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ABSTRACT

Family based study designs are regaining popularity because large scale se-

quencing can help to interrogate the relationship between disease and variants

too rare in the population to be detected through tests of association in a conven-

tional case-control study, but may nonetheless co-segregate with disease within

families. Where only a few affected subjects per family are sequenced, evidence

that a rare variant may be causal can be quantified from the probability any

variant would be shared by all affected relatives given it was seen in any one

family member under the null hypothesis of complete absence of linkage and as-

sociation. For variants seen in M families and shared by affected relatives in m of

them, a p-value can be obtained as the sum of the probabilities of sharing events

as (or more) extreme. We generalized the expression for the sharing probability

to more than two subjects per family. We also examined the impact of unknown

relationships and proposed approximation of sharing probability based on em-

pirical estimates of kinship between family members obtained from genome-wide

marker data. A simulation study demonstrate the accuracy of the approximation

for low levels of kinship between founders. We applied this method to a study of

55 multiplex families with apparent non-syndromic forms of oral clefts from four

distinct populations. Whole exome sequencing was performed by the Center for

Inherited Disease Research (CIDR) on two or three affected members per family.

The rare single nucleotide variant (SNV) rs149253049 in the gene ADAMTS9 was

shared by affected relatives in three Indian families (p = 2 × 10−6), illustrating

the power of this sharing approach. Another SNV was shared in three out of four

families, among which two families from the Syrian sample where excess sharing

was detected. In that case the evidence against the null hypothesis was reduced

after applying a correction for unknown relationships.
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1. Introduction

The advent of high-throughput sequencing of whole exomes and even whole genomes

opens the possibility of detecting rare variants (RVs, from unique to a family to one percent

frequency in a population) impacting human health. The first successful applications of

exome sequencing have been with rare Mendelian traits (Gilissen et al. 2012). A widespread

study design to discover such rare highly penetrant variants in families where previous geno-

typing has not been performed is to sequence the exome (or increasingly the whole genome)

of two or three affected subjects, what Gilissen et al. call the ”linkage” approach (Gilissen

et al. 2012). The identification of the likely causal variant is in fact conducted by focusing

on novel variants predicted to be functional that are shared by all sequenced family members.

RVs may also explain a part of the so-called ”missing heritability” of complex diseases

and even be responsible for association signals detected with common variants (Cirulli and

Goldstein 2010). In a family with a high concentration of disease cases, there is a high

probability that multiple affected members carry the same rare disease predisposing variant

if such a variant exists and its penetrance is high (Cirulli and Goldstein 2010; Wijsman

2012). This confers an advantage to family samples over samples of unrelated individuals

where disease causing RVs may be so seen only once or twice in tens of thousands of subjects.

Contrary to monogenic Mendelian traits, considerable genetic heterogeneity is expected

with complex diseases. Oral clefts are common craniofacial malformations representing

a good example of a genetically heterogeneous disorder with at least a dozen different

genes identified as genetic risk factors in genome-wide association studies (GWAS), a

few of which may be directly causal (Beaty et al. 2013; Ludwig et al. 2012). Sequencing

studies need to include larger numbers of families to provide enough power to identify RVs.
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Results reported here are from a whole exome study of 55 multiplex families with apparent

non-syndromic forms of oral clefts.

As with Mendelian disorders, it has initially been proposed to use the RV sharing

information to filter out RVs that are not shared in at least one family. (Feng et al. 2011).

For variants sufficiently rare that the copies in the sequenced relatives are almost certainly

identical by descent (IBD), the probability that a RV independent of the disease and

detected in at least one sequenced subject would not be shared by other sequenced affected

relatives was computed by Feng et al. (Feng et al. 2011) to quantify the effectiveness of

what they call the concordance filter to discard irrelevant RVs. We adopt the view that

the probability a rare variant would be shared by all affected relatives in a family given it

was seen in any one of them, computed under the null hypothesis of absence of linkage and

association to the disease, can be used to quantify the evidence against the null hypothesis

and therefore establish that a RV may be predisposing to the disease. It is important to

stress that more evidence is extracted from each family than only testing for linkage: the

null probability of sharing a RV by two first cousins is 1
15

while their null IBD sharing

probability is 1
8
. The evidence can be combined across all the families where the RV is seen,

if there are more than one.

RV sharing probabilities between relatives rest on the assumptions that the variant is

rare enough to have been introduced only once in the family and that the known family

structure is correct, in particular that family founders are unrelated. Cryptic relatedness

can often be detected from dense genotype data. When founders of a pedigree are related,

a RV may be introduced more than once in a family, leading to greater actual sharing

probabilities between relatives than the value computed based on the known pedigree
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structure, and an overstatement of the evidence against the null.

In this article, we generalize to more than two subjects per family the expression for the

probability that a variant is shared by all relatives sequenced in a family given that it was

seen in any of them. We also examine the impact of unknown relationships and propose two

methods to approximate the sharing probability using kinship coefficients between founders,

either based on genealogical knowledge or empirical estimates obtained from genome-wide

marker data on family members. The validity of the approximations is evaluated in a

simulation of small populations. We applied the sharing probability computation to a study

of multiplex families with apparent non-syndromic forms of oral clefts from four distinct

populations. Whole exome sequencing was performed on two or three affected members per

family. The rare single nucleotide variant rs149253049 in gene ADAMTS9 shared in three

families from India provided substantial evidence against the null. We also illustrate with

another RV shared in three out of four families where it was found that cryptic relatedness

may importantly lower the evidence.

2. Material and Methods

Our goal is to compute the probability that a set of related subjects whose DNA

sequence is observed through sequencing or other means (sequenced subjects) share a

rare variant (RV) identical-by-descent given that a RV has been observed at a site in

the sequence, under the null hypothesis of no linkage and no association to the disease

of the sequenced subjects. We assume that the variant for which we compute a sharing

probability is rare enough that there exists a single copy of that variant among the

alleles present in the nf founders of the pedigree relating the subject for which we want

to compute a sharing probability. In the basic setting, all founders are unrelated and a
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single copy of the variant is present among the founders. In a generalization, we allow

founders to be related, and two copies of the allele to be introduced in the pedigree by a

pair of related founders. We finally demonstrate how RV sharing probabilities computed

in a single family can be combined across multiple families where the same variant is detected.

2.1. Computation assuming all founders are unrelated

We define the following random variables and constants:

Ci Number of copies of the RV received by sequenced subject i

Fj Indicator variable that founder j introduces one copy of the RV in the pedigree

Bk Number of copies of the RV in subject k where a line of descent from a founder

branches into two separate lines of descents to a subset of sequenced subjects

Dij Number of generations (meioses) between subject i and his ancestor j

For a set of n sequenced subjects for which the pedigree structure limits to one the

number of copies of the rare variant that they can share, we want to compute the probability

P [RV shared] = P [C1 = . . . = Cn = 1|C1 + . . .+ Cn ≥ 1] =
P [C1 = . . . = Cn = 1]

P [C1 + . . .+ Cn ≥ 1]
(1)

=

∑nf

j=1 P [C1 = . . . = Cn = 1|Fj]P [Fj]∑nf

j=1 P [C1 + . . .+ Cn ≥ 1|Fj]P [Fj]

where the expression on the second line results from our assumption that there exists a

single copy of that variant among the alleles present in the nf founders. The probabilities
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P [Fj] = 1
nf

cancel from the numerator and denominator. For the other terms, we first

derive expressions for the special case where all the sequenced subjects descend from every

founder among their ancestors through independent lines of descent. In that case,

P [C1 = . . . = Cn = 1|Fj] =


∏

i

(
1
2

)Dij =
(
1
2

)Dj if Fj is a common ancestor to the n sequenced subjects

0 otherwise

(2)

and

P [C1 + . . .+ Cn ≥ 1|Fj] = 1− P [C1 = . . . = Cn = 0|Fj] = 1−
∏

i∈d(j)

(
1−

(
1

2

)Dij

)
(3)

where Dj =
∑

iDij and d(j) is the subset of sequenced individuals who descend from

founder j.

The global expression is then

P [RV shared] =

∑nf

j=1

(
1
2

)Dj I(Fj is a common ancestor to the n sequenced subjects)∑nf

j=1

[
1−

∏
i∈d(j)

(
1−

(
1
2

)Dij

)] (4)

We note here that equation 4 covers the general case of pedigrees without inbreeding,

including individuals marrying multiple times and marriage loops as in the family depicted

in Figure 3B for instance. It is a generalization of the sharing probability for two subjects,

P [RV shared] = 1
2(D+1)1

where D is the degree of relationship between the two subjects,

given by Feng et al. (Feng et al. 2011) For the common special case of a pedigree with a

founder couple ancestral to all descendants in the pedigree, the numerator simplifies and we

obtain the following expression:

P [RV shared] =

(
1
2

)Df−1∑nf

j=1

[
1−

∏
i∈d(j)

(
1−

(
1
2

)Dij

)] (5)
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where f is any of the two founders forming the ancestral couple.

When the lineages of sequenced individuals ”coalesce” at a branching individual k who

descends from founders of the pedigree, we can no longer write a general expression like 4,

and recursive computations are required. Without loss of generality, let k be the branching

individual who has sequenced subjects 1, . . . , ik as descendants through independent lines

of descent. We have

P [C1 = . . . = Cn = 1] = P [C1 = . . . = Cik = 1|Bk = 1]P [Bk = Cik+1 = . . . = Cn = 1] (6)

because P [C1 = . . . = Cik = 1|Bk = 0] = 0. The term P [C1 = . . . = Cik = 1|Bk = 1] is

computed from equation 2 replacing Fj by Bk. The term P [Bk = Cik+1 = . . . = Cn = 1] is

computed by reapplying equation 6 recursively with every branching individual.

Also, for a founder above a branching individual in the pedigree, we have

P [C1 = . . . = Cn = 0|Fj] = P [C1 = . . . = Cik = 0|Bk = 1, Fj]P [Bk = 1, Cik+1 = . . . = Cn = 0|Fj]

+P [C1 = . . . = Cik = 0|Bk = 0, Fj]P [Bk = Cik+1 = . . . = Cn = 0|Fj]

= P [C1 = . . . = Cik = 0|Bk = 1]P [Bk = 1, Cik+1 = . . . = Cn = 0|Fj] (7)

+P [Bk = Cik+1 = . . . = Cn = 0|Fj]

The term P [C1 = . . . = Cik = 0|Bk = 1] is computed from the right-hand side of

equation 3 replacing Fj by Bk. The two terms P [Bk = a, Cik+1 = . . . = Cn = 0|Fj], a = 0, 1

require recursive computations. If h is a branching individual who is an ancestor of k and a

descendant of founder j, then

P [Bk = 1, Cik+1 = . . . = Cn = 0|Fj]

= P [Bk = 1, Cik+1 = . . . = Cih = 0|Bh = 1]P [Bh = 1, Cih+1 = . . . = Cn = 0|Fj]
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+P [Bk = 1, Cik+1 = . . . = Cih = 0|Bh = 0]P [Bh = Cih+1 = . . . = Cn = 0|Fj]

=
(
1
2

)Dkh P [Cik+1 = . . . = Cih = 0|Bh = 1]P [Bh = 1, Cih+1 = . . . = Cn = 0|Fj] (8)

and similarly to 8

P [Bk = Cik+1 = . . . = Cn = 0|Fj]

=
(

1−
(
1
2

)Dkh

)
P [Cik+1 = . . . = Cih = 0|Bh = 1]P [Bh = 1, Cih+1 = . . . = Cn = 0|Fj]

+P [Bh = Cih+1 = . . . = Cn = 0|Fj] (9)

where the computation of the term P [Cik+1 = . . . = Cih = 0|Bh = 1] can itself involve other

branching individuals who are descendants of h.

2.2. Computation allowing for relatedness between founders or inbreeding

loops within a pedigree

We generalize our computation to the setting where founders are related, while still

excluding that the founders are themselves inbred (only their children will be). This

includes the setting where inbreeding loops are known and are included in the pedigree

structure. One can then define a noninbred subpedigree by removing some familial links.

The relatedness between the ”founders” of that subpedigree can be captured by their

kinship coefficient based on the removed links, and the first approximation described below

can then be applied. When familial links between founders are unknown, they sometime

can be estimated from genotype data on these founders. Other times, genotype data is only

available on the sequenced subjects.

We propose two methods to approximate sharing probabilities between sequenced

subjects in presence of IBD sharing in excess of what is expected based on the pedigree
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structure. With the first method, only one founder allele (not necessarily the RV considered

in the computation) can be shared by only one pair of founders. This method gives an

exact sharing probability when only two founders are related, and a good approximation

when a few founders are related. Known founder pair-specific kinship coefficients can be

used. With the second method, up to T alleles can be shared by two pairs of founders, with

T set to 2 or 3 depending on the level of sharing between founders. It requires to assume

that all founders are related to the same extent, i.e. all pairs of founders have the same

kinship coefficient calculated to explain the excess sharing between sequenced subjects. The

method gives a good approximation for more extensive hidden relatedness than the first

method. Note that in this second approximation, we still assume that only two founders

introduce a copy of the RV considered in the computation.

The elements that we need to implement either approach are:

1. The probability that a pair of related founders introduce the RV in the pedigree.

2. The sharing probabilities conditional on the introduction of the RV by two of the

founders.

The two methods to approximate the probability that a pair of related founders

introduce the RV in the pedigree are described below. The formulas for the sharing

probabilities conditional on the introduction of the RV by two of the founders are given in

Appendix A. As an alternative to computing these conditional sharing probabilities, they

can be estimated using Monte Carlo simulation of the transmission of the RV down the

pedigree from the founder introducing it.

Once the required elements have been computed, we get an adjusted estimate of

sharing probability with the following formula:
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P [RV shared] =

∑nf

j=1 P [C1 = . . . = Cn = 1|FU
j ]P [FU

j ] +
∑

j

∑
k>j P [C1 = . . . = Cn = 1|Fj, Fk]P [Fj, Fk]∑nf

j=1 P [C1 + . . .+ Cn ≥ 1|FU
j ]P [FU

j ] +
∑

j

∑
k>j P [C1 + . . .+ Cn ≥ 1|Fj, Fk]P [Fj, Fk]

(10)

where FU
j is the event that founder j is the only one to introduce the RV in the family.

2.2.1. Method 1

The probability that two related founders, say j and k, introduce the RV in the

pedigree is expressed as follows:

P [Fj, Fk] = P [Allele shared is RV|j&k share allele IBD]P [j&k share allele IBD] (11)

=
1

2nf − 1
2φjk =

2φjk

2nf − 1

where φjk is the kinship coefficient between founders j and k. The first term represents

the probability that the RV is the allele IBD between the two founders among the 2nf − 1

distinct alleles in all founders. The marginal probability that any founder h introduces the

RV needs to be adjusted compared to the unrelated case. In that computation, we make

the simplifying assumption that the probability that 3 or more founders share an allele IBD

is 0 so that the event ”i and j share an allele IBD” means that they are the only ones to

do so. This assumption is true only when a single pair of founders are related. While the

formula allows all pairs of founders to be related, we recommend using this approximation

when only a few of the φjk are non-zero.

P [Fh] =
∑
j

∑
k>j

P [Fh|j&k share allele IBD]P [j&k share allele IBD] (12)

+P [Fh|no founder pair shares allele IBD]P [no founder pair shares allele IBD]
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=
2

2nf − 1

∑
j

∑
k>j

P [j&k share allele IBD] +
1

nf

(
1−

∑
j

∑
k>j

P [j&k share allele IBD]

)

=
4
∑

j

∑
k>j φjk

2nf − 1
+

1

nf

(
1−

∑
j

∑
k>j

2φjk

)

We obtain the probability of FU
j , the event that founder j is the only one to introduce

the RV in the family, as

P [FU
j ] = P [Fj]−

∑
k 6=j

P [Fj, Fk] (13)

If we know which founders j and k are related, then their degree of relatedness is

usually also known, and specifies their kinship coefficient φjk. If it is possible to identify a

subset of founders that are suspected to be related, with the other founders unrelated to

that subset and between themselves, then this method can still be applied, with the kinship

coefficient between the subset of founders suspected to be related estimated as described

in section 2.2.2. If instead familial links between founders are completely unknown, we

generally recommend to apply the second method.

2.2.2. Method 2

For the second method, we assume φjk = φf∀j, k. This is an assumption that we

prefer to make when the relatedness between specific pairs of founders is unknown and

we need to rely on genotye data to estimate it. Even with perfect information on IBD

sharing between subjects, there is considerable variation in the kinship coefficient based

on IBD sharing estimated for pairs of subjects with the same degree of relatedness due

to variation in the length of genome shared from pair to pair (Manichaikul et al. 2010),

and reliable inference can only be obtained for the mean or other central tendency parameter.
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Two situations can occur with respect to the genotype data available to estimate

kinship between founders:

1. Polymorphic markers have been genotyped on the pedigree founders, typically a

genomewide SNP array. Then φjk can be estimated for each founder pair j and k,

and a global estimate φ̂f obtained by averaging the φ̂jk over all founder pairs from the

same population.

2. Genotype data is only available on the sequenced subjects (either from the sequencing

data itself of from other genotyping). The common φf is estimated based on the

estimated kinship coefficients between sequenced subjects and the relationship

between the sequenced subjects and all founders.

φi1i2 = φf
∑
j

∑
k>j

[(
1

2

)Di1j
+Di2k

I(j&k not mating) +

(
1

2

)Di1j
+Di2k

−1

I(j&k mating)

]
+ φp

i1i2

= φfκi1i2 + φp
i1i2

(14)

An estimate of φf is then obtained for every pair i1, i2 as

φ̂f
i1,i2

=
(φ̂i1i2 − φ

p
i1i2

)

κi1i2
(15)

These pair-specific estimates can then be averaged over all pairs of sequenced subjects

from the same population to obtain a global φ̂f .

This second method of approximation relates the estimated mean kinship φ̂f to the

distribution of the number of alleles distinct by descent in the founders. Then, P [Fj, Fk]

and P [Fj] are derived from that distribution. The rest of this sub-subsection explains in
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detail how to compute the approximate values of these quantities.

The number of alleles A distinct by descent in the founders can take values 1, . . . , 2nf .

We will assume only the values 2nf − d, . . . , 2nf have nonzero probability, and that among

the a distinct alleles present 2nf − a of them are present twice and the remaining 2(a− nf )

are present once.

We parameterize the probabilities P [A] to be proportional to

2nf − d . . . 2nf − 1 2nf

1
d!
θd . . . θ 1

(16)

inspired from a truncated Poisson distribution. The expected kinship coefficient among the

nf founders is then

E[Φ] =

∑2nf−1
a=2nf−d

1
(2nf−a)!

θ(2nf−a)φ̄a∑2nf

a=2nf−d
1

(2nf−a)!
θ(2nf−a)

(17)

where φ̄a is the mean kinship coefficient among the nf founders when there are a alleles

distinct by descent. Assuming no inbreeding among the founders, we show in Appendix B

that:

φ̄a = P [Alleles from two founders are IBD|One of the founders shares an allele IBD with 2 other founders]

P [One of the founders shares an allele IBD with 2 other founders]

+P [Alleles from two founders are IBD|One of the founders shares an allele IBD with 1 other founders]

P [One of the founders shares an allele IBD with 1 other founder]
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=
1

2(nf − 1)

2nf − a
nf

2nf − a− 1

nf − 1
+

1

4(nf − 1)

[
(2nf − a)(a− nf )

nf (nf − 1)
+

2(2nf − a)(a− nf )

nf (2nf − 1)

]
(18)

Equating E[Φ] = φ̂f , we solve the polynome for θ. The value of d required to obtain

a good approximation depends on the value of φ̂f . When less than 2nf − 5 distinct alleles

must be allowed to obtain a real positive root of the polynome in θ, we have found in

practice that we obtain a poor approximation, since the probability that any of the distinct

alleles (including the RV of interest) is present more than twice become non-negligible. This

is why we propose setting d = 5. When φ̂f is small, values the approximation is almost

identical with values of d = 4, 3 or even 2 than with d = 5. When d = 2, we have the

explicit solution:

θ̂ =
−(φ̂f − φ̄2nf−1)−

√
(φ̂f − φ̄2nf−1)

2 − 2(φ̂f − φ̄2nf−2)φ̂
f

φ̂f − φ̄2nf−2
(19)

What we need finally is the probability P2 every founder pair introduces the RV and

the probability PU every founder is alone to introduce the RV. Assuming only one or two

founders introduce the RV, nfPU + 1
2
nf (nf − 1)P2 = 1 and we only need to obtain PU . We

can obtain PU by developing equation 13 into:

PU =

2nf∑
a=2nf−d

P [A = a]

(
P [Fj|A = a]−

∑
k 6=j

P [Fj, Fk|A = a]

)

The probability that any founder j introduces the RV under our model assuming his

genotype is composed of two distinct alleles drawn from among the a distinct alleles of the

founders is P [Fj|A = a] = Pa = 2
a
. We also note that P [Fj, Fk|A = a] depends only on a

and we note it Ra.

PU =

2nf∑
a=2nf−d

P [A = a]

(
Pa −

∑
k 6=j

Ra

)
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=

2nf∑
a=2nf−d

P [A = a]

(
2

a
− (nf − 1)Ra

)

To solve for Ra, we use the result from probability theory that

1 = P [F1 ∪ . . . ∪ Fnf
]

=

nf∑
j

P [Fj]−
nf∑
j

∑
k 6=j

P [Fj, Fk]

=
∑
a

P [A = a]

(
nf∑
j

P [Fj|A = a]−
nf∑
j

∑
k>j

P [Fj, Fk|A = a]

)

=
∑
a

P [A = a]

(
nfPa −

1

2
nf (nf − 1)Ra

)
(20)

assuming at most two founders can introduce the RV. To find a solution for Ra, we

assume that nfPa − 1
2
nf (nf − 1)Ra = 1, which obviously satisfies 20. We obtain

Ra =
2(

2nf

a
− 1)

nf (nf − 1)

and

PU =
∑
a

P [A = a]

(
2

nf

− 2

a

)
(21)

Given the constant P [Fj] implied by method 2, we can simplify equation 10 to:

P [RV shared] =
w
∑nf

j=1 P [C1 = . . . = Cn = 1|FU
j ] + (1− w)

∑
j

∑
k>j P [C1 = . . . = Cn = 1|Fj, Fk]

w
∑nf

j=1 P [C1 + . . .+ Cn ≥ 1|FU
j ] + (1− w)

∑
j

∑
k>j P [C1 + . . .+ Cn ≥ 1|Fj, Fk]

(22)

where w = nfPU .
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When a Monte Carlo simulation is used to compute the sharing probabilities conditional

on the introduction of the RV by one or two of the founders, the last two steps are included

in the simulation: The number of distinct alleles a is sampled from distribution 16, then

the RV is sampled among the a alleles. The RV is introduced twice if it is one of the first

2nf − a alleles and introduced once otherwise. If it is introduced twice, the pair of founders

introducing it is sampled with equal probability for all pairs. If it is introduced once, the

founder introducing it is sampled instead.

2.3. Combining RV sharing probabilities across multiple families

For variants seen in only one family, the RV sharing probability can be interpreted

directly as a p-value from a Bernoulli trial. For variants seen in M families and shared

by affected relatives in a subset So of them, the p-value is obtained as the sum of the

probability of events as or more extreme as the observed sharing between m out of M

families. If we note pm the sharing probability between the subjects in family m, then the

p-value is obtained as:

p =
∑
u∈U

M∏
m=1

pI(m∈Su)
m (1− pm)I(m∈S

c
u) (23)

where U is the subset of family sets Su such that

M∏
m=1

pI(m∈Su)
m (1− pm)I(m∈S

c
u) ≤

M∏
m=1

pI(m∈So)
m (1− pm)I(m∈S

c
o)

.
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2.4. Defining the set of rare variants tested

The lowest possible p-value for a RV seen in only one or very few families depends on

the family structures. The sharing probabilities between sequenced subjects in small or

densely inbred families are high, and so is the potential p-value of a variant seen only in one

such family (for instance, it is 1/7 for a grand-parent - grand-child pair). We propose to test

the null hypothesis of absence of linkage and association only among the variants achieving

a sufficiently low p-value if shared by all affected subjects in the family (or families) in

which they are seen. We define the p-value threshold as the familywise Type I error level α

divided by the number of variants included and solve this p-value threshold using the RV

sharing probabilities based on the reported pedigree structure.

3. Results

3.1. Validation of the approximation of the sharing probabilities

We simulated small populations from which we sampled founders of a pedigree

to validate the quality of the approximation of the sharing probabilities in presence of

relatedness between the founders.

3.1.1. Simulated populations

The entire pedigree of small populations was simulated over 6 generations using the

computer package Spip (Anderson 2005). The initial size of the population was set to 100,

200 or 400, with equal number of males and females. Population size increased at an average

rate of 10 percent per generation. Although Spip allows the simulation of age-structured

populations, we simulated non overlapping generations by specifying a single reproduction



– 19 –

time. Each subject had an 80 percent probability of reproducing and each reproducing

female mated with only one male selected randomly from the same generation. The number

of offspring per female followed a Poisson distribution. At the end of each simulation, we

sampled 8 subjects from the sixth generation to be the founders of the pedigree for three

second cousins shown on Figure 1. We chose that family structure which we encountered

in our sample ? to have three sequenced subjects with symmetric relationships. The

simulation was repeated 100 times for each population size.

Kinship coefficients were estimated using the R package kinship2 (www.r-project.org).

The distribution of kinship coefficients between subjects from the same generation had

stabilized around the fifth generation (not shown). Table 1 shows the mean and standard

deviation (SD) of the mean kinship coefficient between pairs of subjects from the population

at the 6th generation and the number of copies of the RV in the 8 subjects sampled to

be the founders of the pedigree. With a population of 100 founders, the probability that

the RV is introduced by more than two founders (given that it was seen in at least one

founder) is too high (0.10) to obtain a good approximation of the RV sharing probability

when assuming that the RV can only be introduced once or twice. The approximation was

therefore only computed with 200 and 400 founders.

3.1.2. Approximation of sharing probabilities

The first step in applying approximation method 2 was to estimate the parameter θ

of the distribution of the number of distinct alleles in the founders. We used two different

values for φ̂f : the mean kinship coefficient between the 8 sampled subjects and the mean

kinship coefficient in the population. The former is a best case scenario where φf is estimated

without error which is not possible in practice, while the latter can be approached with a
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sufficiently larger sample from the population. We checked the quality of the approximations

with the simulated data from one replicate (Figure 2). All approximations are reasonably

good although the events of observing only 8 to 10 distinct alleles among the pedigree

founders from the 200 founder population are not captured by the approximate distributions.

We approximated the RV sharing probability using the analytical formulas 21, 22

and those from Appendix A, and by Monte Carlo sampling 100,000 realizations of RV

transmission in each replicate. The probability P [Fj, Fk] that two founders introduce the

variant derived from the approximate distribution overestimates on average the value in

the simulated populations, particularly when the number of founders is 200 (Table 1). This

overestimation compensates to some extent for ruling out the events three or more founders

introduce the variant, and the events one or more founders introduce two copies of the

variant. To evaluate the quality of the RV sharing approximation, we estimated the root

mean squared error (RMSE) and bias over the simulation replicates. If we denote the RV

sharing probability by β and its approximation by β̂, then these quantities are defined in

absolute terms as:

RMSE =

√√√√ 1

R

R∑
r=1

(β̂r − βr)2

bias =
1

R

R∑
r=1

(β̂r − βr)

where in our case R = 100. We also computed these quantities relative to the true

value in each replicate:

RMSE* =

√√√√ 1

R

R∑
r=1

(
β̂r − βr
βr

)2
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bias* =
1

R

R∑
r=1

(
β̂r − βr
βr

)

The approximation RMSE improves from 200 to 400 founders in absolute terms and

to a lesser extent in relative terms (Table 2). The RV sharing probability approximation

is accurate for the population with 400 founders with a negligible bias, where the mean

kinship coefficient is approximately equal to second cousins once removed ( 1
128

). The RV

sharing probability is underestimated (negative bias) for the population with 200 founders

where the mean kinship is close to first cousins once removed ( 1
32

), indicating the limits

of an approximation restricted to two founders introducing the rare variant. The loss of

precision and accuracy from using the population average φf instead of the average of the

sampled subjects is smaller in the population with 400 founders than in the population

with 200 founders, both in absolute and relative terms. Sampling 100,000 realizations of

RV transmission in the Monte Carlo simulation was sufficient to achieve the same level

of error as the analytical approximation with the relatively larger RV sharing probability

in populations of 200 founders, but the Monte Carlo error remained slightly larger to

approximate the smaller RV sharing probability in populations of 400 founders.

3.2. Whole exome sequencing study of nonsyndromic oral cleft

We computed the sharing probability for all rare single nucleotide variants (SNVs)

detected in exons and splice junctions in a whole exome sequencing study of affected relative

pairs and trios drawn from 55 multiplex nonsyndromic oral cleft families from diverse

sites [Germany, Philippines, India, Syria, China (Taiwan and Shanghai) and one European

American family]. The study sample and sequencing methodology has been described

elsewhere (Bureau et al., submitted). Briefly, 51 families provided 2 affected subjects and

4 families provided 3 affected subjects for a total of 114 sequenced subjects. Exon capture
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was performed using the Agilent SureSelect Human All Exon Target Enrichment system

on libraries of 150 to 200bp fragments prepared by fragmentation of 200ng of genomic

DNA per subject. DNA sequencing was performed on an Illumina HiSeq 2500 instrument

using standard protocols for a 100 bp paired-end run. Base calls and quality scores were

obtained from Illuminas Real-Time Analysis (RTA) software, and reads were aligned to a

reference genome with the Burrows-Wheeler Alignment (BWA) tool. Post-processing of

the alignment, multi-sample variant calling and variant quality score recalibration were

performed using the Genome Analysis Tool Kit (GATK) and only variants passing this step

were included in analyses.

We defined a rare SNV as a SNV with a minor allele frequency (MAF) ¡0.01 based

on the Exome Sequencing Project (ESP) database (esp.gs.washington.edu/drupal/), and a

MAF ¡0.01 in the April 2012 release of the 1000 Genomes data (www.1000genomes.org).

Variants not seen in 1000 Genomes data were retained if their MAF was ¡0.1 in an internal

database of all exomes previously sequenced at CIDR, to distinguish variant calls resulting

from technical artifacts. Variants seen in more than 20 percent of the families were excluded.

After applying the above criteria 60,997 rare exonic and splice site SNVs were detected in

the autosomal genome.

The p-value threshold to achieve a familywise Type I error rate of 0.05 was 2.2× 10−5,

and 2,292 SNVs had the potential to yield a p-value below that threshold when sharing

probabilities were computed based on the known pedigree structure. The SNV rs149253049

in gene ADAMTS9 had a p=2.0 × 10−6. The G allele was shared by affected relatives in

three families from India (Table 3) and was not seen in any other family. The G nucleotide

is the rarest of the three alleles of rs149253049. It was not found in the Exome Sequencing
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Project (ESP) database nor the 1000 Genomes project data (April 2012 release). It was

seen once in the ClinSeq project for a frequency of 0.0001.

In our Indian sample, kinship estimates between affected subjects from genomewide

SNP genotypes were based on the estimator of Manichaikul Manichaikul et al. (2010) robust

to population stratification. There was no evidence of IBD sharing in excess of the known

degree of relatedness, nor of relatedness between subjects from distinct Indian families,

as we reported elsewhere (Bureau et al., submitted), and using equation 15 we obtain an

estimated mean kinship of the founders φ̂f = 0.0. All this suggests that sharing probabilities

for rs149253049 computed based on known pedigree structures and indepedence between

families are accurate.

Another SNV had a p-value below the above threshold: rs117883393 in the gene

OR2A2 (p = 6.1 × 10−6). That SNV was shared in heterozygous state by all sequenced

subjects in three families and present in heterozygous state in one of the two sequenced

subject of a fourth family. Its frequency in the ESP database is 0.0063 for the whole sample

and 0.0081 for the European American subsample. We have reasons to suspect the sharing

probabilities may be underestimated in two of the families where the variant is shared

because these families are from the Syrian sample, where cultural and demographic factors

make relationships between pedigree founders more likely. In our Syrian sample we used

the moment estimator of Manichaikul et al. (2010) based on population allele frequencies

estimated in that sample instead of the robust estimator because the latter tended to give

negative estimates when the level of estimated inbreeding differed substantially between

the two subjects (results not shown). We then inferred φf using equation 15 and obtained

φ̂f = 0.013, close to the kinship coefficient of second cousins ( 1
64

).
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For the family shown on Figure 3A, the RV sharing probability obtained from equation 4

was 0.0030. The probability that the rare allele of SNV rs117883393 was introduced by

two founders was equal to 0.092 using approximation method 2 with φ̂f = 0.013, leading

to an adjusted RV sharing probability of 0.0047. For the family shown on Figure 3B, the

RV sharing probability obtained from equation 4 was 0.011. The probability that the rare

allele was introduced by two founders was also equal to 0.092, leading to an adjusted RV

sharing probability of 0.018. With these adjusted RV sharing probabilities for the two

Syrian families, and assuming no unknown relationships in the two German families, the

p-value for the four families increased to 1.4× 10−5.

4. Discussion

In this paper we propose using the probability of sharing of a RV by affected subjects

under the null hypothesis of absence of linkage and association of the RV with a disease to

build the evidence against that null hypothesis in the context of exome sequencing studies

of complex diseases in family samples. We have presented formulas to compute exactly the

probability of sharing of a RV by any number of affected subjects in arbitrary non-inbred

pedigrees under the assumption that the variant is sufficiently rare to be introduced only

once in the pedigree, generalizing a previous formula applicable to two affected subjects.

These formulas are implemented in the RVsharing R package.

We re-emphasize that RV sharing probabilities are not the same as IBD sharing

probabilities, which only captures linkage information without taking into account that

the IBD sharing involves a RV. This is most easily illustrated with two unilinealy related

subjects, for which the probability of IBD sharing is 1
2D

while the RV sharing probability is

1
2(D+1)−1 . The ratio P[RV shared]/P[IBD] tends to 1

2
as D tends to infinity.
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In our application of the proposed approach to an exome sequencing study of oral

cleft in 55 multiplex families, we analyzed all exonic and splicing variants with a MAF

< 1 percent, with the only additional restriction that the families where the variant was

detected needed to be sufficiently informative to produce a p-value that would remain

significant after Bonferroni correction. This allowed us to reject the null hypothesis of

absence of linkage and association to oral cleft for the G allele of SNV rs149253049 in gene

ADAMTS9 shared by two distantly related oral cleft cases in three families from India.

Given that rs149253049 is a synonymous nucleotide change, it would be discarded under

filtering strategies keeping only nonsynonymous or truncating variants. Interestingly, the G

allele shared in the three families was the rarest of the three nucleotides A,C and G of that

SNV, and has not been reported in the ESP and the 1000 Genomes. We provide statistical

evidence warranting further investigation of the role this variant and the gene ADAMTS9

may have in causing oral cleft.

A potential pitfall with RV sharing probabilities based on a known pedigree structure

is the possibility of cryptic relatedness between founders of the pedigree that would make

the actual null sharing probability greater than the one computed. We have developed two

methods to adjust the RV sharing probability based on estimates of the kinship coefficients

between founders of the known pedigree. The first approximation method can be applied

to obtain RV sharing probabilities in inbred pedigrees, by removing familial links to obtain

a non-inbred pedigree and using the known kinship coefficient between the subjects whose

familial links were removed. It can also be applied when relatedness is suspected between

a subset of founders only. The second method allows more extensive relatedness between

all founders but assumes equal kinship coefficients between all pairs of founders. Our
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simulation study on a pedigree where the founders were drawn from the 6th generation

of larger pedigrees representing small populations showed that the second method gives

accurate approximations when the mean kinship coefficient between founder of the known

pedigree is of the order of second cousins once removed, but underestimates the RV sharing

probability with closer relationships.

An important aspect of these approximation methods is that they are based solely on

estimated kinship between founders, and do not require an estimate of the RV frequency in

the population from which the pedigree founders come from. We have proposed a formula

to estimate mean kinship among founders based on the kinship estimates between the

sequenced subjects. A number of methods have been implemented to estimate kinship

coefficients from genomewide genotype data (Manichaikul et al. 2010; Yang et al. 2011;

Speed et al. 2012; Thornton et al. 2012) and an appraisal of these methods is beyond

the scope of this paper. Since our approximation method requires only a mean kinship

coefficient between founders, variation in the length of genome shared by pairs of subjects

is smoothed by the averaging. Using a population average instead of an average over the

founder pairs of the pedigree had a moderate impact on the error of the approximation

in our simulation study. In our Syrian sample where we suspected relationships between

founders due to cultural practices, the application of the second approximation method to

the two families whose sequenced affected members share the rare allele of SNV rs117883393

reduced the evidence against the null for that SNV.

For this work, we have implemented the formulas to compute the approximation of

the RV sharing probability based on our method 2 for the family structures for which we

needed to obtain such approximation, shown on Figures 1 and 3. Developing a general
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implementation of the formulas of Appendix A applicable to general pedigree structures is

however challenging. We have shown in our simulation study that an accurate Monte Carlo

approximation can be achieved with a reasonnable number of draws for sharing probabilities

of the order of 10−3. The Monte Carlo approximation is implemented for arbitrary pedigree

structures in our R package RVsharing.

In our extension of the RV sharing probability to more than two subjects, we have

considered only the probability that all affected sequenced subjects share a RV. This is

appropriate for three affected subjects sequenced in a pedigree as in the oral cleft study,

where causal RV not shared by all sequenced subjects are indistinguishable from benign RVs.

As sequencing of more affected subjects from large multiplex families becomes more common

with decreasing sequencing costs, the requirement that all affected sequenced subjects share

a RV becomes a too stringent requirement, given the intra-familial heterogeneity in disease

causation that characterizes complex traits (Feng et al. 2011). At the same time, with

n > 3 sequenced subjects in a family, the event that n-1 or n-2 affected subjects out of n

share a RV is evidence of the variant involvement in the disease. The computation of the

probability of such events in pedigrees of arbitrary shape will require new developments.

Non-affected family members may also be included in future sequencing studies. While

sequencing non-affected family members has been used to exclude private benign variation

in studies of Mendelian traits (Gilissen et al. 2012), this would risk excluding causal variants

with incomplete penetrance in studies of complex traits. An affected only analysis of RV

sharing protects against unaffected carriers reducing evidence for a variant in the same

way as it does in linkage analysis (McPeek 1999). Sequence data on non-affected family

members, in particular subjects marrying in the pedigree, will be useful to narrow down the
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number of founders that could have introduced a given RV in the pedigree and refine the

RV sharing probabilities.

The methods and analyses presented are limited to a single RV at a time. Our results

illustrate that with few families it is possible to obtain substantial evidence of co-segregation

of a rare variant with disease. Yet very rare causal variants found in a single family were

not considered in our analysis of the oral cleft family sample because of the insufficient

informativeness of individual families. A combined analysis of multiple RVs from the same

functional unit, typically the same gene, will be needed to detect significant RV sharing at

the level of that functional unit. Various issues will need to be resolved to implement such

analysis, in particular dealing with multiple RVs in the same family. While an exact p-value

can be computed for the same variant seen in multiple families assuming independence

between families, obtaining p-values from the asymptotic distribution of a RV sharing

summary statistic seems a more promising approach for large numbers of RVs in a gene.

This will be the object of future work.

5. Web resources

The URLs for data presented herein are as follows:

RVsharing R package:
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Table 1. Founder relatedness and distribution of number of copies of a rare variant for

three second cousins in small populations

N founders 100 200 400

mean (SD) of mean φf 0.043 (0.004) 0.0216 (0.0015) 0.0108 (0.0006)

mean (SD) of P[RV sharing] 0.0073 (0.0026) 0.0039 (0.0023) 0.0022 (0.0007)

N founders with RV Simulated Simulated Approx Simulated Approx

1 0.62 0.83 0.74 0.95 0.93

2 0.28 0.15 0.26 0.05 0.07

3+ 0.10 0.02 0 0.002 0
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Table 2. Approximation of rare variant sharing probabilities for three second cousins in

small populations

N founders 200 400

Parameter type sample φf pop. φf sample φf pop. φf

Analytical approximation

RMSE absolute 0.0015 0.0026 0.00056 0.00068

relative 0.27 0.34 0.24 0.28

Bias absolute -0.0009 -0.0012 -0.00017 -0.00015

relative -0.18 -0.18 -0.022 0.010

Monte Carlo approximation

RMSE absolute 0.0015 0.0026 0.00061 0.00075

relative 0.27 0.35 0.26 0.32

Bias absolute -0.0009 -0.0012 -0.00015 -0.00014

relative -0.17 -0.17 -0.011 0.019

Table 3. Sharing probabilities for rs149253049

Relationship between affecteds degree sharing probability

first cousins 3 0.067

third cousins 7 0.0039

second cousins once removed 6 0.0079

Product 2.0× 10−6
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A. Sharing probabilities conditional on the introduction of the RV by two of

the founders

We need to introduce an additional type of subjects, the descendants that are common

to the two founders introducing the RV, and who can therefore receive two copies of the

variant. We note the number of copies of the RV in such a subject h by Th.

As before, we begin by the expressions for the special case where all the sequenced

subjects descend from every founder among their ancestors through independent lines of

descent. With two founders introducing the RV, we further need to distinguish four events.

A.1. The lines of descent to every sequenced subject are common to the two

founders introducing the variant

This implies that the two founders introducing the RV are mates and their descendants

in common are their children. With the assumption of independent lines of descent, the n

sequenced individuals descend from n children of the founders and

P [C1 = . . . = Cn = 1|Fj, Fk] =
n∑

x=0

P [C1 = . . . = Cn = 1|]{i : Ti = 2} = x, ]{i : Ti = 1} = n− x, Fj, Fk]

P []{i : Ti = 2} = x, ]{i : Ti = 1} = n− x|Fj, Fk] (A1)

=
n∑

x=0

(
1

2

)∑
{i:Ti=2} Dij−2(1

2

)∑
{i:Ti=1} Dij−1(n

x

)(
1

4

)x(
1

2

)n−x

=
n∑

x=0

(
1

2

)Ds−n−x(
n

x

)(
1

2

)2x(
1

2

)n−x

=

(
1

2

)Ds n∑
x=0

(
n

x

)
=

(
1

2

)Ds−n

where Ds =
∑

iDij and Dij = Dik∀i. This expression applies if all Dij ≥ 2, i.e. the

sequenced subjects are grand-children or more distant descendants of the founders. When
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a sequenced subject is a children of the founders, then Ci = Ti. We adapt the formula to

distinguish the nc sequenced subjects who are children of the founders from the others.

P [C1 ≥ 1, . . . , Cnc ≥ 1, Cnc+1 = . . . = Cn = 1|Fj, Fk] = P [C1 ≥ 1, . . . , Cnc ≥ 1|Fj, Fk](A2)

P [Cnc+1 = . . . = Cn = 1|Fj, Fk]

=

(
3

4

)nc
(

1

2

)(Ds−nc)−(n−nc)

=

(
3

4

)nc
(

1

2

)Ds−n

The expression for the probability of not seeing the variant in any sequenced individual

when all Dij ≥ 2 is:

P [C1 = . . . = Cn = 0|Fj, Fk] =
n∑

x=0

n−x∑
y=0

P [C1 = . . . = Cn = 0|]{i : Ti = 2} = x, ]{i : Ti = 1} = y, Fj, Fk]

P []{i : Ti = 2} = x, ]{i : Ti = 1} = y|Fj, Fk] (A3)

=
n∑

x=0

n−x∑
y=0

∏
{i:Ti=2}

(
1−

(
1

2

)Dij−2
) ∏
{i:Ti=1}

(
1−

(
1

2

)Dij−1
)

(
n

x, y, n− x− y

)(
1

4

)x(
1

2

)y (
1

4

)n−x−y

without obvious simplification. The modification for sequenced subjects who are children

of the founders is similar to that for the joint sharing probability, with probability equal to

1
4

of not receiving the variant instead of 3
4

of receiving it.
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A.2. One founder is ancestor of all sequenced subjects and the other is

ancestor of only one subject

We note j the founder who is ancestor of all sequenced subjects and 1 the sequenced

subject descendant of the two founders j and k. There is only one child of founder k who

can receive two copies of the variant (possibly subject 1 himself) and we note that child h.

The number of copies he received is noted T.

P [C1 = . . . = Cn = 1|Fj, Fk] = P [C1 = . . . = Cn = 1|T = 2, Fj, Fk]P [T = 2|Fj, Fk] (A4)

+P [C1 = . . . = Cn = 1|T = 1, Fj, Fk]P [T = 1|Fj, Fk]

=

(
1

2

)D1h−1+
∑n

i=2 Dij
(

1

2

)Dhj 1

2

+

(
1

2

)D1h+
∑n

i=2 Dij

[(
1

2

)Dhj 1

2
+

(
1−

(
1

2

)Dhj

)
1

2

]

=

(
1

2

)D1h+
∑n

i=2 Dij

[(
1

2

)Dhj

+
1

2

]

This expression applies if D1h ≥ 1, i.e. subject 1 is not h himself, he or she is a

grand-child or more distant descendant of the founder k. When subject 1 is a child of

founder k, the expression becomes:

P [C1 ≥ 1, C2 = . . . = Cn = 1|Fj, Fk] = P [C1 = 2, C2 = . . . = Cn = 1|Fj, Fk] (A5)

+P [C1 = . . . = Cn = 1|Fj, Fk]

=

(
1

2

)Ds

1

2
+

(
1

2

)∑n
i=2 Dij 1

2

=

(
1

2

)Ds+1 [
1 + 2D1j

]
The expression for the probability of not seeing the variant in any sequenced subject
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when Dih ≥ 1 is:

P [C1 = . . . = Cn = 0|Fj, Fk] =
n∏

i=1

P [Ci = 0|Fj, Fk] (A6)

=


P [C1 = 0|T = 2, Fj, Fk]P [T = 2|Fj, Fk]

+P [C1 = 0|T = 1, Fj, Fk]P [T = 1|Fj, Fk]

+P [C1 = 0|T = 0, Fj, Fk]P [T = 0|Fj, Fk]


n∏

i=2

P [Ci = 0|Fj]

=


(

1−
(
1
2

)D1h−1
) (

1
2

)Dhj 1
2

+
(

1−
(
1
2

)D1h

)
1
2

+
(

1−
(
1
2

)Dhj

)
1
2


n∏

i=2

(
1−

(
1

2

)Dij

)

The same probability when subject 1 is a child of founder k is

P [C1 = . . . = Cn = 0|Fj, Fk] =
n∏

i=1

P [Ci = 0|Fj, Fk] =
1

2

n∏
i=1

(
1−

(
1

2

)Dij

)
(A7)

A.3. Each founder is ancestor of one sequenced subject

We assume that founder j is ancestor of subject 1 and founder k is ancestor of subject

2. The formula applies equally to the case where both j and k are ancestor of the same

subject, as long as one is ancestor of his mother and the other ancestor of his father (or j

or k are themselves either father or mother of the subject). If there are n > 2 sequenced

subjects, then P [C1 = . . . = Cn = 1|Fj, Fk] = 0. If n = 2, then

P [C1 = C2 = 1|Fj, Fk] = P [C1 = 1|Fj]P [C2 = 1|Fk] =

(
1

2

)D1j+D2k

(A8)

The expression for the probability of not seeing the variant in any sequenced subject is
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P [C1 = . . . = Cn = 0|Fj, Fk] = P [C1 = 0|Fj]P [C2 = 0|Fk] (A9)

=

(
1−

(
1

2

)D1j

)(
1−

(
1

2

)D2k

)

A.4. Extension to branching in the pedigree

Having two founders introducing the variant require to adapt the formulas of section 2.1.

Equation 6 becomes

P [C1 = . . . = Cn = 1] = P [C1 = . . . = Cik = 1|Bk = 1]P [Bk = Cik+1 = . . . = Cn = 1]

+P [C1 = . . . = Cik = 1|Bk = 0]P [Bk = 0, Cik+1 = . . . = Cn = 1](A10)

The term P [C1 = . . . = Cik = 1|Bk = 1] is not directly computable, and we instead

compute terms P [C1 = . . . = Cik = 1|Fj, Bk = 1] for every founder j below the branching

subject k in the pedigree (in the sense defined in chapter 4 of Thompson (Thompson

1986)), which can be done using equations A1, A2, A4 or A5, depending on the relationship

between j and k. These terms can then be summed over all founders j below k, with

equal weight under approximation method 2, or weigthed by P [Fj|Bk = 1] computed

from the kinship matrix between founders under approximation method 1. The term

P [C1 = . . . = Cik = 1|Bk = 0] is computed by applying equation 2 with every founders j

below k. The other terms are computed by reapplying equation A10 recursively with the

other branching individuals, with slight modification for the terms where Bk = 0 instead of 1.

In equation 8, the term P [C1 = . . . = Cik = 0|Bk = 1, Fj] does not simplify anymore

when j is a founder below k, but can be computed using equations A3, A6 or A7.
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Similarly, the term P [C1 = . . . = Cik = 0|Bk = 0, Fj] no longer equals 1 but equals

P [C1 = . . . = Cik = 0|Fj] which can be computed using equation 3. If instead founders

h and j introducing the variant are both ancestors of branching individual k (e.g. his

parents), then one must consider the event Bk = 2. Additional terms are then computed as

follows:

P [C1 = . . . = Cik = 0|Bk = 2] =

ik∏
i=1

(
1−

(
1

2

)Dik−1
)

(A11)

If there is no other branching individual between either founder h or j and branching

individual k, then

P [Bk = 2, Cik+1 = . . . = Cn = 0|Fh, Fj] =

(
1

2

)Dkh+Dkj

P [Cik+1 = . . . = Cn = 0|Fh, Fj] (A12)

P [Bk = 1, Cik+1 = . . . = Cn = 0|Fh, Fj] =

[(
1

2

)Dkh

(
1−

(
1

2

)Dkj

)
+

(
1

2

)Dkj

(
1−

(
1

2

)Dkh

)]
P [Cik+1 = . . . = Cn = 0|Fh, Fj] (A13)

P [Bk = 0, Cik+1 = . . . = Cn = 0|Fh, Fj] =

(
1−

(
1

2

)Dkh+Dkj

)
P [Cik+1 = . . . = Cn = 0|Fh, Fj](A14)

With other intervening branching individuals a recursion similar to equation 8 would

be needed.

B. Computation of φ̄a

We explain here the expressions for the terms of equation 18. The probability that

alleles from two founders are IBD given one of the founders shares an allele IBD with

m other founders where m = 1 or 2 is simply the probability of randomly sampling one

of these m founders times the probability of sampling the allele shared IBD in the two
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founders, that is

P [Alleles from two founders are IBD|One of the founders shares an allele IBD with m other founders]

=
m

4(nf − 1)

The probability that one of the founders shares an allele IBD with 2 other founders is

the probability for that founder to have received as his first allele one of the two copies of

the 2nf − a alleles present in two copies among the 2nf founder alleles, and as his second

allele one of the two copies of the 2nf − a− 1 remaining alleles with two copies among the

2nf − 2 remaining eligible alleles (excluding sampling the second copy of the same allele,

because we assume founders are not inbred). Each of these alleles is present in two copies,

so

P [One of the founders shares an allele IBD with 2 other founders] =
2(2nf − a)

2nf

2(2nf − a− 1)

2nf − 2

=
2nf − a
nf

2nf − a− 1

nf − 1

The probability that one of the founders shares an allele IBD with 1 other founder is

the probability for that founder to have received as his first allele one of the two copies of

the 2nf − a alleles present in two copies among the 2nf founder alleles, and as his second

allele one of the 2a − 2nf alleles present in a single copy among the 2nf − 2 remaining

eligible alleles, or the reverse, that is to have received as his first allele one of the 2a− 2nf

alleles present in a single copy among the 2nf founder alleles, and as his second allele one

of the two copies of the 2nf − a alleles present in two copies among the 2nf − 1 remaining

alleles. The probability of the event of interest is then:
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P [One of the founders shares an allele IBD with 1 other founder]

=
2(2nf − a)

2nf

2a− 2nf

2nf − 2
+

2a− 2nf

2nf

2(2nf − a)

2nf − 1

=
(2nf − a)(a− nf )

nf (nf − 1)
+

2(2nf − a)(a− nf )

nf (2nf − 1)

Fig. 1.— Pedigree of three second cousins used in simulation study
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Fig. 2.— Number of distinct alleles in a sample of eight subjects from small populations

Fig. 3.— Syrian families sharing rare allele of rs117883393
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