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1 Introduction

This vignette shows a few examples for the R-package ‘RLumModel’. The main function model_LuminescenceSignals()

and their arguments will be explained. All calculations were done with ‘RLumModel’ 0.2.0 and ‘Luminescence’
0.6.4.

2 Object structure of RLumModel

The output from the main function model_LuminescenceSignals() is of class RLum.Analysis (Kreutzer
et al., 2012) and contains data of class RLum.Data.Curve in the slot ‘records’. The advantage of this
infrastructure is that the package ‘Luminescence’ offers a lot of methods to visualize and manipulate data.

All simualted data are stored in the slot ‘records’: TL/OSL/RF curves as well as the concentrations of every
energy level from every step.

The following code loads a data set provided by the ‘RLumModel’ package and shows how to seperate
TL/OSL/RF data from concentrations and how to visualize them.

data("ExampleData.ModelOutput", package = "RLumModel")

##show class

class(model.output)

##show structure

Luminescence::structure_RLum(model.output)
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##seperate TL-curve from TL-concentrations

TL_curve <- Luminescence::get_RLum(model.output, recordType = "TL$")

TL_conc <- Luminescence::get_RLum(model.output, recordType = "(TL)", drop = FALSE)

##also possible: TL_curve <- get_RLum(model.output, record.id = 1)

##plot results

Luminescence::plot_RLum(TL_curve)

Luminescence::plot_RLum(TL_conc)

Some notes to the code example above:

• in ‘TL_curve <- . . . ’ appears “TL$”. This is necessary to match the pattern “TL” without any sign
after “TL”, e.g. a bracket. The brackets are used (by default) for the concentrations.

• in ‘TL_conc <- . . . ’ the pattern “(TL)” will match all concentrations with “(TL)”, see structure.
• drop = FALSE was used to keep the RLum.Analysis class for ‘TL_conc’.
• To see a single plot of every energy-level, use the option plot.single = TRUE in plot_RLum(). For

more details see the manual of ‘Luminescence’.

##plot every energy-level by an extra plot

Luminescence::plot_RLum(TL_conc, plot.single = TRUE)

It is also possible to choose a RLum.Data.Curve by their ‘record.id’, which can be seen with:

##see structure of model.output

Luminescence::structure_RLum(model.output)

3 Selecting a quartz luminescence model

The first argument required for the function model_LuminescenceSignals() is the name of a quartz
luminescence model to be used, respectively the used parameter set in this quartz luminescence model. All
currently implemented quartz luminescence models were described in Friedrich et al. (2016). The command
to select a set of parameters from a specific model in RLumModel is a character string with the name of the
author and the year, e.g.

model <- "Bailey2001"

The available models are “Bailey2001”, “Bailey2002”, “Bailey2004”, “Pagonis2007”, “Pagonis2008” and
“Friedrich2017” (Bailey (2001), Bailey (2002), Bailey (2004), Pagonis et al. (2007), V. Pagonis et al. (2008)).

The corresponding parameter set will be loaded automatically with the function call.

4 Creating a sequence

The second argument in the model_LuminescenceSignals() function is the sequence to be simulated. There
are three different ways of creating a sequence.

For all sequences, temperature differences between sequence steps are automatically simulated with a heating or
cooling step in between. Also, after irradiating the sample, it is automatically kept at irradiation temperature
for further 5 s to allow the system to relax prior to the next step (Bailey, 2001).
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4.1 Risø SEQ files

The first one is to use the popular and freely available Risø Sequence Editor version 4.361 to build a personal
sequence and to save it as a SEQ-file (*.seq). Files created by the Sequence Editor can be imported directly
using the path of the SEQ-file. The package comes along with an example SEQ-file in the package folder in
‘extdata’. Thus, a potential sequence is created with

sequence <- system.file(

"extdata",

"example_SAR_cycle.SEQ",

package = "RLumModel")

or wherever the SEQ-file is stored. While in the Sequence Editor irradiation is commonly defined in
seconds, performing the simulation requires a dose transformation to gray. Therefore, the function
model_LuminescenceSignals() offers a special argument called lab.dose_rate, representing the dose rate
of the irradiation unit in the laboratory. By default, this dose rate is 1 Gy s−1, but can be modified, e.g.,

lab.dose_rate <- 0.105

4.2 Keywords

The second way of creating a sequence is by referring to a list with keywords and a certain order of code
numbers or named values, which are shown in Table 1. With these keywords, it is possible to create quickly
an R object of type list, which can be read by the model_LuminescenceSignals() function.

ARGUMENTS DESCRIPTION SUB-ARGUMENTS

TL Thermally stimulated luminescence ’temp_begin’ [ ◦C], ’temp_end’ [ ◦C], ’heating_rate’ [ ◦C/s]
OSL Optically stimulated luminescence ’temp’ [ ◦C], ’duration’ [s], ’optical_power’ [%]
ILL Illumination ’temp’ [ ◦C], ’duration’ [s], ’optical_power’ [%]
LM_OSL Linear modulated OSL ’temp’ [ ◦C], ’duration’ [s], optional: ’start_power’ [%], ’end_power’ [%]
RF Radiofluorescence ’temp’ [ ◦C], ’dose’ [Gy], ’dose_rate’ [Gy/s]
IRR Irradiation ’temp’ [ ◦C], ’dose’ [Gy], ’dose_rate’ [Gy/s]
RF_heating RF during heating/cooling ’temp_begin’ [ ◦C], ’temp_end’ [ ◦C], ’heating_rate’ [ ◦C/s], ’dose_rate’ [Gy/s]
CH Cutheat ’temp’ [ ◦C], optional: ’duration’ [s], ’heating_rate’ [ ◦C/s]
PH Preheat ’temp’ [ ◦C], ’duration’ [s], optional: ’heating_rate’ [ ◦C/s]
PAUSE Pause ’temp’ [ ◦C], ’duration [s]’

Table 1: Keywords for creating a sequence in ’RLumModel’. Note that 100 % optical power equates to 20
mW cm−2. Of course, values > 100 % are allowed.

Some examples to this kind of sequence creating:

sequence <- list(

IRR = c(temp = 20, dose = 10, dose_rate = 1),

TL = c(temp_begin = 20, temp_end = 400 , heating_rate = 5))

This sequences describes an irradiation simulation at 20 °C with a dose of 10 Gy and a dose rate of 1 Gy/s,
which is followed by a TL simulation from 20 °C to 400 °C with a heating rate of 5 °C/s. Note that it is
important that for each sequence keyword like ‘IRR’ or ‘TL’ either the vector has to be named or the correct
order of arguments is used, see ‘sub-arguments’ in Table 1. Thus the above mentioned code is equivalent to
the following one:

sequence <- list(

IRR = c(20, 10, 1),

TL = c(20, 400, 5))

1http://www.nutech.dtu.dk/english/Products-and-Services/Dosimetry/Radiation-Measurement-
Instruments/TL_OSL_reader/Software; 2016-04-11
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4.3 Creating a SAR/DRT sequence

However, to create a SAR or dose-recovery-test (DRT) sequence with the Risø Sequence Editor or with
keywords is time-consuming, because it contains a lot of individual sequence steps (preheat, optical stimulation,
irradiation, . . . ). Therefore, a third way was implemented in ‘RLumModel’ to create a (SAR) sequence after
Murray and Wintle (2000) with the (required) keywords RegDose, TestDose, PH, CH and OSL temp. In
addition to these keywords, the user is able to set more detailed parameters for the SAR sequence, see Table
2:

ABBREVIATION DESCRIPTION EXAMPLE

ARGUMENTS

RegDose Dose points of the regenerative cycles [Gy] c(0, 80, 140, 260, 320, 0, 80)
TestDose Test dose for the SAR cycles [Gy] 50
PH Temperature of the preheat [ ◦C] 240
CH Temperature of the cutheat [ ◦C] 200
OSL_temp Temperature of OSL read out [ ◦C] 125
OSL_duration Duration of OSL read out [s] default: 40
Irr_temp Temperature of irradiation [ ◦C] default: 20
PH_duration Duration of the preheat [s] default: 10
dose_rate Dose rate of the laboratory irradiation source [Gy s−1] default: 1
optical_power Percentage of the full illumination power [%] default: 90
Irr_2recover Dose to be recovered in a dose-recovery-test [Gy] 20

Table 2: Keywords for creating a SAR sequence with ’RLumModel’. The keyword Irr_2recover is only
necessary for creating a DRT sequence. Note that 100 % optical power equates to 20 mW cm−2. Of course,
values > 100 % are allowed.

So a possible DRT sequence could be the next code example:

sequence <- list(

RegDose = c(0,10,20,50,90,0,10),

TestDose = 2,

PH = 220,

CH = 220,

OSL_temp = 125,

Irr_2recover = 20)

This sequence describes a DRT, where a dose of 20 Gy will be recovered with this test. The regenerative
doses are definded as 0 (natural), 10 Gy, 20 Gy, 50 Gy, 90 Gy and for recuperation and recycling ratio 0 Gy
and 10 Gy, respectively. The test dose is definded as 2 Gy. Preheat and Cutheat are at 220 °C and all OSL
measurements are simualted at 125 °C. There are more options to set, see Table 2.

The RLumModel function model_LuminescenceSignals() is able to interprete this (sequence-) list as a
DRT sequence.

5 Working examples

5.1 Simulate a TL measurement

First of all, a sequence is needed, which produces a TL signal after the sample has received a dose:

sequence <- list (

IRR = c (20 , 10 , 1) ,

TL = c (20 , 400 , 5))

Here, at a temperature of 20 °C a dose of 10 Gy was applied with a dose rate of 1 Gy/s followed by a
TL measurement from 20 °C to 400 °C with a heating rate of 5 °C/s. Running this sequence with the
model_LuminescenceSignals() function produces a model output:
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Figure 1: TL curve with parameter set ’Bailey2001’ after 10 Gy laboratory dose

model.output <- model_LuminescenceSignals(

model = "Bailey2001",

sequence = sequence,

verbose = FALSE)

This results in a TL curve like the one published in (Bailey (2001), Fig. 1), see figure above. In a further
step, it is easy to produce known TL phenomena like the shift of the TL peak with varying heating rate. For
this purpose, a loop over a TL simulation changes the heating rate in each run.

##set heating rate

heating.rate <- seq(from = 2, to = 10, by = 2)

##model signals

##"verbose = FALSE" for no terminal output

## "TL$" for exact matching TL and not (TL)

model.output <- lapply(

1:length(heating.rate), function(x){

sequence <- list(

IRR = c(20, 10, 1),

TL = c(20, 400, heating.rate[x]))

TL_data <- model_LuminescenceSignals(

sequence = sequence,
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Figure 2: TL signal with different heating rates

model = "Bailey2001",

plot = FALSE,

verbose = FALSE)

return(Luminescence::get_RLum(TL_data, recordType = "TL$", drop = FALSE))

})

##merge output

model.output.merged <- merge_RLum(model.output)

##plot results

plot_RLum(

object = model.output.merged,

xlab = "Temperature [\u00B0C]",

ylab = "TL signal [a.u.]",

main = "TL signal with different heating rates",

legend.text = paste(heating.rate, "°C/s"),

combine = TRUE)

Some notes to the code above:

• the return of the lapply function is a RLum.Analysis object, because of drop = FALSE
• recordType = TL$ is necessary to match the character TL exact and not the concentrations
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• merge_RLum is necessary to merge all the single RLum.Analysis objects in the list ‘model.output’
together to one RLum.Analysis object

• to see the results with another parameter set, only model = "..." has to be changed (see Sec. 2)

5.2 Simulating thermal activation characteristics (TACs)

Another frequently simulated phenomenon is the sensitisation of quartz TL by β- or γ-irradiation fol-
lowed by activation at high temperatures (Zimmerman, 1971, Pagonis et al. (2003), V Pagonis et al.
(2008), Adamiec et al. (2004)), termed as thermal activation characteristics (TACs). For a simulation
sequence, the reader is referred to V Pagonis et al. (2008), Tab. 1. To simulate this phenomenon with the
model_LuminescenceSignals() function, a loop causing a stepwise increase of the activation temperature is
needed. The resulting intensity of the 110 ◦C TL peak can be plotted against the activation temperature,
which shows TAC for the model parameters of “Pagonis2007”.

##set temperature

act.temp <- seq(from = 80, to = 600, by = 20)

##loop over temperature

model.output <- vapply(X = act.temp, FUN = function(x) {

##set sequence, note: sequence includes sample history

sequence <- list(

IRR = c(20, 1, 1e-11),

IRR = c(20, 10, 1),

PH = c(x, 1),

IRR = c(20, 0.1, 1),

TL = c(20, 150, 5)

)

##run simulation

temp <- model_LuminescenceSignals(

sequence = sequence,

model = "Pagonis2007",

simulate_sample_history = TRUE,

plot = FALSE,

verbose = FALSE

)

## "TL$" for exact matching TL and not (TL)

TL_curve <- Luminescence::get_RLum(temp, recordType = "TL$")

##return max value in TL curve

return(max(get_RLum(TL_curve)[,2]))

}, FUN.VALUE = 1)

5.3 Simulating dependency of the OSL signal on the illumination power density

The function model_LuminescenceSignals() is also capable of simulating OSL phenomena. The next figure
shows the dependency of the OSL signal on the power density of illumination for the model “Bailey2004”.

##set optical power [%]

optical_power <- c(0,20,40,60,80,100)
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Figure 3: TAC with parameter set of ‘Pagonis2007’

##loop over power

model.output <- lapply(optical_power, function(x){

##set sequence

sequence <- list(

IRR = c(20, 50, 1),

PH = c(220, 10, 5),

OSL = c(125, 50, x))

data <- model_LuminescenceSignals(

sequence = sequence,

model = "Bailey2004",

plot = FALSE,

verbose = FALSE)

##"OSL$" for exact matching OSL and not (OSL)

return(Luminescence::get_RLum(data, recordType = "OSL$", drop = FALSE))

})

##merge output

model.output.merged <- Luminescence::merge_RLum(model.output)

##plot results
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Figure 4: OSL measurement with different optical power densities with the parameter set of ’Bailey2004’

Luminescence::plot_RLum(

object = model.output.merged,

xlab = "Illumination time [s]",

ylab = "OSL signal [a.u.]",

legend.text = paste("Optical power ", 20 * optical_power / 100," mW/cm^2"),

combine = TRUE

)

5.4 Simulating and analysing SAR measurements

For simulating a DRT, it is necessary to define a sequence with the keyword Irr_2recover, as mentioned in
Section 4.3.

It should be mentioned that a simulation of a combinded PHPT and DRT may be very time-consuming,
because for every preheat temperature a complete SAR cycle has to be run. A typical DRT sequence featuring
various PH temperatures in ‘RLumModel’ is listed below. Note that in such a DRT simulation a loop over
different preheat temperatures has to be written, utilising characteristic parameters from the literature. The
test dose is set to 10% and the regeneration dose points to 40%, 70%, 130%, 160%, 0% and 40% of the
recovery dose.

The data created by ‘RLumModel’ can be directly passed to the functions Luminescence::analyse_SAR.CWOSL()

and Luminescence::plot_DRTResults() for routine analyses and plotting.
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##set PH temperatures

PH_temp <- seq(from = 160, to = 300, by = 20)

##set regeneration doses

RegDose = c(0, 80, 140, 260, 320, 0, 80)

##loop over PH temperatures

DRT.output <- lapply(1:length(PH_temp), function(x){

sequence <- list(

RegDose = RegDose,

TestDose = 20,

PH = PH_temp[x],

CH = PH_temp[x],

OSL_temp = 125,

Irr_2recover = 200)

model.output <- model_LuminescenceSignals(

sequence = sequence,

model = "Pagonis2008",

plot = FALSE,

verbose = FALSE)

results <- Luminescence::analyse_SAR.CWOSL(

object = model.output,

signal.integral.min = 1,

signal.integral.max = 7,

background.integral.min = 301,

background.integral.max = 401,

fit.method = "EXP",

dose.points = RegDose,

plot = FALSE)

temp <- get_RLum(results)

out <- data.frame(

De = temp$De,

De.error = temp$De.Error)

return(out)

})

## [plot_GrowthCurve()] Fit: EXP | De = 179.1 | D01 = 101.51

## [plot_GrowthCurve()] Fit: EXP | De = 179.46 | D01 = 101.46

## [plot_GrowthCurve()] Fit: EXP | De = 180.18 | D01 = 101.4

## [plot_GrowthCurve()] Fit: EXP | De = 180.6 | D01 = 101.41

## [plot_GrowthCurve()] Fit: EXP | De = 182.24 | D01 = 101.44

## [plot_GrowthCurve()] Fit: EXP | De = 179.85 | D01 = 102.26

## [plot_GrowthCurve()] Fit: EXP | De = 166.73 | D01 = 111.51

## [plot_GrowthCurve()] Fit: EXP | De = 159.15 | D01 = 161.2

##output as data.frame for plot_DRTResults

DRT.result <- as.data.frame(do.call(rbind, DRT.output))

##plot DRT.results
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Figure 5: Dose recovery test (DRT) with the parameter set of ’Pagonis2008’

Luminescence::plot_DRTResults(

DRT.result,

preheat = PH_temp,

given.dose = 200)

In the code above, plot = FALSE was chosen, because a single OSL plot is not necessary to analyse a
SAR sequence. To calculate a De from the produced RLum.Analysis object ‘model.output’, the function
Luminescence::analyse_SAR.CWOSL() is suitable. After specifying a number of evaluation parameters
(signal and background integration interval, dose points and fit function for the dose response curve) and
the analysis process, the reduced data are stored in an RLum.Results object, here termed ‘results’ . A
background integration interval from 301 to 401 translates to the signal from 30 s to 40 s, because a channel
has the default width of 0.1 s. Accordingly, the signal integral ranges from 0.1 s to 0.7 s.

##set RegDose

RegDose = c(0, 80, 140, 260, 320, 0, 80)

##set sequence

sequence <- list(

RegDose = RegDose,

TestDose = 20,

PH = 220,

CH = 220,
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OSL_temp = 125

)

##model

model.output <- model_LuminescenceSignals(

sequence = sequence,

model = "Pagonis2008",

plot = FALSE,

verbose = FALSE

)

##analyse SAR sequence and plot only the resulting growth curve

results <-Luminescence::analyse_SAR.CWOSL(

model.output,

signal.integral.min = 1,

signal.integral.max = 7,

background.integral.min = 301,

background.integral.max = 401,

fit.method = "EXP",

dose.points = RegDose,

verbose = FALSE,

plot.single = c(6)

)
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Figure 6: SAR protocol with the parameter set of ’Pagonis2008’
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