
GraphM package: approximate graph matching algorithms

December 14, 2009

1 Problem description

A graph G = (V,E) of size N is defined by a finite set of vertices V = {1, . . . , N} and a set of edges E ⊂ V × V .
We consider weighted undirected graphs with no self-loop, i.e., all edges (i, j) have an associated positive real
value w(i, j) = w(j, i) and w(i, i) = 0 ∀i, j ∈ V . Each such graph can be equivalently represented by a symmetric
adjacency matrix A where Aij = w(i, j).

Given two graphs G and H with the same number of vertices N1, the problem of matching G and H consists in
finding a correspondence between vertices of G and vertices of H which aligns G and H in some optimal way. The
correspondence between vertices may be defined by a permutation matrix P , Pij is equal to 1 if the i-th vertex of
G is matched to the j-th vertex of H, and 0 otherwise. After applying the permutation defined by P to the vertices
of H we obtain a new graph isomorphic to H which we denote by P (H). The adjacency matrix of the permuted
graph, AP (H), is simply obtained from AH by the equality AP (H) = PAHPT .

In order to assess whether a permutation P defines a good matching between the vertices of G and those of H,
a quality criterion must be defined. We focus in this paper on measuring the discrepancy between the graphs after
matching of edges which are present in one graph and not in the other one:

F (P) = ||AG − AP (H)||
2
F = ||AG − PAHPT ||2F , (1)

where ||.||F is the Frobenius matrix norm. Therefore, the problem of graph matching can be reformulated as the
problem of minimization of F (P) over the set of permutation matrices.

An interesting generalization of the graph matching problem is the problem of labeled graph matching. Here
each graph has associated labels to all its vertices and the objective is to find an alignment that fits well graph
labels and graph structures at the same time. If we let Cij denote the matching score (large scores correspond to
the best matchings) between the i-th vertex of G and the j-th vertex of H then the matching problem based only
on label comparison can be formulated as follows

max
P

tr(CT P) =

N
∑

i=1

N
∑

j=1

CijPij =

N
∑

i=1

Ci,P (i). (2)

A natural way of unifying of (2) and (1) is a linear combination

min
P

{(1 − α)F (P) − αtr(CT P)}. (3)

In the following the term ‘objectictive function Fα(P)’ will denote the last linear combination.

2 Algorithms & Parameters

The GraphM package proposes different approximate algorithms designed to solve (3). All algorithms use the
linear combination parameter (3) α, this parameters is called alpha ldh in the configration file config.txt. Some
algorithms use also their own specific parameters.

1. The Umeyama algorithm.
Originally this algorithm was proposed for weighted graph matching problem without linear term [Ume88]

P = arg max tr{|UG|
T |UH |P}. (4)

1Otherwise the smallest may be completed with dummy nodes.

1

This approach may naturally modified to include the linear term C

P = arg max tr{(1 − α)|UG|
T |UH | − αCT)P}. (5)

2. The Rank algorithm [RJB07]. This algorithm is based on the power method, and sometimes it does not
converge, so there is a hard constraint on the numeber of iterations used in the code (1000 iteration). Usually
the Rank algorithm converges, if there is a significant linear term (α is not too small).

3. The LP (Linear programming) algorithm [AS93]. This algorithm has the complexity O(N7), so it is not
recomended to use it for graphs of size more than 50 vertices.

4. The QCV (Quadratic convex relaxation) algorithm [ZBV08]. Parameters: α (linear combintation (3)). This
algorithm use Frank-Wolfe method for convex function minimization, the stop criterion of the FW method is
defined by two parameters: algo fw xeps and algo fw feps. The stop criterion is dx < x ∗ algo fw xeps &
|df | < |f | ∗ algo fw feps. Another important parameter is hungarian max, it defines the integer diapason
used in the hungarian method to represent the initial real valued gradient matrix. The more the the value of
this parameter, the more precise the Hungarian method, the more time it takes.

5. The PATH algorithm [ZBV08]. The PATH algorithm uses the parameters of the Frank-Wolfe method defined
above, and its own paramters: qcvqcc lambda M and qcvqcc lambda min. These paramteres define the
behavior of adaptative path following strategy. The idea of the adaptative strategy is that the choice of
dlambda (see the schema of the PATH algorithm [ZBV08]) is depending on the behavior of Fλ

α (P) function.
If the current value of dλ changes the function Fλ

α (P) only a little, then it is better to use larger value of dλ

to do larger steps. Or if the current dλ changes Fλ
α (P) too much then we should decrease dλ. The minimial

increment of dλ is defined by qcvqcc lambda min, and the larger paramter qcvqcc lambda M, the larger steps
are allowed.

Formally speaking, there are four other algorithms which are not true algorithms but they may be used to provide
an idea about the shape of the objective function.

1. Identity matching IDEN. This algorithm returns the identity permutation.

2. Random matching RAND. This algorithm returns a random permutation matrix.

3. Uniform matching UNIF. This algorithm does not produce a permutation matrix, it returns 1
N

1N1T
N — N×N

matrix with all elements equal to 1/N. We use this algorithm as the initial point for other graph matching
algorithms.

3 Common parameters

Here we describe common parameters for all graph matching algorithms. All parameters are usulually defined in a
configuration file, but they may be also given in the command line. Each line of the configuration file corresponds
to one parameter and has four components: parameter name, sign ‘=’, parameter value and parameter type. There
are four different parameter types: ‘s’—string, ‘ d’ — double, ‘ i’ — integer, ‘ c’ — character.

2

3.1 Basic parameters

Parameter=Value Type Description

graph 1=../qap/m a 1EWK s Adjacency matrix N × N of the first graph (ascii file)
graph 2=../qap/m a 1U19 s Adjacency matrix M × M of the second graph (ascii file)
C matrix=../qap/1 s Matrix of vertex similarities C N × M (ascii file)
algo=U QCV RANK PATH s List of graph matching algorithms
algo init sol=unif rand

U unif s

List of graph matching initialization algorithms. Each graph macthing algo-
rithm may be used as an initialization algorithm, so here for example, starting
points for U and PATH are given by the unif algorithm, QCV is initalized by
a random matrix, and the initial point of the RANK algorithm is the solution
of the Umeyama algorithm

alpha ldh=0.5 d α parameter of the linear combination (3)
dummy nodes=0 i 0 — just add |N−M | nodes to the smallest graph, 1 — add M nodes to the first

graph and N nodes to the second. Depending on your problem different choices
are possibles. If the problem is to find an embeding of all nodes of the smallest
graph into the largest graph, so all vertices of the smallest graph should be
matched to something in the largest, then you have to use ‘dummy nodes=0
i’. If you want to autorize to the vertices of the smallest graph to be matched
to nothing, then ‘dummy nodes=1 i’ should be used

dummy nodes fill=0 d 0 — all dummy nodes are isolated, 0 < dummy nodes fill ≤ 1
dummy nodes are connected to all others by edges with the weight
const*(min weight+max weight). An interpretation of this parameter is the
topological penality for vertces to be matched to dummy nodes.

dummy nodes c coef=0 d values of the C matrix associated to dummy nodes:
min(C)+dummy nodes c coef*(max(C)-min(C)). This parameter is used
to set the vertex similarity for dummy nodes. The smaller the value of this
parameter, the less preferable the association to a dummy node.

exp out file=qap out s Output file.
exp out format=Parameters

Compact Permutation s

The format of the output file, ‘Parameters’—print used parameters, ‘Compact’
— print only the value of the objective function for each used algorithm, ‘Per-
mutation’ — print the optimal permutation. For more details see section 4

verbose mode=1 i verbose mode. 1 - on/0 - off.
verbose file=cout s cout — standard output (screen), otherwise — the name of the verbose output

file

3.2 Additional parameters

Sometimes the similarity matrix C is used to define acceptable (C(i, j) > 0) vertex associations, it means that all
final associations i− j should have a positive vertex similarity score. In order to assure that the final solution have
positive vertex similarity score, we can use the following two parameters:

• ‘blast match proj=1 i’ means that the final solution will be projected on PC>0 (the set of permutation matrices
producing positive vertex matching scores).

• ‘blast match=1 i’ restrict the initial optimization set of all permutations to PC>0. It means that on each step
of the FW algorithms a matrix from PC>0 will be used as the new direction. In other words, not only the
final solution, but also each intermediate step is projected on PC>0.

3

4 Example

Let’s consider a simple example. Suppose that we have two graphs G and H defined by the following adjacency
matrices

G =

































0 1 1 0 1 1 0 0 1 1
1 0 0 1 0 1 1 0 1 0
1 0 0 0 1 0 0 0 0 1
0 1 0 0 1 1 1 1 1 1
1 0 1 1 0 0 0 1 0 1
1 1 0 1 0 0 0 0 1 0
0 1 0 1 0 0 0 1 0 0
0 0 0 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0 0 0
1 0 1 1 1 0 0 0 0 0

































H =

































0 0 0 1 1 1 0 0 1 1
0 0 1 1 0 1 0 1 1 1
0 1 0 1 0 1 0 0 0 0
1 1 1 0 0 1 0 0 0 0
1 0 0 0 0 1 1 0 0 1
1 1 1 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0
0 1 0 0 0 0 0 0 1 1
1 1 0 0 0 0 1 1 0 1
1 1 0 0 1 0 0 1 1 0

































Suppose that we do not have any additional information about vertex similarities. In this case the configuration
file config.txt may have the following form

//*********************GRAPHS**********************************
//graph_1,graph_2 are graph adjacency matrices,
//C_matrix is the matrix of local similarities between vertices of graph_1 and graph_2.
//If graph_1 is NxN and graph_2 is MxM then C_matrix should be NxM
graph_1=../simple_test/G s
graph_2=../simple_test/H s
C_matrix=../simple_test/C s
//*******************ALGORITHMS********************************
//used algorithms and what should be used as initial solution in corresponding algorithms
algo=I U RANK QCV rand PATH s
algo_init_sol=unif unif unif unif unif unif s
solution_file=solution_im.txt s
//coeficient of linear combination between (1-alpha_ldh)*||graph_1-P*graph_2*P^T||^2_F +alpha_ldh*C_matrix
alpha_ldh=0 d
cdesc_matrix=A c
cscore_matrix=A c
C_matrix_dist=0 i
//**************PARAMETERS SECTION*****************************
hungarian_max=10000 d
algo_fw_xeps=0.01 d
algo_fw_feps=0.01 d
//0 - just add a set of isolated nodes to the smallest graph, 1 - double size
dummy_nodes=0 i
// fill for dummy nodes (0.5 - these nodes will be connected with all other by edges of weight 0.5(min_weight+max_weight))
dummy_nodes_fill=0 d
// fill for linear matrix C, usually that’s the minimum (dummy_nodes_c_coef=0),
// but may be the maximum (dummy_nodes_c_coef=1)
dummy_nodes_c_coef=0.01 d

qcvqcc_lambda_M=10 d
qcvqcc_lambda_min=1e-5 d

//0 - all matching are possible, 1-only matching with positive local similarity are possible
blast_match=1 i
blast_match_proj=0 i
//****************OUTPUT***************************************
//output file and its format
exp_out_file=../simple_test/exp_out_file s
exp_out_format=Parameters Compact Permutation s
//other
graph_dot_print=1 i;
debugprint=0 i
debugprint_file=debug.txt s

4

verbose_mode=1 i
//verbose file may be a file or just a screen:cout
verbose_file=cout s

Six graph matching methods are going to be used: ‘algo=I U RANK QCV rand PATH s’.
To run the program:

./graphm config.txt

The results file exp out file may have three different parts.
If there is the word ‘Parameters’ in the ‘exp out format’ list then all used parameters will be listed:

Experiment parameters:
graph_1=../simple_test/G
graph_2=../simple_test/H
C_matrix=../simple_test/C
algo=I U RANK QCV rand PATH
algo_init_sol=unif unif unif unif unif unif
solution_file=solution_im.txt
alpha_ldh=0
cdesc_matrix=A
cscore_matrix=A
hungarian_max=10000
algo_fw_xeps=0.01
algo_fw_feps=0.01
dummy_nodes=0
dummy_nodes_fill=0
dummy_nodes_c_coef=0.01
qcvqcc_lambda_M=10
qcvqcc_lambda_min=1e-05
blast_match=1
blast_match_proj=0
exp_out_file=../simple_test/exp_out_file
exp_out_format=Parameters Compact Permutation
graph_dot_print=1
debugprint=0
debugprint_file=debug.txt
verbose_mode=1
verbose_file=cout

Then if there is the word ‘Compact’, then the algorithm matching scores will be printed

Experiment results:
Alpha I U RANK QCV rand PATH

Gdist 0.000000e+00 5.000000e+01 3.400000e+01 3.800000e+01 1.400000e+01 4.200000e+01 6.000000e+00
F_perm 0.000000e+00 5.813953e-01 3.953488e-01 4.418605e-01 1.627907e-01 4.883721e-01 6.976744e-02
F_exact 0.000000e+00 5.813953e-01 3.953488e-01 4.418605e-01 1.364375e-02 4.883721e-01 6.976744e-02
Time: 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

Here each graph matching method has four associated values: ‘Gdist’ — ||AG−PAHPT ||2F , ‘ F perm’ — Fα(P)
objective function value,‘ F exact’ — some graph matching methods like QCV produce a doubly stochastic matrix
Pe (an approximation of permutation matrix) and then project it on the set of permutation matrices, so ‘ F exact’
is the value of the objective function in Pe. Line ‘Time’ represents algorithm timing in seconds. The first column
‘ Alpha’ is the value of the linear combinaison parameter α.

Note, that because of possible numeric scaling problems, we use the normalized version of the objective function
Fα(P). If ||AG − PAHPT ||2F and trCT P have completely different scales then it may be difficult to find a good α.
The normalized version, that we use, has the following form

Fα(P) = (1 − α)
1

||AG||2F + ||AH ||2F
||AG − PAHPT ||2F + α

1

||C||F
trCT P (6)

The last part contains solutions (vertex matching, permutations) produced by different algorithms, this part
will be printed if there is the word ‘Permutation’ in the ‘exp out format’ list.

Permutations:
I U RANK QCV rand PATH
1 2 9 2 1 2
2 10 10 6 6 9
3 4 7 8 5 3
4 1 2 1 4 1
5 3 6 9 8 6
6 8 5 3 9 10
7 7 8 7 7 7
8 5 3 5 3 5
9 6 4 4 2 8
10 9 1 10 10 4

5

Permutations produced by different algorithms are printed in columns. For example, the permutaion produced
by the Umeyama algorithm ‘U’ is the second column (2, 10, 4, 1, 3, 8, 7, 5, 6, 9). It means that the vertex number 1
of the graph graph 1 is matched to the vertex number 2 of graph 2, 2 → 10, 3 → 4 and so on.

If we consider the permutation produced by the PATH algorithm then the corresponding permutation matrix
has the following form

Ppath =

































0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0

































And it can be checked that Gdist=||AG − PpathAHPT
path||

2
F =6,F perm=Fα(Ppath) = 1

||AG||2
F

+||AH ||2
F

||AG −

PpathAHPT
path||

2
F =0.0697.

Now, let’s suppose that in addition to graph adjacency matrices we have the similarity matrix CGH

CGH =

































0.50 0.20 0.60 0.70 1.00 0.20 0.30 0.10 0.30 0.60
0.70 0.60 0.30 0.90 0.90 0.10 0.50 0.50 0.90 0.60
0.10 0.70 0.90 0.10 0.00 0.10 0.30 0.90 0.40 0.60
1.00 0.20 0.50 0.00 0.10 0.30 0.80 0.30 0.20 0.20
0.30 0.40 0.80 0.30 0.60 1.00 0.40 0.80 0.10 0.20
0.50 0.50 1.00 0.30 0.10 0.80 0.50 0.50 0.70 0.60
0.60 0.50 0.40 0.30 0.10 0.30 0.80 0.80 0.50 0.70
0.70 0.00 0.10 0.60 1.00 0.30 0.10 0.10 0.80 0.80
0.60 0.80 0.30 0.10 0.50 0.50 0.70 0.60 0.90 0.00
0.10 0.40 0.50 0.20 0.40 0.20 0.10 0.50 0.80 0.60

































Also we have to set up the value of parameter α, for example, alpha ldh=0.44. All values may be changed in
the config.txt or it can be defined directly in the command line without changing the configuration file

graphm config.txt "C matrix=../simple test/C GH s;alpha ldh=0.44 d;"

Contents of the output file is presented below

Experiment parameters:
graph_1=../simple_test/G
graph_2=../simple_test/H
C_matrix=../simple_test/C_GH
algo=I U RANK QCV rand PATH
algo_init_sol=unif unif unif unif unif unif
solution_file=solution_im.txt
alpha_ldh=0.44
cdesc_matrix=A
cscore_matrix=A
C_matrix_dist=0
hungarian_max=10000
algo_fw_xeps=0.01
algo_fw_feps=0.01
dummy_nodes=0
dummy_nodes_fill=0
dummy_nodes_c_coef=0.01
qcvqcc_lambda_M=10
qcvqcc_lambda_min=1e-05
blast_match=1
blast_match_proj=0
exp_out_file=../simple_test/exp_out_file
exp_out_format=Parameters Compact Permutation
graph_dot_print=1
debugprint=0
debugprint_file=debug.txt
verbose_mode=1
verbose_file=cout
Experiment results:

Alpha I U RANK QCV rand PATH
Gdist 4.400000e-01 5.000000e+01 3.400000e+01 5.000000e+01 3.400000e+01 4.200000e+01 2.600000e+01

6

F_perm 4.400000e-01 -1.394961e-01 -3.158493e-01 -3.960905e-01 -4.842394e-01 -7.932901e-02 -4.962396e-01
F_exact 4.400000e-01 -1.394961e-01 -3.158493e-01 -3.960905e-01 -5.964503e-01 -7.932901e-02 -4.962396e-01
Time: 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00
Permutations:
I U RANK QCV rand PATH
1 2 5 10 1 2
2 10 4 4 6 4
3 4 8 8 5 8
4 1 1 1 4 1
5 3 6 6 8 6
6 6 3 3 9 3
7 7 7 7 7 7
8 5 10 5 3 5
9 8 2 2 2 9
10 9 9 9 10 10

In both cases the PATH algorithm gives the best approximate solution. This example can be found in
test simple. Other examples are presented in test qap (graphs from QAP becnhmark library),test and test large

(large size graphs). In each directory you can just run ./test script to see how it works.

5 Installation

1. First, the GSL (GNU scientific library) should be installed, see http://www.gnu.org/software/gsl/. Usually,
it can be automatically installed by system package managers, for example, apt-get install gsl (Debian,
Ubuntu) or yum install gsl (Fedora, RedHat).

2. download and unpack graphm-*.tar.gz

3. change directory to graphm-*

4. run ./graphm install

The binary file graphm will be created in bin directory. By default, LP algorithm is not included because it needs the
glpk solver. If you want to use LP algorithm, first, you have to install the glpk solver (see www.gnu.org/software/glpk/,
or use a system package manager). On the last step of the installation process you should use ./graphm install

LP.

6 Package extension

This is very easy to add your own algorithm to the package. There are three principal steps

1. Create a child class from the abstract class algorithm (algorithm.h)

class algorithm_thebest : public algorithm

{

public:

virtual match_result match(graph &g,graph &h,gsl_matrix* gm_P_i=NULL, gsl_matrix* gm_ldh=NULL,double

};

You may find this example at algorithm ext.h

2. Write your own graph matching algorithm by redefining the virtual function match (see algorithm ext.cpp)

match_result algorithm_thebest::match(graph& g, graph& h,gsl_matrix* gm_P_i, gsl_matrix* _gm_ldh,double

{

if (bverbose) *gout<<"The best matching algorithm"<<std::endl;

match_result mres; //class with results

gsl_matrix* gm_Ag_d=g.get_descmatrix(cdesc_matrix);//get the adjacency matrix of graph g

gsl_matrix* gm_Ah_d=h.get_descmatrix(cdesc_matrix);//get the adjacency matrix of graph h

//the similarity matrix C is defined in the algorithm class memeber gm_ldh

//dalpha_ldh is corresponding to the linear combination coefficent alpha

7

//YOUR OPERATIONS WITH MATRICES, RESULT IS A PERMUTATION MATRIX P

//do not forget to release the memory

gsl_matrix_free(gm_Ag_d);

gsl_matrix_free(gm_Ag_h);

mres.gm_P=P;//save the solution

mres.gm_P_exact=NULL; //you can save here the matrix which was used as an approximation for P

mres.dres=graph_dist(g,h,mres.gm_P,cscore_matrix);// distance between graph adjacency matrices

return mres;

}

3. Add if (salgo.compare("THEBEST")==0){ return new algorith m thebest;} into
experiment::get algorithm(std::string salgo) (experiment.h).

4. That’s all ! Now, you have to recompile the package by using graphm install, and you can use your
algorithm. For example, you can modify the configuration file by setting algo=THEBEST s.

References

[AS93] H.A. Almohamad and S.O.Duffuaa. A linear programming approach for the weighted graph matching
problem. TPAMI, 15, 1993.

[RJB07] R.Singh, J.Xu, and B.Berger. Pairwise global alignment of protein interaction networks by matching
neighborhood topology. Research in Computantional Molecular Biology, 4453:16–31, 2007.

[Ume88] Shinji Umeyama. An eigendecomposition approach to weighted graph matching problems. Transaction

on pattern analysis and machine intelligence, 10, 1988.

[ZBV08] Mikhail Zaslavskiy, Firancis Bach, and Jean-Philippe Vert. A path following algorithm for graph matching
problem. arXiv:0801.3654v1, 2008.

8

