##

## local.mmin to multiples of the basic rectangle lengths ##

#############################################################

# definition of the realisation

RFparameters(CE.useprimes=FALSE)

x <- seq(0, 2, len=4) # better 20

y <- seq(0, 1, len=5) # better 40

grid.size <- c(length(x), length(y))

model <- list("$", var=1.1, aniso=matrix(nc=2, c(2, 1, 0.5, 1)),

list(model="exp"))

# determination of the (minimal) size of the torus

InitGaussRF(x, y, model=model, grid=TRUE, method="cu")

ce.info.size <- GetRegisterInfo(meth=c("cutoff", "circ"))$S$size

blocks <- ceiling(ce.info.size / grid.size / 4) *4

(size <- blocks * grid.size)

# simulation and plot of the torus

z <- GaussRF(x, y, model=model, grid=TRUE, method="cu", n=prod(blocks) * 2,

local.dependent=TRUE, local.mmin=size)[,,c(TRUE, FALSE)]

hei <- 8

do.call(getOption("device"),

list(hei=hei, wid=hei / blocks[2] / diff(range(y)) *

blocks[1] * diff(range(x))))

close.screen(close.screen())

sc <- matrix(nc=blocks[1], split.screen(rev(blocks)), byrow=TRUE)

sc <- as.vector(t(sc[nrow(sc):1, ]))

for (i in 1:prod(blocks)) {

screen(sc[i])

par(mar=rep(1, 4) * 0.0)

image(z[,, i], zlim=c(-3, 3), axes=FALSE, col=rainbow(100))

}

##############################################################

## Simulating with trend (as function) ##

##############################################################

x <- seq(-5,5,0.1)
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z <- GaussRF(x=x, y=x, model = "exponential", param=c(1,0,1), grid=TRUE,

trend=function(x,y) 3*sin(x)*cos(y))

colors=heat.colors(1000)

image(x,x,z,col=colors)

##############################################################

## Simulating with linear trend surface ##

##############################################################

x <- seq(-5,5,0.1)

##trend surface: 3x - y

z <- GaussRF(x=x, y=x, model = "cubic", param=c(1,0,2), grid=TRUE,

trend=c(0,1,-1))

colors=heat.colors(1000)

persp(x,x,z, phi=30, theta=-3)

host System calls

Description

The functions hostname and pid return the host name and the PID, respectively.

Usage

hostname()

pid()

Details

If R runs on a unix platform the host name and the PID are returned, otherwise the empty string and

naught, respectively.

Value

hostname returns a string

pid returns an unsigned integer
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Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de> http://ms.math.uni-mannheim.de

Examples

hostname()

Kriging Kriging methods

Description

The function allows for different methods of kriging.

Usage

Kriging(krige.method, x, y=NULL, z=NULL, T=NULL, grid,

gridtriple=FALSE, model, param, given, data, trend=NULL, pch=".",

return.variance=FALSE, allowdistanceZero = FALSE, cholesky=FALSE)

Arguments

krige.method kriging method; currently only ’S’ (simple kriging), ’O’ (ordinary kriging), ’U’

(universal kriging) and ’I’ (intrinsic kriging) implemented.

x (n× d) matrix or vector of x coordinates; coordinates of n points to be kriged

y vector of y coordinates.

z vector of z coordinates.

T vector in grid triple form for the time coordinates.

grid logical; determines whether the vectors x, y, and z should be interpreted as a

grid definition, see Details.

gridtriple logical. Only relevant if grid=TRUE. If gridtriple=TRUE then x, y, and z are

of the form c(start,end,step); if gridtriple=FALSE then x, y, and z must

be vectors of ascending values.

model string; covariance model, see CovarianceFct, or type PrintModelList() to

get all options.

param parameter vector: param=c(mean, variance, nugget, scale,...); the pa-

rameters must be given in this order. Further parameters are to be added in case

of a parametrised class of covariance functions, see CovarianceFct. The value

of mean must be finite in the case of simple kriging, and is ignored otherwise.

given matrix or vector of points where data are available.

data the data values given at given; it might be a vector or a matrix. If a matrix is

given multivariate data are assumed which are kriged separately.
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trend only used for universal and intrinsic kriging. In case of universal kriging trend

is a non-negative integer (monomials up to order k as trend functions), a list

of functions or a formula (the summands are the trend functions); you have the

choice of using either x, y, z or X1, X2, X3,... as spatial variables; in case of

intrinsic kriging trend should be a nonnegative integer which is the order of the

underlying model.

pch Kriging procedures are quite time consuming in general. The character pch is

printed after roughly each 80th part of calculation.

return.variance

logical. If FALSE the kriged field is returned. If TRUE a list of two elements,

estim and var, i.e. the kriged field and the kriging variances, is returned.

allowdistanceZero

if TRUE then identical locations are slightly scattered

cholesky if TRUE cholesky decomposition is used instead of LU.

Details

• grid=FALSE : the vectors x, y, and z are interpreted as vectors of coordinates

• (grid=TRUE) && (gridtriple=FALSE) : the vectors x, y, and z are increasing sequences with

identical lags for each sequence. A corresponding grid is created (as given by expand.grid).

• (grid=TRUE) && (gridtriple=TRUE) : the vectors x, y, and z are triples of the form

(start,end,step) defining a grid (as given by expand.grid(seq(x$start,x$end,x$step), seq(y$start,y$end,y$step),

Value

If variance.return=FALSE Kriging returns a vector or matrix of kriged values corresponding to

the specification of x, y, z, and grid, and data.

data: a vector or matrix with one column

* grid=FALSE. A vector of simulated values is returned (independent of the dimension of the ran-

dom field)

* grid=TRUE. An array of the dimension of the random field is returned (according to the specifica-

tion of x, y, and z).

data: a matrix with at least two columns

* grid=FALSE. A matrix with the ncol(data) columns is returned.

* grid=TRUE. An array of dimension d+1, where d is the dimension of the random field, is returned

(according to the specification of x, y, and z). The last dimension contains the realisations.

If variance.return=TRUE a list of two elements, estim and var, i.e. the kriged field and the

kriging variances, is returned. The format of estim is the same as described above. The format of

var is accordingly.

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de> http://ms.math.uni-mannheim.de
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See Also

CondSimu, Covariance, CovarianceFct, EmpiricalVariogram, RandomFields,

Examples

###Example 1: Ordinary Kriging

## creating random variables first

## here, a grid is chosen, but does not matter

step <- 0.25

x <- seq(0,7,step)

param <- c(0,1,0,1)

model <- "exponential"

RFparameters(PracticalRange=FALSE)

p <- 1:7

points <- as.matrix(expand.grid(p,p))

data <- GaussRF(points, grid=FALSE, model=model, param=param)

## visualise generated spatial data

zlim <- c(-2.6,2.6)

colour <- rainbow(100)

image(p, p, xlim=range(x), ylim=range(x),

matrix(data,ncol=length(p)),

col=colour,zlim=zlim)

## now: kriging

krige.method <- "O" ## ordinary kriging

z <- Kriging(krige.method=krige.method,

x=x, y=x, grid=TRUE,

model=model, param=param,

given=points, data=data)

image(x,x,z,col=colour,zlim=zlim)
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MaxStableRF Max-Stable Random Fields

Description

These functions simulate stationary and isotropic max-stable random fields with unit Frechet mar-

gins.
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Usage

MaxStableRF(x, y=NULL, z=NULL, grid, model, param, maxstable,

method=NULL, n=1, register=0, gridtriple=FALSE,...)

InitMaxStableRF(x, y=NULL, z=NULL, grid, model, param, maxstable,

method=NULL, register=0, gridtriple=FALSE)

Arguments

x matrix of coordinates, or vector of x coordinates

y vector of y coordinates

z vector of z coordinates

grid logical; determines whether the vectors x, y, and z should be interpreted as a

grid definition, see Details.

model string; see CovarianceFct, or type PrintModelList() to get all options; inter-

pretation depends on the value of maxstable, see Details.

param parameter vector: param=c(mean, variance, nugget, scale,...); the pa-

rameters must be given in this order; further parameters are to be added in case

of a parametrised class of covariance functions, see CovarianceFct, or be given

in one of the extended forms, see Details

maxstable string. Either ’extremalGauss’ or ’BooleanFunction’; see Details.

method NULL or string; method used for simulating, see RFMethods, or type PrintMethodList()

to get all options; interpretation depends on the value of maxstable.

n number of realisations to generate

register 0:9; place where intermediate calculations are stored; the numbers are aliases

for 10 internal registers

gridtriple logical; if gridtriple=FALSE ascending sequences for the parameters x, y, and

z are expected; if gridtriple=TRUE triples of form c(start,end,step) ex-

pected; this parameter is used only if grid=TRUE

... RFparameters that are locally used only.

Details

There are two different kinds of models for max-stable processes implemented:

• maxstable="extremalGauss"

Gaussian random fields are multiplied by independent random factors, and the maximum is

taken. The random factors are such that the resulting random field has unit Frechet margins;

the specification of the random factor is uniquely given by the specification of the random

field. The parameter vector param, the model, and the method are interpreted in the same way

as for Gaussian random fields, see GaussRF.

• maxstable="BooleanFunction"

Deterministic or random, upper semi-continuous L1-functions are randomly centred and mul-

tiplied by suitable, independent random factors; the pointwise maximum over all these func-

tions yields a max-stable random field. The simulation technique is related to the random coin



MaxStableRF 57

method for Gaussian random field simulation, see RFMethods. Hence, only models that are

suitable for the random coin method are suitable for this technique, see PrintModelList()

for a complete list of suitable covariance models.

The only value allowed for method is ’max.MPP’ (and NULL), see PrintMethodList(). In

the parameter list param the first two entries, namely mean and variance, are ignored. If the

nugget is positive, for each point an additional independent unit Frechet variable with scale

parameter nugget is involved when building the maximum over all functions.

The model may be defined alternatively in one of the two extended ways as introduced in

CovarianceFct and GaussRF. However only a single model may be given! The model may

be anisotropic.

Value

InitMaxStableRF returns 0 if no error has occurred, and a positive value if failed.

MaxStableRF and DoSimulateRF return NULL if an error has occurred; otherwise the returned object

depends on the parameters:

n=1:

* grid=FALSE. A vector of simulated values is returned (independent of the dimension of the ran-

dom field)

* grid=TRUE. An array of the dimension of the random field is returned.

n>1:

* grid=FALSE. A matrix is returned. The columns contain the realisations.

* grid=TRUE. An array of dimension d+1, where d is the dimension of the random field, is returned.

The last dimension contains the realisations.

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de> http://ms.math.uni-mannheim.de

References

Schlather, M. (2002) Models for stationary max-stable random fields. Extremes 5, 33-44.

See Also

CovarianceFct, sophisticated, GaussRF, RandomFields, RFMethods, RFparameters, DoSimulateRF,

.

Examples

n <- 30 ## nicer, but time consuming if n <- 100

x <- y <- 1:n

ms0 <- MaxStableRF(x, y, grid=TRUE, model="exponen",

param=c(0,1,0,40), maxstable="extr",

CE.force = TRUE)

image(x,y,ms0)
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SimulateRF Simulation of Random Fields

Description

DoSimulateRF performs an already initialised simulation.

InitSimulateRF internal function; use InitGaussRF and InitMaxStableRF, instead.

Usage

DoSimulateRF(n=1, register=0, paired=FALSE, trend=NULL)

InitSimulateRF(x, y=NULL, z=NULL, T=NULL, grid=!missing(gridtriple),

model, param, trend, method=NULL, register=0, gridtriple,

distribution=NA)

Arguments

x matrix of coordinates, or vector of x coordinates

y vector of y coordinates

z vector of z coordinates

T time instances

grid logical; determines whether the vectors x, y, and z should be interpreted as a

grid definition, see Details.

model string; covariance or variogram model, see CovarianceFct, or type PrintModelList()

to get all options

param vector or list. param=c(mean, variance, nugget, scale, ...), param=list(c(variance, scale,

param=matrix(...), or param=list(list(variance, anisotropy, kappa),..., list(variance,

the parameters must be given in this order; further parameters are to be added in

case of a parametrised class of models, see CovarianceFct

method NULL or string; Method used for simulating, see RFMethods, or type PrintMethodList()

to get all options

register 0:9; place where intermediate calculations are stored; the numbers are aliases

for 10 internal registers

gridtriple logical; if gridtriple=FALSE ascending sequences for the parameters x, y, and

z are expected; if gridtriple=TRUE triples of form c(start,end,step) ex-

pected; this parameter is used only if grid=TRUE

distribution marginal distribution:

’Gauss’, ’Poisson’, or ’MaxStable’
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n number of realisations to generate; if paired=TRUE then n must be even.

paired logical. paired may be TRUE only for the simulation of Gaussian random fields.

If TRUE then every second simulation is obtained by only changing the signs of

the standard Gaussian random variables, the simulation is based on (“antithetic

pairs”).

trend only used for universal and intrinsic kriging. In case of universal kriging trend

is a non-negative integer (monomials up to order k as trend functions), a list

of functions or a formula (the summands are the trend functions); you have the

choice of using either x, y, z or X1, X2, X3,... as spatial variables; in case of

intrinsic kriging trend should be a nonnegative integer which is the order of the

underlying model.

Value

InitSimulateRF returns 0 if no error has occurred during the initialisation process, and a positive

value if failed.

DoSimulateRF returns NULL if an error has occurred; otherwise the returned object depends on the

parameters n and grid:

n=1:

* grid=FALSE. A vector of simulated values is returned (independent of the dimension of the ran-

dom field)

* grid=TRUE. An array of the dimension of the random field is returned.

n>1:

* grid=FALSE. A matrix is returned. The columns contain the realisations.

* grid=TRUE. An array of dimension d+1, where d is the dimension of the random field, is returned.

The last dimension contains the realisations.

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de> http://ms.math.uni-mannheim.de

See Also

GaussRF, MaxStableRF, RandomFields

sleep.milli Sleep

Description

Process sleeps for a given amount of time

Usage

sleep.milli(milli)
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Arguments

milli sleeping time in milliseconds

Value

No value is returned.

Author(s)

Martin Schlather, <schlather@math.uni-mannheim.de> http://ms.math.uni-mannheim.de

Examples

sleep(1000) # 1 sec
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