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Abstract. Models of unobserved heterogeneity, or frailty as it is commonly known
in survival analysis, can often be formulated as semiparametric mixture models and
estimated by maximum likelihood as proposed by Robbins (1950) and elaborated
by Kiefer and Wolfowitz (1956). Recent developments in convex optimization, as
noted by Koenker and Mizera (2014b), have led to dramatic improvements in com-
putational methods for such models. In this vignette we describe an implementation
contained in the R package REBayes with applications to a wide variety of mixture
settings: Gaussian location and scale, Poisson and binomial mixtures for discrete
data, Weibull and Gompertz models for survival data, and several Gaussian models
intended for longitudinal data. While the dimension of the nonparametric hetero-
geneity of these models is inherently limited by our present gridding strategy, we
describe how additional fixed parameters can be relatively easily accommodated
via profile likelihood. We also describe some nonparametric maximum likelihood
methods for shape and norm constrained density estimation that employ related
computational methods.

1. Introduction

Empirical Bayes methods as conceived by Robbins (1956) are enjoying a robust
revival stimulated by more bountiful data sources and new theoretical developments
exemplified by Efron (2010). Mixture models have played a central role in this revival,
and this has sparked renewed interest in the Kiefer and Wolfowitz (1956) nonparamet-
ric maximum likelihood estimator (NPMLE) for mixtures. Relatively recent devel-
opments in convex optimization have dramatically improved computational methods
for the Kiefer-Wolfowitz NPMLE, as described in Koenker and Mizera (2014b). To
make these methods accessible to the research community we have developed an R
package REBayes that incorporates a wide variety of nonparametric mixture models
and provides Kiefer-Wolfowitz procedures for each of them.

The simplest univariate mixture model takes the form,

g(x) =

∫
ϕ(x, θ)dF (θ),

where ϕ is a known density, that we will refer to as the base density, and F is an
unknown distribution function that we would like to estimate, given an iid sample from
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the mixture density g. The most familiar example would be the Gaussian location
model with ϕ standard Gaussian, so,

g(x) =

∫
ϕ(x− µ)dF (µ).

This is the standard Gaussian sequence model and has been studied in many sim-
ulation experiments, including Johnstone and Silverman (2004), Martin and Walker
(2014) and Castillo and van der Vaart (2012), and employed in many – typically ge-
nomic – applications. The objective of such analyses is a compound decision problem:
Given an exchangeable sample, X1, ...Xn estimate the corresponding µ1, ...µn subject
to quadratic loss. As noted by Robbins (1956) this yields the optimal Bayes rule,

(1) E(µ|x) = x+ g′(x)/g(x).

Efron (2011) calls this Tweedie’s formula since Robbins attributes it to M.C.K.
Tweedie, however it appears earlier in Dyson (1926) who credits it to the English
astronomer Arthur Eddington. To turn this into a practical shrinkage formula we
obviously need to choose an estimator for the mixture density g. Much of the ear-
lier literature on this problem may be viewed as offering parametric empirical Bayes
proposals in which F is specified up to a finite dimensional vector of hyperparame-
ters. Prominent examples of this parametric strategy would be the EbayesThresh
package described in Johnstone and Silverman (2004) and Johnstone and Silverman
(2005), and the recent work of Efron (2016) and Efron (2010). In Gu and Koenker
(2016a) we have made some comparisons with nonparametric Bayes procedures based
on the Dirichlet process prior using the DPpackage of Jara et al. (2011). In our lim-
ited experience this leads to similar estimates of the mixing distribution as those of
the NPMLE provided that the concentration parameter of the Dirichlet is small. See
Liu (1996) for another comparison of Dirichlet and NPMLE methods.

More recently interest has focused on nonparametric estimation of the mixing dis-
tribution as in Efron (2011), Brown and Greenshtein (2009) and Jiang and Zhang
(2009). The latter authors proposed using the Kiefer-Wolfowitz NPMLE to estimate
F , and thereby g, and then to use the Tweedie formula. The main drawback of this
proposal was the painfully slow convergence of the fixed point iteration of the EM
algorithm used to compute the NPMLE. Koenker and Mizera (2014b), observing that
the discretization suggested by Jiang and Zhang (2009) produced a convenient, finite
dimensional convex optimization problem showed that the NPMLE could be imple-
mented much more efficiently by standard interior point methods. In the next section
we will briefly describe this implementation, and then turn to descriptions of various
applications. Other recent applications of the REBayes package may be found in
Dicker and Zhao (2016) and Jiang and Zhang (2015).

The extensive literature on estimating finite mixture models, that is models with a
prespecified number of parametric components, faces a number of challenging prob-
lems: potentially unbounded and multi-modal likelihoods, lack of identifiability, as
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well as selection of the number of components. The Kiefer and Wolfowitz NPMLE
enjoys several important advantages over these finite mixture models. Because it is
formulated as a discretized convex optimization problem, it is automatically assured to
produce a unique solution with both the location and associated mass of the mixture
components determined by the optimization of the likelihood. Positivity of the mass
associated with mixture components also ensures a strong form of parsimony as we
shall see, so the mixture distribution is encoded by a relatively simple discrete mixing
distribution. In the next section we will describe our implementation of the Kiefer-
Wolfowitz NPMLE, further details are provided in Koenker and Mizera (2014b). As
a practical matter the optimization requires an algorithmic approach capable of deal-
ing with a quite general class of additively separable likelihoods optimized subject to
both linear equality and inequality constraints. For this purpose we have found the
Mosek environment of Andersen (2010), and the associated R interface Rmosek of
Friberg (2012) to be highly efficient and reliable. Koenker and Mizera (2014a) provide
a broader survey of convex optimization methods for the R environment, including
a brief mention of some basic REBayes functionality and further details regarding
the general capabilities of Mosek. Installation of Mosek and Rmosek are described
in detail in the Readme file in the “inst” directory of the REBayes package. Various
options controlling Mosek optimizing behavior can be passed via the REBayes fitting
functions. Among these rtol and verb that control the convergence tolerance and
the verbosity of the optimization printed output are most frequently useful. While
we have endeavored to choose sensible default values for these and other parameters
some experimentation may be required in unusual cases.

2. Computation of the Kiefer-Wolfowitz NPMLE

It is easy to see that the primal problem

(2) min
F∈F
{−

n∑
i=1

log g(xi) | g(xi) =

∫
ϕ(xi, θ)dF (θ), i = 1, ..., n},

where F denotes the set of all mixing distributions, is a convex program. We seek
to minimize a strictly convex objective function subject to linear equality constraints
over the convex set, F . The dual formulation of the problem is also illuminating.

Theorem 1. (Koenker and Mizera (2014b)) The solution, F̂ , of (2) exists, and is
an atomic probability measure, with not more than n atoms. The locations, µ̂j, and

the masses, f̂j, at these locations can be found via the following dual characterization:
the solution, ν̂, of

(3) max{
n∑
i=1

log νi |
n∑
i=1

νiϕ(Yi, µ) ≤ n for all µ}
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satisfies the extremal equations (n equations in less than n variables)

(4)
∑
j

ϕ(Yi, µ̂j)f̂j =
1

ν̂i
,

and µ̂j are exactly those µ where the dual constraint is active—that is, the constraint
function in (3) is equal to n.

The dual formulation reduces the objective function to a simple finite dimensional
sum, albeit now with an infinite dimensional constraint. The upper bound of n on the
number of atoms, established under slightly stronger conditions by Lindsay (1983),
encourages us in the quest for a discrete formulation. We should hasten to add
that we have no assurances about where these atoms occur, in particular it is clear
already from an example in Laird (1978) that they need not occur at the observed
xi. Laird (1978) proposed using the EM algorithm to solve a discretization of the
primal problem (2) and subsequent authors, notably Heckman and Singer (1984) and
Jiang and Zhang (2009), have followed her lead. However, as has been frequently
observed, EM can be quite lethargic in its pursuit of the optimum. Koenker and
Mizera (2014b) describe some comparisons of a fixed point EM algorithm with the
interior point method implemented in Mosek. For a relatively small Gaussian location
mixture problem with n = 200 and a grid of 300 points for the mixing distribution
for µ, the interior point method produced a very precise solution in about 1 second
and 15 iterations, while after 10 minutes and 100,000 iterations the EM algorithm
was still struggling to obtain the same accuracy as the interior point solution.

In our discrete formulation we consider a fixed grid, {u1, ..., um}, of potential sup-
port points for the mixing distribution, F . Typically, m is a few hundred, and the
grid is equally spaced, but this can be easily adapted to particular applications. We
denote by A an n by m matrix, with the elements ϕ(Yi, uj) in the i-th row and j-th
column. The discrete version of the primal problem is then,

min
f∈Rm
{−

n∑
i=1

log(gi) | Af = g, f ∈ S},

where S denotes the unit simplex in Rm, i.e., S = {s ∈ Rm|1>s = 1, s ≥ 0}. So

fj denotes the estimated mixing density estimate f̂ evaluated at the grid point uj,
and gi denotes the estimated mixture density estimate, ĝ, evaluated at Yi. In our
experience it is somewhat more efficient to solve the corresponding dual problem,

max
ν∈Rn
{

n∑
i=1

log νi | A>ν ≤ n1m, ν ≥ 0},

and subsequently recover the primal solution. In the REBayes package we have
implemented this dual solution method for a wide variety of mixture problems that we
will describe in subsequent sections. It is frequently convenient to consider weighted
MLE formulations so REBayes fitting functions make some provision for weights.
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The implementation relies heavily on the Mosek optimization software of Andersen
(2010) and its R interface package Rmosek, Friberg (2012).

3. Gaussian mixture models

Gaussian mixture models are a natural point of departure for application of the
foregoing methods. We will begin by describing usage in the simplest Gaussian se-
quence models. Some connections to multiple testing are described in the following
subsection. Gaussian scale mixtures are then considered, followed by some brief re-
marks on Gaussian longitudinal models where heterogeneity in both location and
scale comes into play. The section concludes with a cautionary parable concerning
Gaussian location-scale mixtures in non-longitudinal settings.

3.1. Needles in haystacks. To illustrate our methods in the simplest possible set-
ting, consider the simulation framework of Johnstone and Silverman (2004): we have
Xi ∼ N (µi, 1), i = 1, ..., n, with s of the µi = µ0 6= 0 and the remainder, µi = 0.
When s is reasonably large relative to n and µ0 is well separated from zero, then it
should be easy to distinguish the two mass points of the mixture. Suppose we take
n = 1000 and s = 100 with µ0 = 2 then the mixture density looks like that illustrated
in in the left panel of Figure 1. In the middle panel of the figure we plot the NPMLE
estimate of the mixing ”density,” which puts most of the mass near zero, and the re-
mainder at a value slightly greater than two. The reader is encouraged to repeat this
exercise to gauge the reliability of the NPMLE procedure with the R code reproduced
below. Finally, in the right panel we illustrate the Bayes rule for predicting µi given
observations at various values between -5 and +6. It may be noted that not only are
observations below zero shrunken aggressively toward zero, but observations above
two are also shrunken toward the estimated prior mass point near two. Observations
between zero and two are, given the estimated mixing distribution, more ambiguous
and the Bayes rule must account for both mass points in computing its conditional
expectation.

R> # A simple Gaussian mixture model

R> par(mfrow = c(1,3))

R> x <- seq(-5, 6, by = 0.05)

R> plot(x, 0.9 * dnorm(x,0) + 0.1 * dnorm(x,2), type = "l",

+ xlab = "x", ylab = expression(g(x)), main = "")

R> y <- rep(c(0,2), times = c(900,100)) + rnorm(1000)

R> z <- GLmix(y)

R> plot(z, xlab = expression(mu), ylab = expression(f(mu)), main = "")

R> plot(x, predict(z,x), type = "l", ylab = expression(delta(x)))

The Tweedie shrinkage strategy depicted in Figure 1 is effective not only in shrink-
ing the observations with µi = 0 toward zero, but also in shrinking the non-null µi = 2
observations toward two. This helps to explain the good performance of the NPMLE
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Figure 1. Kiefer Wolfowitz Estimation of a Gaussian Location Mix-
ture: The left panel is the (unknown) two component mixture density,
the middle panel is the estimated NPMLE mixing density and the right
panel is the estimated Bayes rule for predicting µ̂ = δ(x) based on see-
ing an observation x.

described in Koenker (2014) relative to the thresholding and parametric empirical
Bayes procedures of Johnstone and Silverman (2004), Martin and Walker (2014) and
Castillo and van der Vaart (2012). These competitors are quite good at shrinking the
null observations toward zero, unlike the NPMLE they know that there is mass at
zero, but they tend to leave the non-null observations alone and this tends to inflate
their mean squared error. This observation raises the natural question how would the
NPMLE do when the non-null observations came from a more diffuse distribution?

In Figure 2 we illustrate similar performance for a Gaussian location mixture in
which 200 of the 1000 observations have µi’s drawn from a N (2, 1) distribution. The
true mixture density looks quite similar to the prior example, but the NPMLE now
identifies three distinct mass points, one large one near zero, a smaller one near
two and a very small mass point at about 4.5. The Bayes rule is still quite sure
that negative xi should be pulled toward zero, and observations near two are nudged
toward two. But despite its small mass the upper mass point of the estimated mixing
distribution exerts a substantial effect. Only when we see extremely large observations
bigger than 4.5 are they pulled back toward this largest mass point. This example is
considerably more challenging than the previous one, but nevertheless the empirical
Tweedie formula produced by the NPMLE provides a reasonable approach.

R> # Another simple Gaussian mixture model

R> par(mfrow = c(1,3))

R> x <- seq(-5, 7, by = 0.05)

R> plot(x, 0.8 * dnorm(x,0) + 0.2 * dnorm(x,2,sqrt(2)), type = "l",
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Figure 2. Kiefer Wolfowitz Estimation of a Gaussian Location Mix-
ture: The left panel is the (unknown) mixture density, the middle panel
is the estimated NPMLE mixing density and the right panel is the esti-
mated Bayes rule for predicting µ̂ = δ(x) based on seeing an observation
x.

+ xlab = "x", ylab = "g(x)", main = "")

R> y <- c(rep(0,800), rnorm(200, 2)) + rnorm(1000)

R> z <- GLmix(y)

R> plot(z, xlab = expression(mu), ylab = expression(f(mu)), main = "")

R> plot(x, predict(z,x), type = "l", ylab = expression(delta(x)))

In the foregoing examples we have employed the posterior mean as a prediction
assuming implicitly that we faced quadratic loss, however it is straightforward to
adopt other loss functions and provide alternative predictions. For GLmix fitted ob-
jects predict.GLmix allows the user to specify posterior median or posterior modal
prediction by setting the argument Loss equal to 1 or 0, respectively. If Loss is spec-
ified as a value τ between zero and one, predictions return the posterior τth quantile.
Empirical Bayes posterior quantile prediction is considered in Mukherjee et al. (2016)
although they restrict attention to linear shrinkage rules. They reference a large lit-
erature on the so-called “newsvendor” problem going back to Edgeworth (1888) that
motivates the quantile loss function. Analogous predict functions are also available
for Poisson, i.e. Pmix, and binomial, i.e. Bmix, fitted objects.

3.2. Gaussian mixtures and multiple testing. Robbins (1951) introduced com-
pound decision making with the following (deceptively) simple problem. Suppose we
observe,

(5) Yi = θi + ui, i = 1, · · · , n,
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with {ui} iid standard Gaussian, and we know that the θi take values ±1. The
objective is to estimate the n-vector, θ ∈ {−1, 1}n subject to `1 loss,

L(θ̂, θ) = n−1
n∑
i=1

|θ̂i − θi|.

He observes that when n = 1 the least favorable version of the problem occurs when
we assume that the θi’s are drawn as independent Bernoulli’s with probability p = 1/2
that θi = ±1, and then he proceeds to show that this remains true for the general
“compound decision” problem with n ≥ 1. The minimax decision rule is thus,

δ1/2(y) = sgn(y)

and yields constant risk,

R(δ1/2, θ) = EL(δ1/2(Y ), θ) = Φ(−1) ≈ 0.1586,

irrespective of p. And yet, something feels wrong with this procedure. If we saw
mostly positive Yi’s wouldn’t we begin to think that p 6= 1/2? Why are we so attached
to the worst case scenario? Exploiting the common structure of the n problems,
Robbins suggests estimating p by p̂ = (ȳ + 1)/2. Given this method of moments
estimate of p, he suggests plugging it into the decision rule,

δp(y) = sgn(y − 1/2 log((1− p)/p)),

a procedure that follows immediately from the requirement that,

P (θ = 1|x, p) =
pϕ(x− 1)

pϕ(x− 1) + (1− p)ϕ(x+ 1)
,

exceeds one half, that is, that the posterior median of θ be 1. This prototype empirical
Bayes procedure sacrifices a little in performance when p is really near 1/2, but
achieves substantial gains in performance when p differs substantially from 1/2. Of
course, when n is large, p̂→ p, so we have a form of asymptotic optimality.

The link to the multiple testing literature for the Robbins problem is immediately
clear since estimation of θ ∈ {−1, 1}n is essentially a testing problem in which we
have weighed false discovery and false non-discovery equally. If we treat θ = −1
as the null hypothesis and θ = 1 as the alternative, a p-value procedure based on
Ti = 1− Φ(Xi + 1) with cutoff Φ(−1) the decision rule,

δp(T ) = sgn(Φ(−1)− T )

is equivalent to the minimax rule, δ(x) = sgn(x). If, instead, we would like to fix
the marginal false discovery rate (mFDR) at some level and optimize marginal false
nondiscovery rate (mFNR) a modified p-value cutoff can be constructed, and this
would be equivalent to replacing our symmetric `1 loss for the estimation/classification
problem by an asymmetric linear loss.
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A p-value testing procedure that is equivalent to the empirical Bayes rule estimator
described earlier for the Robbins problem can also be constructed. Under the null
that Xi ∼ N (−1, 1), Ti = 1− Φ(Xi + 1) ∼ U [0, 1], while if Xi ∼ N (1, 1),

P(Ti < u) = P(Xi + 1 > Φ−1(1− u)) = 1− Φ(Φ−1(1− u)− 2).

Thus, under the null, the density of T is f0(t) ≡ 1, and under the alternative,

f1(t) = ϕ(Φ−1(1− t)− 2)/ϕ(Φ−1(1− t)),
and the posterior probability of θi = 1 given ti and assuming for the moment that
the unconditional probability, p = P(θi = 1) is known, is given by,

P(θ = 1|t, p) =
pf1(t)

pf1(t) + (1− p)f0(t)
.

Under symmetric loss we were led to the posterior median so θ̂i = 1 if P(θi = 1|Ti, p) >
1/2, which is equivalent to the p-value rule,

Ti < 1− Φ(1 + 0.5 log((1− p)/p)).
Again, we are led back to the problem of estimating p. In these two point mixture
problems `1 loss is equivalent to 0−1 loss since the median and the mode are identical.

In Gu and Koenker (2016b) we explore some extensions of this simple setting to
several other multiple testing problems. We first consider a grouped setting in which
we have,

Yij = θij + uij, i = 1, · · · , n, j = 1, · · · ,m,
with {uij} iid standard Gaussian as before, and θij = 1 with probability pi and
θij = −1 with probability 1− pi, and independent over j = 1, · · · ,m. In this frame-
work we can consider “group specific” pi that vary within the full sample yielding a
nonparametric mixture problem. In the multiple testing context this grouped model
has been considered by Efron (2008) and Sun and Cai (2007) among others. This
formulation leads us back to the Kiefer and Wolfowitz NPMLE. We also consider
abandoning the rather implausible assumption that we know the support points of
the θ’s. This allows us to consider multiple testing rules for more realistic settings with
both composite null and alternatives. Comparing performance of these rules with the
empirical characteristic function procedures of Sun and McLain (2012) shows very
favorable performance.

3.3. Gaussian scale mixtures. Gaussian scale mixtures can be estimated in much
the same way that we have described for location mixtures. Suppose we now observe
an unbalanced panel,

yit =
√
θiuit, t = 1, · · · ,mi, i = 1, · · · , n

with uit ∼ N (0, 1). Sufficiency reduces the sample to n observations on Si =
m−1i

∑mi

t=1 y
2
it, and thus Si has a gamma distribution with shape parameter, ri = mi/2,
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and scale parameter θi/ri, i.e.,

γ(Si|ri, θi/ri) =
1

Γ(ri)(θi/ri)ri
Sri−1i exp{−Siri/θi},

and the marginal density of Si when the θi are iid from F is

g(Si) =

∫
γ(Si|ri, θ/ri)dF (θ).

Estimation of F proceeds as in the location mixture setting except that now the
matrix A has typical element γ(Si|θj) with θj’s constituting a fine grid covering the
support of the sample Si’s. This can be implemented in REBayes with the function
GVmix, which may be seen as a general procedure for scale mixtures of χ2. A yet more
general procedure for scale mixtures of gamma random variables is provided by the
function gammamix. Robbins (1982) contains an early discussion of parametric empir-
ical Bayes methods for scale mixture of Gaussians, van der Vaart (1996) considers the
semiparametric efficiency for the same model with an additional unknown location
parameter. The scale mixture of Gaussians is also a crucial building block for the
more general location-scale mixture we have considered in the longitudinal setting.

An application of the Gaussian scale mixture procedure is described in Koenker
(2013) where a simple bivariate linear regression model,

Yi = β0 + xiβ1 + Ui

is considered. The ui are assumed to be generated iidly from a scale mixture of
Gaussians, so U2

i have mixture density,

g(v) =

∫ ∞
0

γ(v|θ)dF (θ)

where θ = σ2, and γ is the χ2(1) density with free scale parameter θ,

γ(v|θ) =
1

Γ(1/2)
√

2θ
v−1/2 exp(−v/(2θ))

Given a preliminary estimate of the β parameters we can estimate the mixing distri-
bution F based on the sample of û2i ’s, and this in turn can be used to estimate the
score function,

ψ̂(u) = (− log ĝ(u))′ =

∫
uϕ(u/σ)/σ3dF̂ (σ)∫
ϕ(u/σ)/σdF̂ (σ)

,

used to reestimate β. Iterating this procedure may be seen as our first encounter with
Kiefer-Wolfowitz profile likelihood and can be shown to achieve an asymptotically
fully efficient regression estimator for the class linear models with iid scale mixture
of Gaussian errors.
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3.4. Longitudinal Gaussian models. Longitudinal data allow us to explore het-
erogeneity in both location and scale for Gaussian Models. Let’s begin by considering
the model,

yit = αi +
√
θiuit, t = 1, · · · ,mi, i = 1, · · · , n

with uit ∼ N (0, 1). We will provisionally assume that αi ∼ Fα and θi ∼ Fθ are
independent. Again, we have sufficient statistics:

ȳi|αi, θi ∼ N (αi, θi/mi)

and
Si|ri, θi ∼ γ(Si|ri, θi/ri),

where ri = (mi−1)/2, Si = (mi−1)−1
∑mi

t=1(yit− ȳi)2, and the log likelihood becomes,

`(Fα, Fθ|y) = K(y)+
n∑
i=1

log

∫ ∫
γ(Si|ri, θ/ri)

√
miφ(

√
mi(ȳi−αi)/

√
θ)/
√
θdFα(α)dFθ(θ).

Since the scale component of the log likelihood is additively separable from the
location component, we can solve for F̂θ in a preliminary step, as in the previous sub-
section, and then solve for the F̂α distribution. In fact, under the independent prior
assumption, we can re-express the Gaussian component of the likelihood as Student-t
and thereby eliminate the dependence on θ in the Kiefer-Wolfowitz problem for esti-
mating Fα. An implementation is available in the function WTLVmix of REBayes. Gu
and Koenker (2016a) describe an application to predicting baseball batting averages
in which following Brown (2008) averages are transformed to normality, and the θ’s
reflect either under or over dispersion relative to the standard binomial model. Again,
profile likelihood is used to explore covariate effects embedded in this model of het-
erogeneity. In particular we estimate an age profile for batting prowess as a quadratic
effect that peaks at age 27. Comparing predictive performance for this model we find
that the independent prior NPMLE performs considerably better than its more naive
competitors.

It is also possible to relax the independence assumption on the location and scale
effects. In Gu and Koenker (2016c) we use longitudinal data from the Panel Study on
Income Dynamics (PSID) to study models of income dynamics with an arbitrary joint
distribution of location and scale heterogeneity. In these models we estimate an AR(1)
effect by profile likelihood. The implementation for these models uses the function
WGLVmix and requires a bivariate gridding strategy for the mixing distribution. We
find that there is a distinct negative dependence between the α (location) and θ scale
effects indicating that low “ability” individuals also tend to be high income variability
people. Accounting for heterogeneity in scale has an acute effect on the estimation
of the AR(1) effect reducing what is often regarded as a unit root effect to a rather
mild ρ ≈ 0.5 effect. The Bayesian formulation of these models offers the significant
additional advantage that it affords a convenient environment for forecasting future
income trajectories.



12 ROGER KOENKER AND JIAYING GU

3.5. The parable of the crabs: A cautionary tale. The first formal estimation
of a mixture model in statistics seems to have been Karl Pearson’s 1894 analysis of
the ratio of ”forehead breadth” to body length of 1000 crabs sampled from the Bay of
Naples by the prominent biologist W.F.R. Weldon. Pearson estimated a two compo-
nent normal mixture model by the method of moments, a truly heroic computational
effort given the technology of the time. He allowed his two normal components to
have distinct means and variances so together with the relative weight of the two
components he had five parameters. Modern (EM) methods are capable of producing
similar results, although they are quite sensitive to the choice of initial values. It
is thus tempting to ask: Can the Kiefer-Wolfowitz NPMLE offer any further insight
into such problems.

The short answer, unfortunately, is no. The immediate difficulty one encounters
is that in contrast to our baseball application, or the income dynamics model, there
is no longitudinal dimension to the data. All we have is a single sample, a basket of
crabs. If we were to assume that we had simply a location mixture, or simply a scale
mixture, it would be easy to estimate the mixing distribution with the NPMLE. But
if we try to emulate Pearson and estimate a nonparametric location and scale mixture
we are headed for a Dirac catastrophe. For each observation, we are entitled to assign
a distinct mixing value µi = xi, corresponding to these µi we are also entitled to
assign a σi = 0, and to each of these points (µi, σi) = (xi, 0) i = 1, ..., n we can
assign mass 1/n. The likelihood explodes and our mixing distribution has collapsed
to the familiar empirical distribution.

The moral of this fable is this: Sorting a basket of crabs is tougher than it might
seem. Kiefer and Wolfowitz knew a thing or two about this; the final paragraph
of their 1956 paper points the fundamental difficulty of the location-scale Gaussian
mixture model, and earlier they had already pointed out that the empirical distribu-
tion function was, itself, an MLE, of a sort. Teicher (1967) provides a more formal
discussion.

4. Mixture models for counts

The Kiefer-Wolfowitz NPMLE can also be useful in analyzing discrete random vari-
ables such as count data where unobserved heterogeneity also arises naturally. Many
applications involve count data as an object of interest: the number of patents across
firms or industries, the number of hospital visits among patients, or the number of
claims in insurance applications. The typical model for analyzing such data is Pois-
son regression. Often, however, even after accounting for observed covariates, there
remains some over or under-dispersion in the data, indicating a need to introduce
additional unobserved heterogeneity into the Poisson model. When handling this un-
observed heterogeneity, a parametric model is typically imposed on the heterogeneity
distribution in the literature. We illustrate below how the NPMLE provides a more
flexible nonparametric approach for handling unobserved heterogeneity in Poisson
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models based on a model for the number of claims for a group life insurance policy.
We also point out some advantages of NPMLE over the linear credibility estimators
that are widely used for experience rating of insurance contracts. For a detailed
discussion of credibility theory in actuarial science see Bühlmann and Gisler (2005).

Our data, first analyzed in Norberg (1989), consists of a portfolio of Norwegian
workmen’s group life insurance policies. The original 1125 contracts are aggregated
into 72 occupational categories and consists of the total number of deaths Xi (number
of claims) and the total number of years exposed to risk Ei for i = 1, . . . , 72 for each
occupational group. This data is available from REBayes as data("Norberg").
Data on the 1125 individual contracts is only partially documented in Norberg (1989),
so we resort to the 72 occupation group data that is documented in Haastrup (2000)
and is provided in the dataset Norberg in the REBayes package. Figure 3 illustrates
the histogram of the ratio of Xi and Ei.

Following Norberg (1989), we assume a Poisson model for Xi, so conditional on iid
θi ∼ G,

Xi ∼ Poisson(θiEi)

Here Ei is renormalized by a factor of 344 as in Haastrup (2000), and can be in-
terpreted as the à priori expected number of claims in the period of contract. The
multiplicative unobserved (occupational) specific factor θi then accounts for the fact
that various occupations have different risk profiles that are not observed, but can
be indirectly inferred by the observed number of claims. In classical credibility the-
ory this leads to insurance premiums tailored to individual risk profiles based on the
observed claims and exposures that have occurred. Rather than assuming that the
distribution G belongs to a particular parametric class as in Norberg (1989) and Haas-
trup (2000), we adapt the Kiefer-Wolfowitz NPMLE to this task. Haastrup (2000)
also conducts a nonparametric Bayesian analysis with a Dirichlet Process prior using
Gamma distribution as a base, our methods serve as a nonparametric empirical Bayes
contrast to his results.

R> # Parametric Gamma vs Poisson mixture models for insurance claims

R> data("Norberg")

R> E <- Norberg$Exposure/344

R> X <- Norberg$Death

R> hist(X/E, 90, freq = TRUE, xlab = "X/E", main = "", ylab = "Frequency")

R> # Maximum likelihood estimation of the Gamma model

R> logL<- function(par, x, e){

+ f <- choose(x + par[1] - 1, x) *

+ (par[2]/(e + par[2]))^par[1] * (e/(e+par[2]))^x

+ -sum(log(f))

+ }

R> z <- optim(c(5,5), logL, x = X, e = E, hessian = TRUE)

R> sez <- sqrt(diag(solve(z$hessian)))
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Figure 3. Histogram of Claims per Exposure for 72 occupation groups.

R> z <- z$par

R> # Estimation of the Poisson mixture model

R> f = Pmix(X, v = 1000, exposure = E, rtol = 1e-10)

R> # Now plot the comparison

R> par(mfrow=c(1,2))

R> plot(f$x,f$y/sum(f$y), type="l", xlab = expression(theta),

+ ylab = expression(f(theta)), ylim = c(0,1))

R> lines(f$x, dgamma(f$x, shape = z[1], rate = z[2]), col = 2)

R> plot(f$x,(f$y/sum(f$y))^(1/3), type="l", xlab = expression(theta),

+ ylab = expression(f(theta)^{1/3}), ylim = c(0,1))

Figure 4 contrasts the NPMLE estimator with the corresponding parametric em-
pirical Bayes estimates assuming that G follows a Gamma distribution. The main
reason for adopting the Gamma mixing distribution is analytical convenience. With
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Figure 4. Estimated mixing distribution G for θ for the group in-
surance data. The left panel depicts to the Kiefer-Wolfowitz NPMLE
estimator for G with 1000 grid points. The right panel depicts the
cube root of the mass associated with support points around 8. The
smooth curve superimposed in the left panel corresponds to the para-
metric maximum likelihood estimate of the mixing density assuming G
follows a Gamma distribution.

θi ∼ Gamma(α, β), the marginal distribution of Xi follows a negative binomial dis-
tribution

g(Xi|Ei) =

∫
(θEi)

Xi exp(−θEi)
Xi!

βα

Γ(α)
θα−1 exp(−βθ)dθ

=

(
Xi + α− 1

Xi

)(
β

Ei + β

)α(
Ei

Ei + β

)Xi

The maximum likelihood estimates are α = 6.02 and β = 5.25. The credibility
estimator of the risk per exposure leads to

θ̂i = δiXi/Ei + (1− δi)E(θ)
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with E(θ) =
∫
θdG(θ) and δi = V(θ)

V(θ)+E(θ)/Ei
. Under the parametric assumption that

G is Gamma(α, β), it is easy to see that E(θ) = α/β and V (θ) = α/β2, hence

θ̂i = Xi+α
Ei+β

, which is nothing but E(θ|Xi, Ei) from the Poisson-Gamma mixture model.
The Gamma assumption on G leads to a convenient analytical form for the credibility
estimator, but since it may produce a rather unrealistic estimator of the underlying
mixing distribution the premium calculation of the parametric credibility estimator
may be questionable.

In Figure 4 we see that although the majority of the support points seem to situated
under the “umbrella” of the Gamma density, the Gamma distribution fails to detect
the two outliers (Group 13 and Group 53, with X/E ratios equal to 8.89 and 7.98
respectively) that account for the remote mass point around 8. In the right panel
of Figure 4, we plot the cube root of the estimated mixing distribution and magnify
the very small yet important mass point around 8. One may argue that these two
occupational groups could be viewed as outliers and hence should not be allowed to
influence our views about the distribution of the unobserved risk factor θ. However,
an insurance company would ignore them at its peril.

For our general mixing distribution NPMLE estimator Ĝ, the credibility estimator
then becomes,

µ̂ = E(θ|Xi, Ei) =

∫
θ (θEi)

Xi exp(−θEi)
Xi!

dĜ(θ)∫ (θEi)Xi exp(−θEi)
Xi!

dĜ(θ)

Figure 5 contrasts the θ̂i based on the parametric Poisson-Gamma empirical Bayes
estimator and those based on the nonparametric Poisson mixture model. We can
see that for most of the occupational groups, the two estimators agree closely except
for the two most extreme case (Group 13 and 53), that have the largest X/E ratio.
The nonparametric empirical Bayes procedure, relying on the mass point associated
with a much larger support point, produces substantially larger credibility estimator
for these “riskier” groups, thereby justifying a higher premium. The Pmix function
produces the Bayes rule automatically with an output denoted as dy, as illustrated
in the code below.

R> # Bayes rules for insurance application

R> PBrule <- (X + z[1])/(E + z[2])

R> NPBrule <- f$dy

R> plot(PBrule, NPBrule, cex = 0.5,

+ xlab = "P-EBayes", ylab = "NP-EBayes")

R> abline(c(0,1))

5. Fraility models in survival analysis

The notion of frailty to describe unobserved heterogeneity of population risks has
become a familiar feature of demographic analysis since its introduction in Vaupel
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Figure 5. Comparison of the Parametric and the Nonparametric Em-
pirical Bayes estimator of θi for 72 occupation groups. As indicated by
the 45 degree line there is good agreement between the parametric and
nonparametric Bayes rules except for the two groups appearing in the
upper right corner of the plot.

et al. (1979), and has gradually spread to other statistical domains. It is tempting to
begin a survival analysis by specifying a simple parametric model for the survival dis-
tribution, say the Weibull, and then on further reflection decide that a more flexible
approach is necessary. One way to introduce such flexibility is to consider mixtures of
the original simple model, for example by letting the scale parameter of the Weibull
be random. This sort of thinking leads to deeper concerns about the nature of ran-
domness touched upon by Aalen et al. (2008). Do we really believe that individual
subjects are assigned a scale parameter and then fated to draw a survival date from
the corresponding Weibull? Or should we instead just regard the population survival
distribution as adequately approximated by the scale mixture? In the absence of fur-
ther information to distinguish subpopulations it is difficult to see how to untangle
these two interpretations, and we will not try to pursue this. Instead, we will illus-
trate what can be done with our Kiefer-Wolfowitz apparatus in a reanalysis of the
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influential Carey et al. (1992) experiments on medfly mortality. The primary objec-
tive of these experiments was to characterize the upper tail of the medfly mortality
distribution, an endeavor that revealed several surprising biological features.

• Mortality rates declined at advanced ages, contrary to conventional biological
wisdom that ageing was an inexorable process of physical decline,
• The survival distribution had an extremely heavy tail, contrary to the common

view that each species had an explicit upper bound on survival propects,
• Gender cross-over in mortality rates gave males an advantage at early ages

and females an advantage at advanced ages, reversing expectations from other
species.

In the largest of the three experiments reported in Carey et al. (1992), 1.2 million
Mediterranean fruit flies (Ceratitis Capitata) were raised in a large facility in Mexico,

“...Pupae were sorted into one of five size classes using a pupal sorter.
This enabled size dimorphism to be eliminated as a potential source of
sex-specific mortality differences. Approximately, 7,200 medflies (both
sexes) of a given size class were maintained in each of 167 mesh covered,
15 cm by 60 cm by 90 cm aluminum cages. Adults were given a diet
of sugar and water, ad libitum, and each day dead flies were removed,
counted and their sex determined ...”

Data from this experiment is available from the REBayes with further details doc-
umented there.

All three of the principle conclusions of the study are illustrated in Figure 6. As
specified in the code fragment below we compute daily death counts by age and
gender, allowing us to plot raw mortality rates by gender. We then estimate the
Weibull mixture model using gender specific Weibull shape parameters as described
in Koenker and Gu (2013). As illustrated in the displayed code, given the estimated
mixing distribution it is easy to compute the hazard functions of the corresponding
mixture distributions.

R> data("flies")

R> attach(flies)

R> # Weibull hazard function

R> hweibull <- function(s,alpha,lambda, f){

+ Lambda<-outer((lambda*s)^(alpha),exp(f$x))

+ Surv <- exp(-Lambda) %*% f$y/sum(f$y)

+ A <- matrix(0, length(s), length(f$x))

+ for (i in 1:length(s)){

+ for (j in 1:length(f$x))

+ A[i,j] <- dweibull(s[i],shape=alpha,

+ scale = lambda^(-1) * (exp(f$x[j]))^(-1/alpha))

+ }

+ g <- A %*% f$y
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+ g/(sum(g)*Surv)

+ }

R> ahat <- c(2.793, 2.909) # Gender specific Weibull shape parameters

R> counts <- tapply(num,list(age,female),"sum")

R> cols <- c("black","grey")

R> labs <- c("Male","Female")

R> # Plot raw and estimated hazard functions by gender

R> for(g in 1:2){

+ gc <- counts[!is.na(counts[,g]),g]

+ freq <- gc/sum(gc)

+ day <- as.numeric(names(gc))

+ atrisk <- rev(cumsum(rev(gc)))

+ h <- rev(diff(rev(c(atrisk,0))))/atrisk

+ fW <- Weibullmix(day, m = 5000, alpha = ahat[g], weight = freq)

+ hW <- hweibull(day, alpha = ahat[g], lambda = 1, fW)

+ if(g == 1){

+ plot(day[1:100],hW[1:100],type="l", xlim = c(0,110),

+ ylim = c(0,.20), xlab = "Day", ylab = "Hazard")

+ points(day[1:100], h[1:100], cex = 0.7)

+ }

+ else{

+ lines(day[1:120],hW[1:120],col = cols[2])

+ points(day[1:100], h[1:100], cex = 0.7, col = cols[2])

+ }

+ legend("topleft", labs, lty = rep(1,2), lwd = 1.5, col=cols)

+ }

A controversial aspect of the Carey experiment was the effect of cage density.
Critics claimed that flies raised in more crowded cages would be more likely to die
earlier. To investigate whether differences in initial cage density had a significant
impact on mortality we can consider a model in which density enters as a linear
multiplicative scale shift in the Weibull model, that is the baseline Weibull scale
becomes θ0 exp(diβ) where di denotes initial cage density. To estimate the density
effect parameter, β, we simply evaluate the profiled likelihood on a grid of values
on the interval [−1, 1], yielding Figure 7. This exercise yields a point estimate of

about β̂ = −0.5 that is quite precise, at least if we are to believe the confidence
bounds implied by the classical Wilks, 2 log λ χ2

1, theory. Leaving the reliability of
such intervals to future investigation, we conclude simply that the negative estimated
coefficient implies that higher density shifts the survival distribution to the right, thus
prolonging lifetimes, and directly contradicting the conjecture of the Carey critics.
This finding is confirmed by other methods, see for example Koenker and Geling
(2001) where similar results are reported for both the Cox model and several quantile
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Figure 6. Raw and estimated mortality rates for Carey medflies by gender

regression models. Profile likelihood is not always so successful in models of this
type, for a cautionary lesson involving estimation of the Weibull shape parameter see
Koenker and Gu (2013).

R> # Profile likelihood estimation of initial cage density effect

R> counts <- tapply(num,list(age, begin),"sum")

R> freq <- c(counts)

R> day <- as.numeric(dimnames(counts)[[1]])

R> den <- as.numeric(dimnames(counts)[[2]])

R> day <- rep(day, 165)

R> den <- rep(den, each = 136)

R> s <- !is.na(freq)

R> day <- day[s]

R> den <- den[s]

R> freq <- freq[s]/sum(freq[s])

R> beta <- -10:10/10

R> logL <- beta

R> for(i in 1:length(beta)){

+ f <- Weibullmix(day, m = 500, alpha = 2.95,

+ lambda = exp(beta[i]*den), weight = freq)
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Figure 7. Initial Cage Density Effect in the Weibull Mixture Model:
Profile Log Likelihood (in 1000’s) for the cage density effect with 0.95
(Wilks) confidence interval in blue.

+ logL[i] <- f$logLik

+ }

R> plot(beta, logL/1000, cex = 0.5, xlab = expression(beta),

+ ylab = "Profile Likelihood")

R> lines(beta, logL/1000)

R> # Wilks interval for cage density effect

R> fsp <- splinefun(beta, max(logL) - logL - qchisq(.95,1)/2)

R> blo <- uniroot(fsp,c(-1,-.5))$root

R> bhi <- uniroot(fsp,c(-.5, 0))$root

R> polygon(c(blo,bhi,bhi,blo), c(-40,-40,-30,-30), col = "lightblue")

5.1. MedLife: Fly-by-night insurance for Mediterranean fruit flies. Imagine
that you have been engaged by MedLife™ to design life insurance contracts for medflies
of various ages. To keep things relatively simple, suppose that you are not allowed
to discriminate on the basis of gender or other observable characteristics, like pupal
size or initial cage density. How should we compute an actuarially fair premium for
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a medfly of age T for a policy that pays 1, if the fly dies between T and T + k.
We will resist speculating on who the beneficiaries of these policies might be or how
double indemnity might be adjudicated. Instead, we will compare our nonparametric
Weibull mixture approach with a more conventional parametric method that assumes
gamma frailty for the Weibull model.

Let’s begin by comparing hazard function estimates for the parametric and non-
parametric specifications. When the frailty distribution is gamma, so,

h(z) =
νη

Γ(η)
zη−1e−νz,

it is convenient to restrict the mean frailty to be one, so ν = η and denote δ = 1/η.
Then for the Weibull base model with hazard function, a(t) = (α/β)(t/β)α−1 and
cumulative hazard, A(t) = (t/β)α, we can write the unconditional hazard and survival
functions for the population as,

λ(t) = a(t)/(1 + δA(t))

and
S(t) = (1 + δA(t))−1/δ.

This yields the loglikelihood,

`(α, β, δ|t) =
n∑
i=1

log a(ti)− (1 + 1/δ) log(1 + δA(ti)).

R> # Parametric Gamma fraility vs nonparametric Weibull mixture model

R> GammaFrailty <- function(pars, age, num, hazard = FALSE){

+ alpha <- pars[1]

+ beta <- pars[2]

+ delta <- pars[3]

+ a <- (alpha/beta) * (age/beta)^(alpha - 1)

+ A <- (age/beta)^alpha

+ if(hazard)

+ z <- a/(1 + delta * A)

+ else

+ z <- -sum(num * (log(a) - (1 + 1/delta)* log(1 + delta * A)))

+ z

+ }

R> pars <- c(5, 20, 1)

R> z <- optim(pars, GammaFrailty, age = age, num = num)

R> fitG <- z$par

R> fitW <- Weibullmix(day, m = 5000, alpha = 2.95, weights = freq)

R> s <- 1:110

R> day <- day[s]

R> hazard <- hazard[s]
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Figure 8. Parametric versus Nonparametric Estimates of Medfly Mor-
tality Rates

R> plot(day, hazard, cex = 0.5)

R> lines(day, GammaFrailty(z$par,day,num, hazard = TRUE), lty = 2)

R> hW <- hweibull(day, alpha = 2.95, lambda = 1, fitW)

R> lines(day, hW, col = 2)

R> legend("topright", c("NPMLE", "Gamma"), col = 2:1, lty = 1:2)

Estimating the parametric gamma fraility model by maximum likelihood is straight-
forward as indicated in the code above, giving (α̂, β̂, δ̂) = (3.08, 21.12, 0.41), and yield-
ing the hazard function shown in Figure 8. We superimpose the raw mortality rates
and the hazard function based on our Kiefer-Wolfowitz NPMLE based on the full
sample without distinguishing medfly gender. While the parametric gamma model is
capable of capturing the declining portion of the hazard, it is not sufficiently flexible
to adapt to the finer features of the observed mortality rates.

Conditional on a draw of θ from the frailty distribution, the premium for a fly of
age T = t is,

p(t|θ) =
F (t+ 1|θ)− F (t|θ)

S(t|θ)
,
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and integrating with respect to θ we have the unconditional premium,

p(t) =

∫
F (t+ 1|θ)− F (t|θ)

S(t|θ)
h(θ|t)dθ,

where h(θ) is the unconditional frailty density, and

h(θ|t) ≡ h(θ|T > t) =
S(t|θ)h(θ)

S(t)
=

exp(−θA(t))h(θ)∫
exp(−θA(t))h(θ)dθ

.

is the corresponding conditional frailty density. The need to condition the frailty
distribution on tmay seem odd, but a moment’s reflection reveals that mass associated
with high frailty values that would imply that subjects would die very quickly, must
surely be downweighted once subjects attain an age at which having these values is
highly improbable. This is illustrated in Figure 9 where we depict the estimated,
conditional frailty based on our NPMLE at four different ages. To exaggerate the
magnitude of the smaller mass points of the NPMLE we have plotted the cube root
of the density. It is clear that the relatively small mass point at log(θ) = −3.4 at age
1.5, by age 20 is no longer visible; flies with such a large frailty would almost surely
be dead by age 20.

R> # Conditional fraility at various ages

R> Gfrailt <- function(age, fit){

+ alpha <- fit[1]

+ beta <- fit[2]

+ delta <- fit[3]

+ A <- (age/beta)^alpha

+ (1 + delta * A)^(-1/delta)

+ }

R> frailt <- function(v, t, alpha, fit){

+ fv = fit$y/sum(fit$y)

+ g = sum(exp(-v * (t^alpha))* fv)

+ exp(-v * (t^alpha)) * fv/g

+ }

R> par(mfrow = c(2,2))

R> v <- exp(fitW$x)

R> for(t in c(1.5, 20, 60, 100)){

+ plot(log(v), frailt(v, t, alpha = 2.95, fitW)^(1/3), type="l",

+ main = paste("age =", t),

+ xlab = expression(log(theta)),

+ ylab = expression(h( theta , t)^{1/3}))

+ }

In Figure 10 we plot the ten-day term life insurance premium for medflies at various
ages for both the parametric gamma model and the nonparametric model. By varying
the parameter k in the premium function one can control the term of the life insurance
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Figure 9. Conditional Frailty at Various Ages: Note that the cube
root of the frailties have been plotted to accentuate the smaller mass
points

policy. In the figure k = 10 and the premia profile is somewhat smoother than the
instantaneous hazard depicted in Figure 8. Again we see that the gamma model
captures the basic shape of the nonparametric rate structure, but misses some of the
nuances.

R> # Life insurance premia for medflies of various ages

R> premium <- function(v, t, k = 1, alpha, fit){
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+ if("Weibullmix" %in% class(fit)) {

+ R <- t

+ for(i in 1:length(t)){

+ D <- exp(-v * t[i]^alpha) - exp(-v * (t[i] + k)^alpha)

+ D <- D/exp(-v * t[i]^alpha)

+ D[is.nan(D)] <- 1

+ R[i] <- sum(D * frailt(v, t[i], alpha, fit))

+ }

+ }

+ else

+ R <- (Gfrailt(t,fit) - Gfrailt(t+k, fit))/Gfrailt(t, fit)

+ R

+ }

R> v <- exp(fitW$x)

R> R <- premium(v, day, k = 10, alpha = 2.95, fitW)

R> plot(day, R, type = "l", col = 2, ylab = "Premium")

R> R <- premium(v, day, k = 10, alpha = 2.95, fitG)

R> lines(day, R, lty = 2)

R> legend("topright", c("NPMLE", "Gamma"), col = 2:1, lty = 1:2)

6. Conclusion

We have described a new approach to computing the nonparametric maximum
likelihood estimator of Kiefer and Wolfowitz for a general class of mixture models as
implemented in the R package REBayes, and illustrated its application in a variety
mixture model settings. The approach exploits recent developments in convex op-
timization as implemented in the Mosek environment of Andersen (2010). Koenker
and Mizera (2014a) surveys a broader range of such developments. In addition to the
capabilities intended for mixture models the REBayes package contains the function
medde for norm and shape constrained density estimation. Further details on medde

methods may be found in Koenker and Mizera (2010) and the REBayes documen-
tation.
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