RNCBI Manual

Martin Schumann

June 22, 2010

Contents

1 Introduction 2

2 Installation 2

3 Usage 2
3.1 EUtils operations oo 4
3.2 EFetch operations 0. 7
3.3 Further possibilties 7

4 Examples from the NCBI website 8
4.1 CallEGQuery e 8
42 CallEInfo o o 8
4.3 Call ELink 10
44 Call EPost. e 11
4.5 CallESearch L . 12
4.6 Call ESpell 13
4.7 Call ESummary 14
4.8 Call EFetch 14

4.9 Search, Link & Fetch example

4.10 Using WebEnv & QueryKey example

1 Introduction

This document is going describe some examples, which use the RNCBI package
(0.9). Please visit the project page for information, discussions etc.

If you would like to learn more about the java part of the package, please take
a look at the JavaDoc or the source code. To make a long story short, the
java part uses the Axis2 libraries from the apache project http://ws.apache.
org/axis2/ to send requests to the NCBI webservice and to retrieve the results
respectively.

It is important to mention, that this package was built using the S4 class system
to provide object-oriented programming. This means that mostly every function
called will return a modified object of the one that was provided as argument,
because the arguments are passed by value. The examples below will highlight
this fact.

2 Installation

The following packages are required to install RNCBI:

rJava 0.8-3 This library provides the access to the java part of this package.
See http://www.rforge.net/rJava/ for installation files and infos.

XML 2.8-1 The XML library for R. See http://cran.r-project.org/web/
packages/XML/index.html for installation files and infos.

3 Usage

The first step is to initialize the interface to the java part. In this step you
can provide extra information to the interface, like a proxy server or whether
to debug or not. In case of the EFetch operations for each database, the results
will contain a lot of empty entries. By default these entries will be removed,
but this can be disabled by providing tidy=FALSE as argument.

> library(RNCBI)
> ncbi <- NCBI()

If you have set the proxy settings in your R environment, then this call to the
NCBI() function is sufficient. The program will use the Sys.getenv("http_proxy")
to get your settings. If there are any problems with that or you additionally
have to provide user and password to your proxy, then these settings can be set
manually.

https://code.google.com/p/rncbi/
http://ws.apache.org/axis2/
http://ws.apache.org/axis2/
http://www.rforge.net/rJava/
http://cran.r-project.org/web/packages/XML/index.html
http://cran.r-project.org/web/packages/XML/index.html

> library(RNCBI)

> ncbi <- NCBI(proxy = "http://host:port", debug = FALSE,
+ tidy = TRUE)

> setProxyUser (user = "user", password = "password")

This will set the proxy to “http://host:port”, debug to false and tidy to true.
Which means, that the program should use the given proxy, it should not debug
and it should remove empty entries. With the last step the user and the password
for the proxy will be set. The password can be left empty, if no password is
required.

All these steps have to be done to use the NCBI webservice. After this, each
operation of the webservice can be run. The package provides some useful func-
tions to get an overview of the available operations of the NCBI webservice.
Because each operation from the webservice expects different parameters, an-
other function to get a list with these parameters exists. All these functions
expect the ncbi object as first argument, because this contains the information
to connect to the java interface.

> getOperations(ncbi, printNames = FALSE)

[,1]

[1,] "run_eGquery"
[2,] "run_eInfo"
[3,] "run_eSearch"
[4,] "run_eSummary"
[5,] "run_eLink"
[6,] "run_eSpell"
[7,] "run_ePost"
[8,] "run_eFetch"

> getEFetchDatabases (ncbi)

[1] "1 gene"
[1] "2 journals"
[1] "3 nlmc"
[1] "4 omim"

[1] "5 pubmed"
[1] "6 sequence"
[1] "7 snp"

[1] "8 taxon"

> getRequestParameter(ncbi, "egquery")

[1] "term" "tool" ‘"email"

e The getOperations function will return the names of the EUtils oper-
ations by default. If provided with the parameter printNames=FALSE a
vector will be returned.

e The getEFetchDatabases function will return the names of the EFetch
databases which are available by default. It will also return a vector, if
printNames=FALSE is given as argument.

e The getRequestParameter function will return the names of the param-
eter, which have to be set, to send a request to the NCBI webservice.
The second argument is the name of the operation, for which the request
parameter should be returned.

3.1 EUtils operations

After the initialization step, the operations can be called. In case of the EUtils
the user has to create a new object for each operation.

> egquery <- EGQuery(ncbi)

With this egquery object the user now can set the request parameter. There
are two ways to do this:

1. With the help of the setRequestParameter function. This takes the ini-
tiated object of the webservice operation, the parameter name to set and
the value for the parameter.

2. Get the list of request parameter from the operation object and set the
parameter manually.

> str(egquery@request)

List of 3
$ term : NULL
$ tool : NULL
$ email: NULL

> egquery <- setRequestParameter(egquery, "term", "mouse")
> egquery@request$term <- "mouse"
> str(egquery@request)

List of 3
$ term : chr "mouse"
$ tool : NULL
$ email: NULL

The str function is only used to make the output a little bit more consolidated.
After setting the request parameter, the request can be sent to the NCBI web-
service. To do this, every operation has a request method like requestEGQuery,
which takes the operation object as argument and returns this object with the
results from the webservice.

> egquery <- requestEGQuery(egquery)

If this doesn’t produce any errors or warnings, then the results are in the "results”
list of the operation object. This list can be accessed directly through the
operation object or it can be get using the getResults method, which takes an
operation object as argument and returns its results list.

> results <- egquery@results
> results <- getResults(egquery)
> names (results)

[1] "term" "resultitem"

The results list is in most cases a very complex list of lists. To get an overview
of the returned parameters and their values, the str function is a very helpfully
tool.

> str(results)

In this case it is a long list of result items, which contains information about
the appearance of the term “mouse” in every database of the NCBI webservice.

> str(results$resultitem$resultitem[[1]])

List of 4
$ count : chr "1062582"
$ status: chr "0Ok"
$ menu : chr "PubMed"
$ dbname: chr "pubmed"

The first "resultitem” indicates the parameter name in the result from the NCBI
webservice. The second indicates, that this is an array of items of the type "re-
sultitem”. Each item in the array is a "resultitem”, which in turn consists of four

further parameter "count”, "status”, "menu” and "dbname”. To search through
this I would suggest a simple for loop over the elements of the "resultitem” array.

> for (i in 1:length(results$resultitem$resultitem)) {
+ tmp <- results$resultitem$resultitem[[i]]

+ if (tmp$count < 15) {

+ print (tmp$dbname)

+ }

+ }

[1] "pubmed"

[1] "journals"

[1] "taxonomy"

[1] n snpll

[1] "cancerchromosomes"
[1] "pcsubstance"

[1] "gap"

This example loop shows the database names, that contains the search term
less than 15 times. You can modify this loop to get other results. Another
possibilty is to convert the "resultitem” array into a dataframe, which provides
better access to each element.

> x <- do.call(rbind, lapply(results$resultitem$resultitem,
+ unlist))
> resultitem <- data.frame(x, stringsAsFactors = FALSE,
+ row.names = NULL)
> head(resultitem)
count status menu dbname
1 1062582 Ok PubMed pubmed
2 308823 Ok PMC pmc
3 1 Ok Journals journals
4 8625 0Ok MeSH mesh
5 4574 Ok Books books
6 8562 Ok OMIM omim

The dataframe now contains the information from all the resultitems.

> resultitem[resultitem$status !'= "Ok",]

[1] count status menu dbname
<0 rows> (or O-length row.names)

This example checks whether the term or a database was not found.

3.2 EFetch operations

As there are distinct services for the EFetch operation depending on the database,
the initialization step is a little bit different from the EUtils. To get any infor-
mation about the EFetch operation, the operation object has to be initiated.

> efetch <- EFetch(ncbi, "pubmed")
> str(getRequestParameter (ncbi, "efetch"))

chr [1:8] "id" "retstart" "webenv" "query_key" "email"

The "ncbi” object is the same we initiated before (see 3). If you call the ge-
tRequestParameter function before initiating the EFetch object, then this will
return an error with the description, that an EFetch database has to be set first.
After the EFetch object was initiated, the request parameters are availabe and
can be set like before (see 3.1).

efetch <- setRequestParameter (efetch, "id", c(12091962,
9997))

efetch <- requestEFetch(efetch)

results <- getResults(efetch)

vV VvV + V

Every EFetch operation can take mulltiple IDs as arguments. The NCBI web-
service handles multiple IDs in most cases as a simple string, that contains the
IDs separated by comma. But the EUtils operation "ELink” expects an array of
IDs in the request. Because of this difference, multiple IDs have to be provided
as vector to the interface. The java part will take care whether to generate an
array or a simple string.

The results of this EFetch request will be a very complex list, but again you can
use the str function to get an overview of the content.

3.3 Further possibilties

This package should give the user the opportunity to use the results at their
own will as much as possible. Furthermore the results are very dynamic, because
they will come from a webservice. Which means that the result depends on the
query. To realize this, all the results are returned as a list, because lists are
the most flexible data structure in R. Furthermore it is possible to retrieve the
xml document, which was passed from the java interface to R, but only for the
EFetch operations.

> xml <- efetch@xmldoc

The xml document is located in the "xmldoc” slot of the EFetch operation object.
It is an XMLNodeList and can be parsed like any other xml document. The
structure is very simple and only indicates arrays and objects. An array is a
collection of the some objects. And an object contains either another object or
an entry. All the xml tags hold a name attribute and the array tags additionally
holds a length attribute.

4 Examples from the NCBI website

The following examples are taken from the ncbi website Examples. For further
information about each operation please take a look at Chapter 4 of this book.

The ncbi object, which was created at the beginning (see 3) is still required at
this point. The object only has to be created once in a session and can be used
to call all operations from the NCBI webservice.

4.1 Call EGQuery

As seen in the Usage section (see 3).

4.2 Call ElInfo

This example simply calls the EInfo operation with no parameters to get a list
of database names, but first we have to create an einfo object.

> einfo <- EInfo(ncbi)
> einfo <- requestEInfo(einfo)
> str(getResults(einfo))

List of 1
$ DBList: chr [1:43] "pubmed" "protein" "nucleotide" "nuccore"

Now the einfo object can be used to set a database name to the request slot
and to do a new request to the webservice. The operation object can be reused
for this second task, because there were no request parameter set.

> einfo <- setRequestParameter(einfo, "db", "pubmed")
> einfo <- requestEInfo(einfo)

> results <- getResults(einfo)

> names (results)

http://www.ncbi.nlm.nih.gov/entrez/eutils/soap/v2.0/DOC/esoap_java_help.html#examples
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=helpeutils&part=chapter4

[1] "lastupdate" "fieldlist" "description" "dbname"
[6] "linklist" "menuname"

The results provide the statistics for the "pubmed” database, including a list of
indexing fields (“fieldlist”) and available link names ("linklist”). These results
can be inspected more by converting the "linklist” and the "fieldlist” into a data
frame.

> results$description

[1] "PubMed bibliographic record"
> results$lastupdate

[1] "2010/06/22 04:57"

> results$dbname

[1] "pubmed"

> results$menuname

[1] "PubMed"

> x <- do.call(cbind, lapply(results$linklist, unlist))
> linklist <- data.frame(x, stringsAsFactors = FALSE)

> linklist[linklist$dbto == '"gene", 2:4]

menu name dbto
8 Gene Links pubmed_gene gene
9 Gene (OMIM) Links pubmed_gene_citedinomim gene
10 Gene (GeneRIF) Links pubmed_gene_rif gene

> x <- do.call(cbind, lapply(results$fieldlist, unlist))
> fieldlist <- data.frame(x, stringsAsFactors = FALSE)
> head(fieldlist[1:5, c(3, 4, 7, 8)]1)

description name termcount fullname

1 All terms from all searchable fields ALL 88415905 All Fields
2 Unique number assigned to publication UID 0 UID
3 Limits the records FILT 3852 Filter
4 Words in title of publication TITL 12360244 Title
5 Free text associated with publication WORD 38878957 Text Word

10

The output is reduced, as you can see. These are all the entries, which link to
the gene database and the first six entries from the "fieldlist”.

4.3 Call ELink

This example retrieves IDs from Nucleotide for GI 48819, 7140345 to Protein.
First create an elink object and set the request parameter.

> elink <- ELink(ncbi)

> elink <- setRequestParameter(elink, "db", '"protein")

> elink <- setRequestParameter (elink, "dbfrom", "nuccore')

> elink <- setRequestParameter(elink, "id", c(48819, 7140345))
> elink <- requestELink(elink)

> results <- getResults(elink)

> names (results$linkset$linkset[1]$linkset)

[1] "dbfrom" "webenv" "idchecklist"

[4] "linksetdbhistory" "linksetdb" "idlist"

[7] "urlidlist"

After setting the request parameter and sending the request to the webservice,
the results can be stored. The results will contain all elements the NCBI web-
service provides, even if the element is not set. In this case, the element contains
“empty”. Again the result contains an array of two ”linkset” items, as we asked
for two IDs. Each of these "linkset” items contain the further subelements for
each ID. Altough there are two "linkset” items, only the second item contains the
two "linksetdb” items, we are looking for. These two "linksetdb” items contain
a list of IDs and they can be retrieved with the following steps.

lset <- results$linkset$linkset[2]$linkset

firstLSetDb <- lset$linksetdb[1]$linksetdb

secondLSetDb <- lset$linksetdb[2]$linksetdb

x <- do.call(rbind, lapply(firstLSetDb$link, unlist))

firstLink <- data.frame(x, stringsAsFactors = FALSE,
row.names = NULL)

firstLSetDb$linkname

vV + VvV VVvyVv

[1] "nuccore_protein"

> head(firstLink)

id score
1 297307291 empty

11

297307290 empty
77157738 empty
77157737 empty
38638803 empty
37515183 empty

o O WN

x <- do.call(rbind, lapply(secondLSetDb$link, unlist))

secondLink <- data.frame(x, stringsAsFactors = FALSE,
row.names = NULL)

secondLSetDb$1inkname

vV + Vv Vv

[1] "nuccore_protein_cds"
> head(secondLink)

id score
1 16950486 empty
2 16950485 empty
3 15145457 empty
4 15145456 empty
5 15145455 empty
6 7331953 empty

These are the IDs we were looking for. The results of this operation depends
heavily on the request sent. For all the other tasks, the ELink operation can
be used, please take a look at the results with the str function first to get an
overview.

4.4 Call EPost

This operation puts a list of IDs to the history for later use.

epost <- EPost(ncbi)

epost <- setRequestParameter (epost, "db", "pubmed")

epost <- setRequestParameter(epost, "id", c(123, 456,
37281, 983621))

epost <- requestEPost (epost)

epostResults <- getResults(epost)

epostResults$webenv

VVV+ VvV VYV

[1] "NCID_1_11705055_130.14.22.28_9001_1277218547_121407080"

> epostResults$querykey

12

[1] II1I|

This "webenv” and ”querykey” can be used to request information from the
ELink operation for example.

elink <- ELink(ncbi)

elink <- setRequestParameter(elink, "query_key",
epostResults$querykey)

elink <- setRequestParameter(elink, "webenv",
epostResults$webenv)

elink <- requestELink(elink)

elinkResults <- getResults(elink)

VV+ VvV + VvV

We have to create a new elink object, because the old request parameters are
still there. This result has the correct structure and beside the fact that it
contains about 400 IDs, it can be converted into a dataframe like this:

> linkset <- elinkResults$linkset$linkset$linkset
> linksetdb <- linkset$linksetdb$linksetdb
> length(linksetdb$link)

[1] 420

v

x <- do.call(rbind, lapply(linksetdb$link, unlist))
link <- data.frame(x,stringsAsFactors=FALSE, row.names=NULL)
head (1link)

VvV Vv

id score
983621 empty
37281 empty
456 empty

123 empty
6400388 empty
1140622 empty

DO WN -

4.5 Call ESearch

This examples searches in the PubMed Central database for stem cells in free
fulltext articles.

> esearch <- ESearch(ncbi)
> esearch <- setRequestParameter (esearch, "db", "pmc")

13

> esearch <- setRequestParameter (esearch, "term",

+ "stem+cells+AND+free+fulltext[filter]")
> esearch <- setRequestParameter(esearch, "retmax", 15)

> esearch <- requestESearch(esearch)

> results <- getResults(esearch)

> results$count

[1] "40859"

> x <- do.call(cbind, lapply(results$idlist, unlist))
> ids <- data.frame(x, stringsAsFactors=FALSE, row.names=NULL)
> head(ids)

id
2693088
2692479
2628721
2745366
2730033
2575525

DO WN -

Again we convert the ”idlist” into a dataframe for better access. The results list
contains several more information about the "term” that was sent to the webser-
vice. Detailed informations can be found in the "results$translationstack”
sublist.

4.6 Call ESpell

This example retrieves spelling suggestions.

> espell <- ESpell(ncbi)

> espell <- setRequestParameter(espell, "db", "pubmed")
> espell <- setRequestParameter(espell, "term", "mouss")
> espell <- requestESpell (espell)

> results <- getResults(espell)

> results$query

[1] "mouss"

> results$correctedquery

[1] "mouse"

14

4.7 Call ESummary
This example retrieves document summaries by a list of primary IDs.

esummary <- ESummary(ncbi)

esummary <- setRequestParameter (esummary, "db", "nucleotide")

esummary <- setRequestParameter (esummary, "id", c(28864546,
28800981))

esummary <- requestESummary (esummary)

results <- getResults(esummary)

V VvV + Vv VvV

The results contain two “docsums” and each of them contain a list of "items”.
This result can be converted to a dataframe again.

> firstDocSum <- results$docsum$docsum[1]$docsum

> x <- do.call(rbind, lapply(firstDocSum$item, unlist))

> items <- data.frame(x, stringsAsFactors = FALSE, row.names = NULL)
> firstDocSum$id

[1] "28864546"

> items[c(1, 3:5),]

name itemcontent item type
1 Caption AY207443 empty String
3 Extra gil|28864546|gb|AY207443.1|[28864546] empty String
4 Gi 28864546 empty Integer
5 CreateDate 2003/03/05 empty String

This shows only a selected part of the result. The second "docsum” can be
retrieved the same way.

4.8 Call EFetch

This example fetches a record from the taxonomy database. The EFetch oper-
ation is a little bit different from the other EUtils operations.

> getEFetchDatabases (ncbi)

[1] "1 gene"
[1] "2 journals"

15

[1] "3 nlmc"

[1] "4 omim"

[1] "5 pubmed"
[1] "6 sequence"
[1] "7 snp"

[1] "8 taxon"

> efetch <- EFetch(ncbi, "taxon")
> getRequestParameter(ncbi, "efetch")

[1] "iqg" "webenv" "query_key" "email" "tool"
[6] "report"

First we have to find the name for the database. The taxonomy database is
available as "taxon” in the interface. So we initiate the efetch object with the
database name. Now we are able to get the request parameter, if necessary.
After that we can set the request parameter.

> efetch <- setRequestParameter(efetch, "id", c(9685, 522328))
> efetch <- requestEFetch(efetch)
> results <- getResults(efetch)

After setting the request parameter, we make a request to the NCBI webservice.
The results contains a "taxaset”, which in turn contains two ”"taxon” elements.
We only want to inspect the first "taxon” item a little more.

> firstTaxon <- results$taxaset$taxaset$taxon[1]$taxon

First we create a dataframe for the "othernames” items.

> other <- firstTaxon$othernames

> x <- do.call(rbind, lapply(other$othernamestypechoice_typeO,
+ unlist))

> othernames <- data.frame(x, stringsAsFactors = FALSE,

+ row.names = NULL)

> othernames

synonym
Felis silvestris catus
Felis domesticus

cat

cats

O WN -

Korat cats

16

> firstTaxon$othernames$genbankcommonname

[1] "domestic cat"

> firstTaxon$scientificname

[1] "Felis catus"

We use the some method like many times before to create the dataframe. Now
it is time to get a list of the "lineageex”. Again we create a dataframe for this.

> lineage <- firstTaxon$lineageex$taxon

> x <- do.call(rbind, lapply(lineage, unlist))

> lin <- data.frame(x, stringsAsFactors = FALSE, row.names = NULL)
> head(1lin)

rank scientificname taxid
1 no rank cellular organisms 131567
2 superkingdom Eukaryota 2759
3 no rank Fungi/Metazoa group 33154
4 kingdom Metazoa 33208
5 no rank Eumetazoa 6072
6 no rank Bilateria 33213

The second "taxon” item can be handled the same way. For further information
take a look at the names of each taxon.

> names (firstTaxon)

[1] "pubdate" "lineage" "createdate"

[4] "parenttaxid" "rank" "division"

[7] "geneticcode" "lineageex" "updatedate"
[10] "mitogeneticcode" "scientificname" "othernames"
[13] "taxid"

4.9 Search, Link & Fetch example

This is an example which uses three operations from the NCBI webservice to
get a result. The first step is to search in the PubMed database for "cat”.

17

esearch
esearch
esearch

esearch
esearch
esearch
esearchR
x <- do.

VVVVVVV+\VVYV

idlist

id
19760058
19784554
20406687
20304455
20172041

O WN -

> esearchR

[1] "2558"

Like before
proceed to t

<- ESearch(ncbi)

<- setRequestParameter (esearch, "db", "pubmed")

<- setRequestParameter (esearch, "term",
"cat+AND+pubmed_nuccore[sb]")

<- setRequestParameter (esearch, "sort", "PublicationDate")

<- setRequestParameter (esearch, "retmax", 5)

<- requestESearch(esearch)

es <- esearch@results

call(cbind, lapply(esearchRes$idlist, unlist))

idlist <- data.frame(x, stringsAsFactors=FALSE, row.names=NULL)

es$count

(see 4.5), we create a dataframe from the 7idlist”. Now we can
he second step. The second step retrieves links from the nucleotide

database for the IDs we previously fetched.

elink <-
elink <-
elink <-
elink <-
elink <-
elinkRes

vV VVVVVYyV

ELink(ncbi)

setRequestParameter (elink, "db", "nuccore")
setRequestParameter (elink, "dbfrom", "pubmed")
setRequestParameter(elink, "id", idlist$id)
requestELink (elink)

<- getResults(elink)

linksetAr <- elinkRes$linkset$linkset

As all the operations accept a vector for the IDs, we simply pass the "id” column
from the "idlist”. Now we have to get the UIDs from the result. This can be

done with a

simple for loop.

> UIDVec <- NULL
> for (i in 1:length(linksetAr)) {

x <-
UIDL

+ + + +

lsetdb <- linksetAr[i]$linkset$linksetdb$linksetdb
idAr <- lsetdb$link

do.call(rbind, lapply(idAr, unlist))
ist <- data.frame(x, stringsAsFactors = FALSE,

18

+ row.names = NULL)
+ UIDVec <- c(UIDVec, UIDList$id)
+ }

In the loop every first element of the "linksetdb” item from each “linkset” is
used, like in the example. Now we got a vector with the UIDs. With this
we proceed to the third step and fetch the records from the nuccore database.
As we know from the NCBI website, the nuccore database is contained in the
sequence database, so we select this one and set the nuccore database as request
parameter.

> getEFetchDatabases (ncbi)

[1] "1 gene"
[1] "2 journals"
[1] "3 nlmc"
[1] "4 omim"

[1] "5 pubmed"
[1] "6 sequence"
[1] "7 snp"

[1] "8 taxon"

> efetch <- EFetch(ncbi, "sequence")
> getRequestParameter (ncbi, "efetch")

[1] "db" "webenv" "complexity" "tool" "strand"
[6] "seq_stop" "rettype" "id" "retstart" "seq_start"
[11] "email" "query_key" '"retmax" "report"

efetch <- setRequestParameter (efetch, "db", "nuccore")
efetch <- setRequestParameter (efetch, "id", UIDVec)
efetch <- requestEFetch(efetch)
efetchRes <- getResults(efetch)
gbset <- efetchRes$gbset$gbset
gbsetsequence <- gbset$gbsetsequence
org <- NULL
loc <- NULL
def <- NULL
for (i in 1:length(gbsetsequence)) {
gbseq <- gbsetsequence[i] $gbsetsequence$gbseq
org <- c(org, gbseq$gbseq_organism)
loc <- c(loc, gbseq$gbseq_locus)
def <- c(def, gbseq$gbseq_definition)
}
resultDF <- data.frame(org, loc, def, stringsAsFactors = FALSE,
row.names = NULL)
head(resultDF[, 1:2])

V+V+++++VVVVVVVYVYVY

19

org loc

Emericella nidulans EU734183
Aspergillus niger FJ979866
synthetic construct GU441535
Felid herpesvirus 1 FJ478159
Acanthopagrus schlegelii GU799605
Acanthopagrus schlegelii GU370345

DO WN -

I would suggest to not print the efetchRes object. Instead we proceed with it.
We simply loop over "gbseq” and append each entry to the corresponding vector.
After that, we put those vectors into a dataframe. The output only shows the
first two columns, as the third won’t fit on the page. Certainly there are more
efficient ways to retrieve the data.

4.10 Using WebEnv & QueryKey example

This example uses WebEnv and QueryKey to retrieve information from the
EFetch Pubmed database. First we search for "cat” with the ESearch operation.

esearch <- ESearch(ncbi)
esearch <- setRequestParameter (esearch, "db", "pubmed")
esearch <- setRequestParameter(esearch, "term", "cat")
esearch <- setRequestParameter(esearch, "sort", "PublicationDate")
esearch <- setRequestParameter(esearch, '"usehistory",
uyu)
esearch <- requestESearch(esearch)
esearchRes <- getResults(esearch)
webenv <- esearchRes$webenv
querykey <- esearchRes$querykey

VVVV +VVYVYVYV

Now as we have the wanted information, we proceed to the second step and
use the "webenv” and "querykey” to fetch five records from the EFetch Pubmed
database starting with record ten.

> efetch <- EFetch(ncbi, "pubmed")
> getRequestParameter (ncbi, "efetch")

[1] "iqg" "retstart" '"webenv" "query_key" "email"
[6] "tool" "retmax" "rettype"

> efetch <- setRequestParameter(efetch, '"webenv", webenv)

> efetch <- setRequestParameter(efetch, "query_key", querykey)
> efetch <- setRequestParameter(efetch, "retstart", 10)

> efetch <- setRequestParameter(efetch, "retmax", 5)

20

> efetch <- requestEFetch(efetch)
> efetchRes <- getResults(efetch)

Now this result can be further inspected. We use the same method as before
and write a loop, put the information into a vector and create a dataframe out
of these vectors.

artSet <- efetchRes$pubmedarticleset
pubmedArticleAr <- artSet$pubmedarticleset$pubmedarticle
pmid <- NULL
title <- NULL
abstract <- NULL
for (i in 1:length(pubmedArticleAr)) {
medLCit <- pubmedArticleAr[i]$pubmedarticle$medlinecitation
pmid <- c(pmid, medLCit$pmid)
title <- c(title, medLCit$article$articletitle)
abstract <- c(abstract, medLCit$article$abstract$abstracttext)
}
resultDF <- data.frame(pmid, title, abstract, stringsAsFactors = FALSE,
row.names = NULL)
resultDF[, 1]

V+V+ + + + +VVYVYVVYV

[1] "20452121" "20447766" "20363123" "20236822" "20398794"

The columns "title” and "abstract” of the dataframe are way to long to print
them here, so feel free to reproduce this example.

21

	Introduction
	Installation
	Usage
	EUtils operations
	EFetch operations
	Further possibilties

	Examples from the NCBI website
	Call EGQuery
	Call EInfo
	Call ELink
	Call EPost
	Call ESearch
	Call ESpell
	Call ESummary
	Call EFetch
	Search, Link & Fetch example
	Using WebEnv & QueryKey example

