
Package ‘RAM’
August 21, 2014

Type Package

Title R for Amplicon-based Metagenomics

Version 1.0.0

Date 2014-08-20

Author Wen Chen and Joshua Simpson

Copyright Government of Canada

Maintainer Wen Chen <Wen.Chen@agr.gc.ca>

Description This package provides a series of functions to make amplicon-based metagenomic analy-
sis more accessible, and publication-quality plots simple. Amplicon-based (or targeted) metage-
nomics amplifies and sequences selected DNA regions of environmental samples, but not the en-
tire pool of genetic material, which is referred to as shotgun metagenomics. The amplicon-
metagenomics mainly aims at characterizing broad microbiota biodiversity in different environ-
ments.

License MIT + file LICENSE

Depends vegan, ggplot2, stats

Imports gridExtra, RColorBrewer, indicspecies, Heatplus,splitstackshape, gplots, plyr, re-
shape2, scales, labdsv, grid,stringr, ggmap, permute

Suggests testthat

R topics documented:
RAM-package . 2
assist.ordination . 3
dissim . 5
dissim.heatmap . 6
dissim.plot . 8
diversity.indices . 10
get.rank . 11

1

2 RAM-package

group.abundance . 13
group.heatmap . 14
group.heatmap.simple . 15
group.indicators . 17
group.spatial . 18
group.temporal . 20
ITS1/ITS2 . 21
location.formatting . 22
meta . 22
pcoa.plot . 23
percent.classified . 25
RAM.dates . 26
RAM.factors . 27
RAM.plotting . 27
RAM.rank.formatting . 29
read.meta . 29
read.OTU . 30
sample.locations . 31
shared.OTU . 32
tax.abund . 33
tax.fill . 35
tax.split . 36
top.groups.plot . 38
transpose.OTU . 39
valid.OTU . 40
write.OTU . 40

Index 42

RAM-package Analysis of Amplicon-Based Metagenomic Data

Description

The RAM package provides a series of functions to make amplicon-based metagenomic analysis
more accessible. The package is designed especially for those who have little or no experience with
R. This package calls heavily upon other packages (such as vegan and ggplot2), but the functions
in this package either extend their functionality, or increase the ease-of-use.

Details

Package: RAM
Type: Package
Version: 1.0.0
Date: 2014-08-20
License: MIT License, Copyright (c) 2014 Government of Canada

assist.ordination 3

Load data from .csv-formatted OTU files with read.OTU, then process the data with other com-
mands. Type the command library(help = RAM) for a full index of all help topics, or ls("package:RAM")
to get a list of all functions in the package.

Type data(ITS1, ITS2, meta) to load a sample (fungal) data set.

Type citation("RAM") for how to cite this package.

This pacakge contains information licensed under the Open Government Licence - Canada. See
group.spatial for further details.

Author(s)

Wen Chen and Joshua Simpson.

Maintainer: Wen Chen <wen.chen@agr.gc.ca>

See Also

vegan, ggplot2

Examples

Not run:
load data from your own files...
ITS1 <- read.OTU("path/to/OTU/table")
ITS2 <- read.OTU("path/to/OTU/table")
meta <- read.meta("path/to/meta/table")
End(Not run)

...or use the included sample data
data(ITS1, ITS2, meta)

dissim.heatmap(ITS1, meta, row.factor=c(City="City"))
dissim.alleig.plot(ITS1, ITS2)

type library(help = RAM) to get a full listing of help documents

assist.ordination Perform CCA and RDA Analysis for OTU Tables

Description

This function simplifies CCA and RDA analysis by abstracting away some of the complexity and
returning a list of useful measures.

Usage

assist.cca(otu1, otu2 = NULL, meta, full = TRUE, exclude = NULL, rank)
assist.rda(otu1, otu2 = NULL, meta, full = TRUE, exclude = NULL, rank)

4 assist.ordination

Arguments

otu1 the first OTU table to be used.

otu2 the second OTU table to be used.

meta the metadata table to be used (must have same samples as otu1/otu2).

full logical. Should a full model be considered? (If not, a restricted model is used).

exclude A vector, either numeric or logical, specifying the columns to be removed from
meta. If a character vector, columns with those names will be removed; if a
numeric vector, columns with those indices will be removed.

rank a character vector representing a rank. Must be in one of three specific formats
(see ?RAM.rank.formatting for help).

Value

If both otu1 and otu2 are given, a list of length 2 will be returned with the following items (if only
otu1 is given, a list of length 1 will be returned with these items):

$GOF the goodness of fit scores for the model.

$VIF the VIF scores for the model.
$percent_variation

the percent variation explained by each axis

$CCA_eig Eigenvalues for CCA axes.

$CA_eig Eigenvalues for CA axes.

$anova the ANOVA results for the model.

Author(s)

Wen Chen and Joshua Simpson.

See Also

cca, anova.cca

Examples

data(ITS1, meta)

cca.help <- assist.cca(ITS1, meta=meta, rank="p")
cca.help$anova

dissim 5

dissim Calculate Dissimilarity Matrix Data

Description

These functions calculate different measures related to dissimilarity matrices. All of these functions
allow you to specify one of many dissimilarity indices to be used.

Usage

dissim.clust(data, dist.method="morisita", clust.method="average")
dissim.eig(data, method="morisita")
dissim.ord(data, dist.method="morisita", k=NULL)
dissim.GOF(data, method="morisita")
dissim.tree(data, dist.method="morisita", clust.method="average")
dissim.pvar(data, method="morisita")

Arguments

data the OTU table to be used.

method the dissimilarity index to be used; one of "manhattan", "euclidean", "canberra",
"bray", "kulczynski", "jaccard", "gower", "altGower","morisita", "horn",
"mountford", "raup", "binomial", "chao", or "cao".

dist.method same as method, but named differently for functions with other method param-
eters.

k the number of dimensions desired. If NULL, the maximum value will be calcu-
lated and used.

clust.method the method used for clustering the data. Must be one of "ward", "single",
"complete", "average", "mcquitty", "median", or "centroid".

Value

dissim.clust returns a hierarchical clustering of the dissimilarity matrix.

dist.eigenval returns the eigenvalues of the dissimilarity matrix.

dissim.ord returns a list: the first item is the the ordination distances, the second is the
dissimilarity matrix distances.

dissim.GOF returns the goodness of fit values of the dissimilarity matrix, for various numbers
of dimensions used.

dissim.tree returns a list: the first item is the tree distances, the second is the dissimilarity
matrix distances.

dissim.pvar returns a numeric vector containing the percent variation explained by each axis
(where each sample corresponds to an axis).

6 dissim.heatmap

Author(s)

Wen Chen and Joshua Simpson

See Also

vegdist, hclust, dissim.plot

Examples

data(ITS1)

calculate clustering, using default method
dissim.clust(ITS1)

calculate tree distances, specifying a distance method
(but use default clustering method)
dissim.tree(ITS1, dist.method="euclidean")

calcualte ordination distances, specifying both distance
and ordination methods
dissim.ord(ITS1, dist.method="bray", k=3)

dissim.heatmap Plot Distance Matrix Heatmap for OTU Samples

Description

This function consumes an OTU table, along with some optional parameters, and creates a heatmap
showing the distance matrix for the samples of the given OTU table.

Usage

dissim.heatmap(data, meta=NULL, row.factor=NULL, col.factor=NULL,
stand.method="chi.square", dissim.method="euclidean",
file=NULL, ext=NULL, height=8, width=9, leg.x=-0.05, leg.y=0)

Arguments

data the OTU table to be used.

meta the metadata table to be used.

row.factor a factor from the metadata to show along the rows of the heatmap (see Details
below).

col.factor a factor from the metadata to show along the columns of the heatmap (see Details
below).

stand.method a method used to standardize the OTU table. One of "total", "max", "freq",
"normalize", "range", "standardize", "pa", "chi.square", "hellinger" or
"log" (see ?decostand).

dissim.heatmap 7

dissim.method the dissimilarity index to be used; one of "manhattan", "euclidean", "canberra",
"bray", "kulczynski", "jaccard", "gower", "altGower","morisita", "horn",
"mountford", "raup", "binomial","chao", or "cao" (see ?vegdist).

file the file path where the image should be created (see ?RAM.plotting).
ext the file type to be used; one of "pdf", "png", "tiff", "bmp", "jpg", or "svg".
height the height of the image to be created (in inches).
width the width of the image to be created (in inches).
leg.x how far the legend should be inset, on the x axis.
leg.y how far the legend should be inset, on the y axis.

Details

Both row.factor and col.factor should be named character vectors specifying the names of the
rows to be used from meta (see RAM.factors). They should also be factors; if they are not, a
warning is raised and they are coerced to factors (see factor). A warning is also raised when a
factor has more than 8 levels, as that is the most colours the current palettes support. The factor
must also correspond to the OTU table; i.e. they should have the same samples. If not, an error is
raised.

Note

This function creates the heatmap using the heatmap.2 function from the gplots package. That
function calls layout to set up the plotting environment, which currently prevents plotting two data
sets side by side, or to automatically place the (metadata) legend. Unfortunately, this means that the
leg.x and leg.y parameters must be used to adjust the legend by trial and error. It is possible to
move the legend outside of the plotting area; if not legend appears, try with small leg.x and leg.y
values.

Author(s)

Wen Chen and Joshua Simpson.

See Also

decostand, vegdist, factor, heatmap.2, RAM.factors

Examples

data(ITS1, meta)

plot to the screen with one meta factor and standard calculation methods
dissim.heatmap(ITS1, meta, row.factor=c(Plot="Plots"))

Not run:
plot the heatmap to a .tiff file using Hellinger standardization and Manhattan
distances
dissim.heatmap(ITS1, dissim.method=manhattan, stand.method=hellinger,

file="my/sample/path", ext="tiff")
End(Not run)

8 dissim.plot

dissim.plot Plot Dissimilarity Matrix Data for Different Methods

Description

These functions all produce a plot of some measure related to dissimilarity matrices. All of these
functions allow you to specify a vector of methods to be used when creating the plot.

Usage

dissim.clust.plot(otu1, otu2=NULL, file=NULL, dist.methods=NULL,
clust.methods=NULL)

dissim.eig.plot(otu1, otu2=NULL, file=NULL, dist.methods=NULL)
dissim.alleig.plot(otu1, otu2=NULL, file=NULL, dist.methods=NULL)
dissim.ord.plot(otu1, otu2=NULL, file=NULL, dist.methods=NULL, k=NULL)
dissim.GOF.plot(otu1, otu2=NULL, file=NULL, dist.methods=NULL)
dissim.tree.plot(otu1, otu2=NULL, file=NULL, dist.methods=NULL,

clust.methods=NULL)
dissim.pvar.plot(otu1, otu2=NULL, file=NULL, dist.methods=NULL)

Arguments

otu1 the otu1 data to be used.

otu2 the otu2 data to be used.

file the file path for the plot. If not provided (defaults to NULL), then the plot is
displayed to the screen. If file is provided, that is where the .tiff file will be
created.

dist.methods a character vector representing the dissimilarity indices to be used; each ele-
ment must be one of one of "manhattan", "euclidean", "canberra", "bray",
"kulczynski", "jaccard", "gower", "altGower","morisita", "horn", "mountford",
"raup", "binomial","chao", or "cao".

clust.methods a character vector representing the methods used for clustering the data. Each el-
ement must be one of "ward", "single", "complete", "average", "mcquitty",
"median", or "centroid".

k the number of dimensions desired. If NULL, the maximum value will be calcu-
lated and used.

Details

All of these functions (other than dissim.alleig.plot) call their dissim.X counterparts and plot
the data. If file is given, a .tiff file will be created at file; otherwise the plot is displayed to the
screen.

dissim.plot 9

Value

All functions create a plot and return the plotted data invisibly.

dissim.clust.plot

plots a hierarchical clustering of the dissimilarity matrix.
dissim.eig.plot

plots a bar plot of the eigenvalues of the dissimilarity matrix.
dissim.alleig.plot

plots a line plot showing the relative importance of all eigenvalues for a variety
of methods.

dissim.ord.plot

plots a scatter plot comparing the "euclidean" distances among all samples in
ordination space to the dissimilarity matrix distances.

dissim.GOF.plot

plots a scatter plot of the goodness of fit values of the dissimilarity matrix, for
various numbers of dimensions used.

dissim.tree.plot

plots a scatter plot comparing the tree distances to the dissimilarity matrix dis-
tances.

dissim.pvar.plot

plots a bar plot showing the percent variation explained by each axis (where
each sample corresponds to an axis).

Note

If file does not end in ".tiff", then ".tiff" will be appended to the end of file.

Function dissim.alleig.plot uses the ggplot2 package for creating the plot, and returns the
plot object. This means that you can store this plot and add other features manually, if desired (see
Examples).

Author(s)

Wen Chen and Joshua Simpson

See Also

vegdist, hclust, dissim, ggplot

Examples

data(ITS1, ITS2)

show percent variation for only ITS1 with default methods
dissim.pvar.plot(ITS1)

show clustering for ITS1 and ITS2 for set methods
dissim.clust.plot(ITS1, ITS2, dist.methods=c("morisita", "bray"),

clust.methods=c("average", "centroid"))

10 diversity.indices

Not run:
dissim.alleig.plot returns a ggplot2 object:
my.eig.plot <- dissim.alleig.plot(ITS1, ITS2)
class(my.eig.plot) # returns "gg" "ggplot"
my.eig.plot # view the plot
update the title, then view the updated plot
my.eig.plot <- my.eig.plot + ggtitle("My New Title")
my.eig.plot

save an image (named file.tiff) with GOF values for ITS1 and ITS2, using
default methods
dissim.GOF.plot(ITS1, ITS2, file="~/Documents/my/file")
End(Not run)

diversity.indices Calculate True Diversity and Evenness

Description

These functions calculate true diversity and evenness for all samples.

Usage

true.diversity(otu1, otu2 = NULL, index = "simpson")
evenness(otu1, otu2 = NULL, index = "simpson")

Arguments

otu1 the otu1 data to be processed.

otu2 the otu2 data to be processed.

index the index to use for calculations; partial match to "simpson" or "shannon".

Details

The otu2 argument is optional; if it is not specified, the calculations will be done for only the otu1
argument.

For the following sections, S represents the number of species, λ represents the Simpson index, and
H ′ represents the Shannon index.

The formulas for the true diversity of the indices are as follows:

• Simpson: D2 = frac1λ

• Shannon: D1 = expH ′

The formulas for the evenness of the indices are as follows:

• Simpson:
1
λ

S

• Shannon: H′

lnS

get.rank 11

Value

Both functions return a numeric matrix, where the rows are the given OTUs, and the columns are
the samples.

Note

Credit goes to package vegan for the partial argument matching (see References).

Author(s)

Wen Chen and Joshua Simpson.

References

Jari Oksanen, F. Guillaume Blanchet, Roeland Kindt, Pierre Legendre, Peter R. Minchin, R. B.
O’Hara, Gavin L. Simpson, Peter Solymos, M. Henry H. Stevens and Helene Wagner (2013). vegan:
Community Ecology Package. R package version 2.0-10. http://CRAN.R-project.org/package=vegan

Diversity index. (2014, May 7). In Wikipedia, The Free Encyclopedia. Retrieved 14:57, May 28,
2014, from http://en.wikipedia.org/w/index.php?title=Diversity_index&oldid=607510424

Blackwood, C. B., Hudleston, D., Zak, D. R., & Buyer, J. S. (2007). Interpreting ecological di-
versity indices applied to terminal restriction fragment length polymorphism data: insights from
simulated microbial communities. Applied and Environmental Microbiology, 73(16), 5276-5283.

Examples

data(ITS1, ITS2)

true diversity, using default index (Simpson)
true.diversity(ITS1)

true diversity for ITS1 and ITS2, using Shannon
true.diversity(ITS1, ITS2, index="shannon")

default evenness (Simpson) for ITS1/ITS2
evenness(ITS1, ITS2)

Shannon evenness
evenness(ITS1, index="shannon")

get.rank Get OTUs Classified at Taxonomic Rank(s)

Description

This function returns the OTUs of the given OTU table(s) which are classified at the given taxo-
nomic rank.

12 get.rank

Usage

get.rank(otu1, otu2 = NULL, rank = NULL)

Arguments

otu1 the first OTU table to be used.

otu2 the second OTU table to be used.

rank a character vector representing a rank. Must be in one of three specific formats
(see RAM.rank.formatting for help). If omitted, the function will repeat for all
seven major taxonomic ranks.

Value

The value returned by this function may become nested lists, so for convenience, any nested lists
have been given descriptive items names to make accessing its elements simple (see Examples).

• If otu2 is given:

– If rank is given: a list containing two data frames (otu1 and otu2 selected at the given
rank).

– If rank is not given: a list containing two lists. The first sublist represents otu1, the
second otu2. The sublists contain seven data frames, which are the OTU tables selected
at each taxonomic rank (see Examples).

• If otu2 is not given:

– If rank is given: a single data frame (otu1 selected at the given rank).
– If rank is not given: a list containing seven data frames (otu1 selected at each taxonomic

rank).

Author(s)

Wen Chen and Joshua Simpson.

Examples

data(ITS1, ITS2)

the following are equivalent:
ITS1.p <- get.rank(ITS1, rank="p")
this list has get.rank(ITS1, rank="k"), get.rank(ITS1, rank="p"), ...
lst <- get.rank(ITS1)
stopifnot(identical(ITS1.p, lst$phylum)) # true

get a list of length 2: the item holds all ITS1 data, the second holds ITS2
data
lst.all <- get.rank(ITS1, ITS2)
stopifnot(identical(ITS1.p, lst.all$otu1$phylum))

group.abundance 13

group.abundance Plot the Abundance of OTUs by Classification at a Given Taxonomic
Rank

Description

This function consumes an OTU, and a rank, as well as various optional parameters. It creates a
stacked bar plot showing the abundance of all classifications at the given taxonomic rank for each
sample.

Usage

group.abundance(otu1, otu2=NULL, rank,
top=NULL, count=FALSE, drop.unclassified=FALSE,
file=NULL, ext=NULL, labels=c("ITS1", "ITS2"),
height=8, width=16, bw=FALSE, ggplot2=TRUE)

Arguments

otu1 the first OTU table to be used.

otu2 the second OTU table to be used.

rank the taxonomic rank to use (see ?RAM.rank.formatting for formatting details).

top the number of groups to select, starting with the most abundant. If NULL, all are
selected.

count logical. If TRUE, the numerical counts for each OTU will be shown; otherwise
the relative abundance will be shown.

drop.unclassified

logical. Should unclassified samples be excluded from the data?

file the file path where the image should be created (see ?RAM.plotting).

ext the file type to be used; one of "pdf", "png", "tiff", "bmp", "jpg", or "svg".

labels a character vector giving the labels for the panels of the plot.

height the height of the image to be created (in inches).

width the width of the image to be created (in inches).

bw logical. Should the image be created in black and white?

ggplot2 logical. Should the ggplot2 package be used to produce the plot, or should the
base graphics be used? (see ?RAM.plotting).

Author(s)

Wen Chen and Joshua Simpson

14 group.heatmap

Examples

data(ITS1, ITS2)

plot the relative abundance at the class level to the screen, ignoring the
unclassified
group.abundance(ITS1, rank="class", drop.unclassified=TRUE)

Not run:
plot the count abundance at the phylum level to path.tiff
group.abundance(ITS1, ITS2, rank="p", file="my/file/path", ext="tiff",
count=TRUE)
End(Not run)

group.heatmap Plot OTU Abundance at a Given Rank with Metadata Annotation

Description

This function plots the abundance for all taxon groups at a given rank. Additionally, it can display
metadata for the samples as annotations along the rows of the heatmap.

Usage

group.heatmap(data, meta, rank, factors,
top=NULL, count=FALSE, drop.unclassified=FALSE,
cut=NULL, file=NULL, ext=NULL, width=9, height=9)

Arguments

data the OTU table to be used.
meta the metadata table to be used.
rank the taxonomic rank to use (see RAM.rank.formatting for formatting details).
factors a named character vector indicating the columns of the metadata table to be used

(see RAM.factors).
top the number of groups to select, starting with the most abundant. If NULL, all are

selected.
count logical. If TRUE, the numerical counts for each group will be shown; otherwise

the relative abundance will be shown.
drop.unclassified

logical. Should OTUs labelled "unclassified" or missing classification at the
given taxonomic rank be excluded?

cut the height at which to cut the sample tree, this will create distinct coloured
groups. Currently this will allow for at most nine groups (see Details).

file the file path where the image should be created (see ?RAM.plotting).
ext the file type to be used; one of "pdf", "png", "tiff", "bmp", "jpg", or "svg".
height the height of the image to be created (in inches).
width the width of the image to be created (in inches).

group.heatmap.simple 15

Details

A warning from brewer.pal indicating "n too large, allowed maximum for palette Pastel1 is 9"
means that the cut height is too low to allow for that many groups. This should be fixed in a future
release.

Author(s)

Wen Chen and Joshua Simpson.

See Also

decostand

Examples

data(ITS1, meta)

group.heatmap(ITS1, meta, rank="c", factors=c(City="City", Plot="Plots"))

group.heatmap.simple Plot a Heatmap Showing OTU Abundance by Taxonomic Classifica-
tion

Description

This function consumes an OTU table and a rank, as well as some optional parameters, and creates
a heatmap showing the abundance of the OTUs at the given taxonomic rank for each sample.

Usage

group.heatmap.simple(data, meta=NULL, rank, row.factor=NULL,
top=NULL, count=FALSE, drop.unclassified=FALSE,
dendro="none", file=NULL, ext=NULL,
width=9, height=8, leg.x=-0.08, leg.y=0)

Arguments

data the OTU table to be used.

meta the metadata table to be used.

rank the taxonomic rank to use (see ?RAM.rank.formatting for formatting details).

row.factor a factor from the metadata to show along the rows of the heatmap (see Details
below).

dendro a character vector specifying on which axes (if any) a dendrogram should be
plotted. Must be one of "none", "both", "column", or "row".

top the number of groups to select, starting with the most abundant. If NULL, all are
selected.

16 group.heatmap.simple

count logical. Should the actual count of each OTU be shown, or should the relative
abundances be shown?

drop.unclassified

logical. Should OTUs labelled "unclassified" or missing classification at the
given taxonomic rank be excluded?

file the file path where the image should be created (see ?RAM.plotting).

ext the file type to be used; one of "pdf", "png", "tiff", "bmp", "jpg", or "svg".

height the height of the image to be created (in inches).

width the width of the image to be created (in inches).

leg.x how far the legend should be inset, on the x axis.

leg.y how far the legend should be inset, on the y axis.

Details

row.factor should be a named character vector specifying the name of the row to be used from
meta (see RAM.factors). It should also be a factor; if it is not, a warning is raised and it is coerced
to a factor (see factor). A warning is also raised when a factor has more than 8 levels, as that is
the most colours the current palettes support. The factor must also correspond to the OTU table; i.e.
they should have the same samples. If not, an error is raised.

Note

This function creates the heatmap using the heatmap.2 function from the gplots package. That
function calls layout to set up the plotting environment, which currently prevents plotting two data
sets side by side, or to automatically place the (metadata) legend. Unfortunately, this means that the
leg.x and leg.y parameters must be used to adjust the legend by trial and error. It is possible to
move the legend outside of the plotting area; if no legend appears, try with small leg.x and leg.y
values.

Author(s)

Wen Chen and Joshua Simpson.

See Also

factor, heatmap.2, RAM.factors

Examples

data(ITS1, meta)

plot the abundance of all observed classes for each sample, displaying it to
the screen and adding a dendrogram on the column and the Collector on the row
group.heatmap.simple(ITS1, meta, rank="c", dendro="column",

row.factor=c(City="City"))

Not run:
plot the genus for all OTUs, add a dendrogram to the row and column, and save

group.indicators 17

the plot in path.tiff
group.heatmap.simple(ITS1, meta, rank="genus", dendro="both",

file="my/file/path")
End(Not run)

group.indicators Plot Indicator Taxon Groups for Metadata Trends

Description

This function conumes one or two OTU tables, along with a metadata facotr, and creates a barplot
showing the relative abundance of all groups which are statistical indicators of that factor.

Usage

group.indicators(otu1, otu2 = NULL, meta, factor, rank,
thresholds = c(A = 0.85, B = 0.8, stat = 0.8, p.value = 0.05),
labels = c("ITS1", "ITS2"),
file = NULL, ext = NULL, height = 12, width = 12)

Arguments

otu1 the first OTU table to be used.

otu2 the second OTU table to be used.

meta the metadata table to be used.

factor a named character vector (of length 1) giving the name of the column in meta to
be used when performing the analysis (see RAM.factors).

rank the taxonomic rank to use (see ?RAM.rank.formatting for formatting details).

thresholds a character vector of length 4 specifying the thresholds for the A, B, stat, and p
values (see Details).

labels a character vector giving the labels for the OTU tables.

file the file path where the image should be created (see ?RAM.plotting).

ext the file type to be used; one of "pdf", "png", "tiff", "bmp", "jpg", or "svg".

height the height of the image to be created (in inches).

width the width of the image to be created (in inches).

Details

This function uses indicspecies::multipatt to determine the indicators. After this analysis is
performed, there will likely be some species determined to be ’significant,’ but to varying degrees.
To control how many groups are selected, you can adjust the thresholds argument. It consists of
four components (quotations taken from vignette("indicspeciesTutorial"), see References):

A the specificity of the indicator; "the probability that the surveyed site belongs to the target site
group given the fact that the species has been found."

18 group.spatial

B the fidelity of the indicator; "the probability of finding the species in sites belonging to the site
group."

stat the association strength for the combinations.

p.value "the degree of statistical significance of the association."

Only the species with A, B, and stat values above, and p.value below those given in thresholds
will be kept.

Author(s)

Wen Chen and Joshua Simpson.

References

De Caceres, M., Legendre, P. (2009). Associations between species and groups of sites: indices and
statistical inference. Ecology, URL http://sites.google.com/site/miqueldecaceres/

See Also

multipatt

Examples

data(ITS1, ITS2, meta)

group.indicators(ITS1, ITS2, meta, factor = c(Province="Province"), rank="g")

group.spatial Plot Spatial Collection Trends for Taxon Groups

Description

This function consumes an OTU table and its associated metadata table, and uses that informa-
tion to produce a choropleth (essentially a heatmap, but superimposed imposed on an actual, car-
tographic map) to show how many counts of each taxon group were detected in each Canadian
province/territory.

Usage

group.spatial(data, meta, date.col, province.col, rank, group, breaks = "year",
file = NULL, ext = NULL, height = 8, width = 10)

group.spatial 19

Arguments

data the OTU table to be used.

meta the metadata table to be used.

date.col a character vector specifying which column in metadata contains the date infor-
mation (see RAM.dates).

province.col a character vector specifying which column in metadata contains the province
information (see Details).

rank a character vector specifying the rank of the desired taxon groups. Note that all
groups should come the same rank (see RAM.rank.formatting).

group a character vector giving the names of the groups to be plotted.

breaks how many time segments should be plotted; see Details.

file the file path where the image should be created (see ?RAM.plotting).

ext the file type to be used; one of "pdf", "png", "tiff", "bmp", "jpg", or "svg".

height the height of the image to be created (in inches).

width the width of the image to be created (in inches).

Details

This function currently only supports Canadian data. The entries in meta$province.col should be
specified as provinces, using the standard postal abbreviations (e.g. "Ontario" would be "ON").

The breaks argument is slightly buggy at the moment, possibly due to how R tries to split Date
objects. breaks can be either an integer, in which case it will attempt to create that many levels
(i.e. setting breaks=3 should split the data into three date ’blocks’.) breaks can also be a character
vectors, such as "quarter" or "year" which attempts to split the date information accordingly. See
cut.Date for more details and a complete specification of what is allowed for breaks.

Author(s)

Wen Chen and Joshua Simpson.

References

The file used to create the map of Canada is from GeoBase and is licensed under the Open Govern-
ment License - Canada.

Examples

data(ITS1, meta)

Not run:
group.spatial(ITS1, meta, date.col="Harvestdate", province.col="Province",

rank="p", group=c("Ascomycota", "Basidiomycota"), breaks=2)
End(Not run)

http://en.wikipedia.org/wiki/Canadian_postal_abbreviations_for_provinces_and_territories
http://www.geobase.ca/geobase/en/index.html
http://data.gc.ca/eng/open-government-licence-canada
http://data.gc.ca/eng/open-government-licence-canada

20 group.temporal

group.temporal Plot Temporal Trends for Metadata and Taxon Groups

Description

This function consumes an OTU table and its associated metadata, and creates a plot showing how
the collections of taxonomic groups, as well as metadata factors, evolve over time.

Usage

group.temporal(data, meta, date.col, factors, rank, group,
file = NULL, ext = NULL, height = 8, width = 12)

Arguments

data the OTU table to be used.

meta the metadata table to be used.

date.col a character vector specifying which column of the metadata has date information
(see RAM.dates).

factors a named character vector specifying the names of the metadata columns to be
plotted with the taxon group data (see RAM.factors). NOTE: these factors must
be numeric variables.

rank a character vector specifying the rank of the desired taxon groups. Note that all
groups should come the same rank (see RAM.rank.formatting).

group a character vector giving the names of the groups to be plotted.

file the file path where the image should be created (see ?RAM.plotting).

ext the file type to be used; one of "pdf", "png", "tiff", "bmp", "jpg", or "svg".

height the height of the image to be created (in inches).

width the width of the image to be created (in inches).

Details

The image created will contain several plots. It will always contain a large panel showing the counts
collected for the specified taxon groups over time, and above that panel (on a common x-axis) will
be a line graph for each metadata factor specified.

Note

If your data has collections being taken roughly annually, you may have a large amount of "empty
space" in the middle of your plot. Consider subsetting the data by year, and plotting each year
individually using this function.

Author(s)

Wen Chen and Joshua Simpson

ITS1/ITS2 21

Examples

data(ITS1, meta)

group.temporal(ITS1, meta, date.col="Harvestdate", factors=c(Ergosterol="Ergosterol_ppm"),
rank="p", group=c("Ascomycota", "Basidiomycota"))

ITS1/ITS2 Sample ITS1 and ITS2 Data

Description

Sample ITS1 and ITS2 OTU tables.

Usage

data(ITS1)
data(ITS2)

Format

A data frame with 4704 observations on the following 17 variables.

P1001.1M1, P1001.1M2, P1001.1M3, P1001.1M4, P1001.1M5, P1001.1M6, P1001.1M7, P1001.1M8, P1001.1M9, P1001.1M10, P1001.1M11, P1001.1M12, P1001.1M13, P1001.1M14, P1001.1M15, P1001.1M16
Collection samples.

taxonomy the taxonomic classification of the OTU.

Source

Wen Chen, AAFC-AAC

Examples

data(ITS1, ITS2)

str(ITS1)
str(ITS2)

22 meta

location.formatting Location Formatting

Description

Some functions in RAM expect to find a column with provincial/territorial data in the metadata. This
data should use the standard Canadian provincial/territorial abbreviations:

• Alberta - AB

• British Columbia - BC

• Manitoba - MB

• New Brunswick - NB

• Newfoundland and Labrador - NL

• Novia Scotia - NS

• Northwest Territories - NT

• Nunavut - NU

• Ontario - ON

• Prince Edward Island - PE

• Quebec - QC

• Saskatchewan - SK

• Yukon - YT

Support for other locations is not available at this time.

Author(s)

Wen Chen and Joshua Simpson.

meta Sample Metadata for ITS1/ITS2

Description

This data frame provides sample metadata for the ITS1/ITS2 data included in this package.

Usage

data(meta)

pcoa.plot 23

Format

A data frame with 16 observations on the following 10 variables.

Sample a factor with levels Sample1 Sample2 Sample3 Sample4 Sample5 Sample6 Sample7 Sample8

City a factor with levels City1 City2

Crop a factor with levels Crop1 Crop2

Plots a factor with levels 1 2

Harvestmethod a factor with levels Method1 Method2

Harvestdate a Date

Ergosterol_ppm a numeric vector

Province a character vector

Latitude a numeric vector

Longitude a numeric vector

Source

Wen Chen and Joshua Simpson.

Examples

data(meta)

str(meta)

pcoa.plot Create a PCoA plot for an OTU Table

Description

This function consumes an OTU table, metadata factors, and graphing options, then produces a plot
showing the PCoA analysis of the OTU table.

Usage

pcoa.plot(data, meta, factors, rank, stand.method = NULL,
dist.method = "morisita", sample.labels = TRUE, top = 20,
ellipse = FALSE, file = NULL, ext = NULL, height = 8,
width = 10, ggplot2 = TRUE, bw = FALSE)

24 pcoa.plot

Arguments

data the OTU table to be used.

meta the metadata table to be used.

factors a named character vector of length 1 or 2 specifying metadata factors for the
samples in the OTU table (see Details).

rank the rank to select the taxon groups at.

stand.method a method used to standardize the OTU table. One of "total", "max", "freq",
"normalize", "range", "standardize", "pa", "chi.square", "hellinger" or
"log" (see ?decostand).

dist.method the dissimilarity index to be used; one of "manhattan", "euclidean", "canberra",
"bray", "kulczynski", "jaccard", "gower", "altGower","morisita", "horn",
"mountford", "raup", "binomial","chao", or "cao" (see vegdist).

sample.labels logical. Should the labels for the samples be displayed?

top how many taxon groups should be displayed, starting from the most abundant.

ellipse which of the metadata factors (if any) should have ellipses plotted around them.
Must be one of 1, 2, or FALSE (see Details).

file the file path where the image should be created (see ?RAM.plotting).

ext the file type to be used; one of "pdf", "png", "tiff", "bmp", "jpg", or "svg".

height the height of the image to be created (in inches).

width the width of the image to be created (in inches).

bw logical. Should the image be created in black and white?

ggplot2 logical. Should the ggplot2 package be used to produce the plot, or should the
base graphics be used? (see ?RAM.plotting).

Details

factors should be a named character vector specifying the names of the columns to be used from
meta (see RAM.factors). Those columns should be factors; if they are not, a warning is raised and
they are coerced to factors (see factor). A warning is also raised when a factor has more than 9
levels, as that is the most colours the current palettes support.

The values on the axes denote what fraction of the sum of all eigenvalues (i.e. from all axes) is
explained by that (single) axis.

When ellipse = FALSE, no ellipses will be plotted. When ellipse is a number, that ’number’
metadata factor will have ellipses plotted. For example, if factors = c(Crop="Crop", City="City")
and ellipse = 1, ellipses will be plotted for the different crops, but NOT the cities. Setting
factors = c(City="City") and ellipse = 2 is invalid, since there is no second metadata factor
given. Ellipses can only be plotted for one factor currently. Furthermore, there need to be at least 3
samples for every level in every item in factors, otherwise ellipses cannot be plotted.

Value

When ggplot2 = TRUE, a ggplot object is returned; otherwise nothing is returned (but the plot is
shown on screen).

percent.classified 25

Note

The labels for the sample points are placed above, below, or next to the point itself at random. If
labels are outside of the plotting area, or overlapping with each other, run your command again
(without changing any arguments!) and the labels should move to new positions. Repeat until they
are placed appropriately. This is done to ensure even tightly-grouped samples, or samples near the
edge of the plot, have their labels shown. If the labels are too distracting, remember that they can
be turned off by setting sample.labels = FALSE.

Author(s)

Wen Chen and Joshua Simpson.

See Also

vegdist

Examples

data(ITS1, meta)

The argument for factors is a vector of length two; the first item is
Crop, which is a column from meta, and the second item is City, another
column from meta.
pcoa.plot(ITS1, meta, rank="c", factors=c(Crop="Crop", City="City"))

If you want to customize legend labels and plot the top 20 taxon groups at genus:
pcoa.plot(ITS1, meta, rank="g",

factors=c(Place="City", Harvest_Method="Harvestmethod"))

Not run:
In black & white, using base graphics:
pcoa.plot(ITS1, meta, rank="c", factors=c(Plot="Plots"), ggplot=F, bw=T)

Focus on the samples: hide all groups and plot ellipses for Crop:
pcoa.plot(ITS1, meta, rank="g", factors=c(Crop="Crop", City="City"),

ellipse=1, sample.labels=FALSE, top=0)

Standardize the data before calculating distances:
pcoa.plot(ITS1, meta, rank="g", factors=c(City="City"), stand.method="chi.square",

dist.method="euclidean")
End(Not run)

percent.classified Calculate Percent of OTUs Classified at a Given Taxonomic Rank

Description

This function consumes an OTU table, and a rank, then returns what percent of OTUs in the given
table are classified at that taxonomic rank.

26 RAM.dates

Usage

percent.classified(data, rank)

Arguments

data the OTU table to be processed.

rank the taxonomic rank you are interested in (see ?RAM.rank.formatting for format-
ting details).

Value

A numeric vector of length one, containing the result.

Author(s)

Wen Chen and Joshua Simpson.

Examples

data(ITS1)

find what percent of OTUs classified at genus level
percent.classified(ITS1, "g")

RAM.dates Date Formatting for RAM

Description

This help page details the expected format for dates in RAM.

Details

For all functions expecting some type of date data, you will need to specify which column of
the metadata table contains that information. The date information will likely be encoded as a
character vector from read.meta, so these functions will try to coerce it to a Date object (see Date
and as.Date), with a warning. These functions are expecting the date information to be in YYYY-
MM-DD format.

RAM.factors 27

RAM.factors Factor Formatting for RAM

Description

This help page details how to pass metadata arguments in RAM.

Details

Many functions will expect arguments such as meta and factors (possibly row.factor or col.factor).
These functions are expecting the full metadata table for meta (which you probably read into R us-
ing read.meta). The other argument, factor, should be a named character vector. The values of
this vector should be the columns to be used from meta, while the names of the vector should be the
labels you wish to have displayed in the plots. There are several ways to name a character vector:

> my.vec <- c(This = "is", a = "named", character = "vector")

> names(my.vec) [1] "This" "a" "character"

> cat(my.vec) is named vector

Notice that myvec has names "This", "a", "character", but has values "is", "named", "vector".
It is the names that will be used to label graphs in RAM, but the values that will be used to extract
the actual data. This is useful if you have more complicated names; say we want the data from the
column named "Precip_14d_before_harvest", but we want a nicer label for the plot. We can do the
following:

> my.vec <- "Precip_14d_before_harvest"

> names(my.vec) <- "Precipitation (14 d. prior to Harvest, mm)"

Now we will be able to plot the value of the "Precip_14d_before_harvest" column, but we will
have the (much nicer!) label "Precipitation (14 d. prior to Harvest, mm)" appear in our plots.

RAM.plotting Creating Plots with RAM

Description

This help page details the standards for RAM plotting functions.

Overview

The RAM package contains many functions to produce plots and visualizations for metagenomic
data. Currently, the plotting functions are grouped into ’casual’ and ’publication’ categories. The
’casual’ plotting functions only accept a file argument and produce a .tiff file automatically.
They are meant to quickly highlight certain aspects of the data, but are not meant to be published.
The ’publication’ quality plots accept many more graphing parameters, and should be of suitable
quality for future publication. All ’publication’ plots should accept the following parameters, in
addition to those required to produce the plot:

28 RAM.plotting

• "file" the file name for the plot.

• "ext" the file type for the plot (see below).

• "height" the height of the plot, in inches.

• "width" the width of the plot, in inches.

Additionally, the following parameters are accepted by some functions:

• "bw" should the plot be in black and white?

For ’casual’ plots, if file is not provided, the plot is displayed to the default graphics device
(usually a new window), otherwise a .tiff file is created.

For ’publication’ plots, if neither file nor ext are provided, the plot is displayed to the default
graphics device (usually a new window). If both file and ext are provided, a file of type ext is
created at file. If only one of file or ext is given, an error is raised.

In either case, the file extension will automatically be appended to the end of file, if file does not
already end in the appropriate extension. For example, if file = ~/my/path.tiff and ext = png,
the file will be called ~/my/path.tiff.png; but if file = ~/my/path.png, the file will just be
called ~/my/path.png. Finally, if file = ~/my/path, the file will be called ~/my/path.png.

ggplot2

Furthermore, some of the ’publication’ quality plots allow for a ggplot2 argument. If ggplot2
is TRUE, then the plot will be produced using the ggplot2 package, and a ggplot object will be
returned. This allows for additional, personal customization of the plot for those who have used the
package before. If ggplot2 is FALSE, then the plot will be created using the base plotting functions.

File Types

For ’publication’ quality plots, the following file types are supported (use any of the following
values for the ext argument):

"pdf", "png", "tiff", "svg", "bmp", "jpeg".

Note

If file is given without a directrory (e.g. file = my_fancy_file), then that file will be created in
the current working directory (see ?getwd and ?setwd for more information).

The current default resolution is 1000 dpi for all plots.

See Also

ggplot

Author(s)

Wen Chen and Joshua Simpson.

RAM.rank.formatting 29

RAM.rank.formatting Taxonomic Rank Formatting

Description

In all RAM functions requiring the user to input a taxonomic rank, three different formats for this
taxon are accepted. All of these formats are simple character vectors (strings), and are provided
for readability and convenience. The user only needs to specify any single element from any of the
formats below. The formats are as follows:

Format 1: "kingdom", "phylum", "class", "order", "family", "genus", "species"

Format 2: "k", "p", "c", "o", "f", "g", "s"

Format 3: "k__", "p__", "c__", "o__", "f__", "g__", "s__"

Author(s)

Wen Chen and Joshua Simpson.

See Also

get.rank, tax.abund

read.meta Open Metadata Table

Description

Opens the given file and return a data frame representing the metadata.

Usage

read.meta(file, sep=",")

Arguments

file a character vector specifying the file path to your file.

sep the character used to separate cells in the file.

Value

Returns a data frame with the information from the file. The first row and column are used for the
names of the other rows and columns.

Author(s)

Wen Chen and Joshua Simpson

30 read.OTU

See Also

getwd, setwd, read.table

Examples

Not run:
my.meta <- read.meta("path/to/meta")
End(Not run)

read.OTU Open OTU Table

Description

Opens the given file and returns a data frame representing the OTU table.

Usage

read.OTU(file, sep=",")

Arguments

file a character vector specifying the file path to your file.

sep the character used to separate cells in the file.

Value

Returns a data frame with the information from the file. The first row and column are used for the
names of the other rows and columns.

Note

The OTU table should only contain classifications for the seven major taxonomic ranks, additional
ranks will break some functions in the package. To remove those other classifications, try running

sed -i.backup -e 's/s[a-z]__[^;]*; //g' -e 's/t__[^;]*; //g' $FILE

where $FILE is your OTU table. The letter t can be replaced in the second expression for any other
letter which appears as a prefix. For example, adding -e 's/u__[^;]*; //g' before $FILE would
remove any entries formatted like u__test_classification; .

Additionally, if your OTU table starts with the entry #OTU ID, that cell needs to be removed before
the table can be read with read.OTU.

Author(s)

Wen Chen and Joshua Simpson.

sample.locations 31

See Also

getwd, setwd, read.table

Examples

Not run:
my.OTU <- read.OTU("path/to/data")
End(Not run)

sample.locations Plot the Geographic Location of Samples

Description

This function consumes an OTU table, along with its associated metadata, and plots all the samples
from that data as points on a map. The size of a point indicates the number of counts collected from
that sample, while the colour of the point (optionally) shows a metadata factor for that sample.

Usage

sample.locations(otu1, otu2=NULL, meta, factor = NULL, zoom = 5,
source = "google", labels = c("ITS1", "ITS2"),
lat.col = "Latitude", long.col = "Longitude",
file = NULL, ext = NULL, height = 10, width = 12)

Arguments

otu1 the OTU table to be used.

otu2 the (optional) second OTU table to be used.

meta the metadata table to be used.

factor (optional) a named character vector of length one specifying a column from the
metadata table to be used to colour the points.

zoom a positive integer in the range 3-21 (if source == "google") or 3-18 (if
source == "osm") specifying the zoom for the map (low number means zoomed
out).

source the source to be used for the map; either "google" or "osm".

labels a character vector giving one label per OTU.

lat.col the name of the column in meta containing the latitude information.

long.col the name of the column in meta containing the longitude information.

file the file path where the image should be created (see ?RAM.plotting).

ext the file type to be used; one of "pdf", "png", "tiff", "bmp", "jpg", or "svg".

height the height of the image to be created (in inches).

width the width of the image to be created (in inches).

32 shared.OTU

Details

Please note that this function is getting map information using either the Google Maps API or the
OpenStreetMap API, and your usage is subject to the terms of those APIs.

Note

If you are getting a 403/503 error, that likely means that the current map provider is currently
unavailable. This can be for a variety of reasons: if source == "google", you have likely maxed
out your API call limit (this can be due to multiple users sharing an IP address; contact your system
administrator for further details). If source == "osm", the server is likely under heavy load and
unable to process your request. You can check the server load online. In either case, the issue will
likely resolve itself. Try calling the function again in a few hours.

If you get a warning message of the form "Removed X rows containing missing values (geom_point).",
this means that the current zoom level is too high to display some or all of the points. Try using a
lower value for zoom.

Author(s)

Wen Chen and Joshua Simpson.

See Also

RAM.factors

Examples

data(ITS1, meta)

Not run:
sample.locations(ITS1, meta, factor=c(Crop="Crop"))
End(Not run)

shared.OTU Show Summary of Shared OTUs

Description

This function consumes an OTU table and returns a list summarizing information about the presence
of the OTUs in that table.

Usage

shared.OTU(data)

Arguments

data the OTU table to be analyzed.

http://munin.openstreetmap.org/openstreetmap/yevaud.openstreetmap/load.html

tax.abund 33

Value

shared.OTU returns a list containing the information calculated. The names associated with the list
describe what that number represents; i.e. "#_of_OTUs_in_all_samples" shows how many OTUs
in the given table were found to be present in all samples. The last item in the list is a character
vector, containing the OTU number and taxonomic information of each OTU which was present in
all samples. All entries in that column are of the form "OTU-taxonomic_classification".

Note

The OTUs are determined to be absent/present using the "pa" method from the function decostand.

Author(s)

Wen Chen and Joshua Simpson.

See Also

decostand

Examples

data(ITS1)

shared.OTU(ITS1)

tax.abund Aggregate OTU Data Based on Taxonomy

Description

This function consumes OTU table(s) and (optionally) a taxonomic rank, then extracts the classifi-
cation of each OTU at the given taxonomic rank, groups by classification at the given rank, removes
all groups with only 0 counts, optionally removes all unclassified groups, sorts groups based on
abundance, and then returns the transpose.

Usage

tax.abund(otu1, otu2=NULL, rank=NULL, drop.unclassified=FALSE,
top=NULL, count=TRUE, mode="number")

Arguments

otu1 the first OTU table to be used.

otu2 the second OTU table to be used.

rank a character vector representing a rank. Must be in one of three specific formats
(see ?RAM.rank.formatting for help). If omitted, the function will repeat for all
seven major taxonomic ranks.

34 tax.abund

drop.unclassified

logical. Should OTUs labelled "unclassified" or missing classification at the
given taxonomic rank be excluded?

top the number of groups to select, starting with the most abundant. If NULL, all are
selected.

count logical. Should the actual count of each OTU be shown, or should the relative
abundances be shown?

mode a character vector, one of "percent" or "number". If number, then top many
groups will be selected. If percent, then all groups with relative abundance in
at least one sample above top will be selected.

Value

The value returned by this function may become nested lists, so for convenience, any nested lists
have been given descriptive items names to make accessing its elements simple (see Examples).

• If otu2 is given:

– If rank is given: a list containing two data frames (otu1 and otu2 aggregated at the given
rank).

– If rank is not given: a list containing two lists. The first sublist represents otu1, the
second otu2. The sublists contain seven data frames, the aggregation of the data at each
taxonomic rank (see Examples).

• If otu2 is not given:

– If rank is given: a single data frame (otu1 aggregated at the given rank).
– If rank is not given: a list containing seven data frames (otu1 aggregated at each taxo-

nomic rank).

Author(s)

Wen Chen and Joshua Simpson.

See Also

RAM.rank.formatting

Examples

data(ITS1, ITS2)
aggregate based on phylum
ITS1.p <- tax.abund(ITS1, rank="p")

aggregate based on all ranks; ignoring all unclassified OTUs
ITS1.taxa <- tax.abund(ITS1, drop.unclassified=FALSE)

aggregate for one rank for both ITS1 and ITS2
lst <- tax.abund(ITS1, ITS2, rank="class")

aggregate for all ranks for both ITS1 and ITS2
lst.all <- tax.abund(ITS1, ITS2)

tax.fill 35

stopifnot(identical(lst.all$otu1$phylum, ITS1.p))

get the counts for all genera with relative abundance > 25%
tax.abund(ITS1, rank="g", top=25, mode="percent", count=TRUE)

tax.fill Fill Missing Taxonomic Information

Description

This function consumes an OTU table and returns a new OTU table where the taxonomic classifi-
cations which are unidentified, unclassified, incertae sedis, or simply missing, are replaced with a
more descriptive entry.

Usage

tax.fill(data, downstream = TRUE)

Arguments

data the OTU table to be used.

downstream logical. Should the replacement occur downstream, or upstream? (see Details)

Details

If downstream == TRUE, the function will start at the kingdom level and work its way down. When-
ever an invalid group is encountered (i.e. one of "unclassified", "unidentified", "incertae_sedis", or
simply missing, ignoring capitalization), the last known ’good’ group will be substituted in the form
"p__belongs_to_k_Fungi." If downstream == FALSE, the function will begin at the species level
and work up.

This example should help clarify: given the taxonomy "k__Fungi; p__unidentified; c__Tremellomycetes",
the new taxonomy is as follows (recall that an OTU table is required as input, and will be returned
as output; this example simply shows the effect on the taxonomy):

• Downstream (Kingdom -> Species): "k__Fungi; p__belongs_to_k_Fungi; c__Tremellomycetes;
o__belongs_to_c_Tremellomycetes; f__belongs_to_c_Tremellomycetes; g__belongs_to_c_Tremellomycetes;
s__belongs_to_c_Tremellomycetes"

• Upstream (Species -> Kingdom): "k__Fungi; p__belongs_to_c_Tremellomycetes; c__Tremellomycetes;
o__belongs_to_no_taxonomy; f__belongs_to_no_taxonomy; g__belongs_to_no_taxonomy;
s__belongs_to_no_taxonomy"

Usually, downstream = TRUE will provide a more useful output, however if the species is often
known for your data, but other ranks are unknown, downstream = FALSE will provide a more
descriptive taxonomy.

36 tax.split

Value

Returns an OTU table as a data frame with the exact same numerical counts as data, but an updated
taxonomy column.

Author(s)

Wen Chen and Joshua Simpson.

See Also

RAM.rank.formatting

Examples

data(ITS1)

tax.fill(ITS1)

tax.split Split OTU Tables By Taxonomic Rank

Description

This function consumes an OTU table and splits its taxonomy columns into the seven major tax-
onomic ranks. It returns a data frame preserving all numerical data, but changing the ’taxonomy’
column to the name of the appropriate rank, and preserving only the classifications at that rank.

Usage

tax.split(otu1, otu2 = NULL, rank = NULL)

Arguments

otu1 the first OTU table to be used.

otu2 the second OTU table to be used.

rank the (optional) rank to split at and return (see ?RAM.rank.formatting for format-
ting details).

Value

The value returned by this function may become nested lists, so for convenience, any nested lists
have been given descriptive items names to make accessing its elements simple (see Examples).

• If otu2 is given:

– If rank is given: a list containing two data frames (otu1 and otu2 split at the given rank).

tax.split 37

– If rank is not given: a list containing two lists. The first sublist represents otu1, the
second otu2. The sublists contain seven data frames, which are the data split at each
taxonomic rank (see Examples).

• If otu2 is not given:

– If rank is given: a single data frame (otu1 split at the given rank).

– If rank is not given: a list containing seven data frames (otu1 split at each taxonomic
rank).

Note

This function may seem similar to get.rank, but they are distinct. get.rank only returns the
entries classified at that taxonomic rank, and so some OTUs might be omitted in the returned data
frame. With tax.split, it is guaranteed that all OTUs will be preserved in the returned data table
(although they may be missing taxonomic classification at that rank).

If no OTUs are classified at the given rank, the taxonomy column for that rank will be filled with
empty strings.

Author(s)

Wen Chen and Joshua Simpson.

See Also

get.rank

Examples

data(ITS1, ITS2)

split only ITS1 data at a single rank
ITS1.tax.p <- tax.split(ITS1, rank="phylum")

split only ITS1 data at all ranks
ITS1.tax.all <- tax.split(ITS1)

split ITS1 and IST2 data at a given rank
lst <- tax.split(ITS1, ITS2, rank="c")

split ITS1 and ITS2 at every rank
lst.all <- tax.split(ITS1, ITS2)

stopifnot(identical(lst.all$otu1$phylum, ITS1.tax.p))

38 top.groups.plot

top.groups.plot Plot the Top Taxon Groups

Description

These functions consume two OTU tables, along with (optionally) a file name and a parameter
top. They create a box plot of the top number of OTUs (for plot.top.number), or all OTUs with
relative abundance above top percent (for plot.top.percent) at the taxonomic ranks phylum,
class, order, family, and genus.

Usage

group.top.number(otu1, otu2=NULL, top=10, drop.unclassified=FALSE,
labels=c("ITS1", "ITS2"),
file=NULL, ext=NULL, height=8, width=16,
bw=FALSE, ggplot2=TRUE)

group.top.percent(otu1, otu2=NULL, top=10, drop.unclassified=FALSE,
labels=c("ITS1", "ITS2"),
file=NULL, ext=NULL, height=8, width=16,
bw=FALSE, ggplot2=TRUE)

Arguments

otu1 the first OTU table to be used.

otu2 the second OTU table to be used.

top the number of OTUs to select (for top.number), or the minimum relative abun-
dance threshold to use for selecting OTUs (for top.percent).

drop.unclassified

logical. Should OTUs labelled "unclassified" or missing classification at the
given taxonomic rank be excluded?

labels a character vector giving one label per OTU.

file the file path where the image should be created (see ?RAM.plotting).

ext the file type to be used; one of "pdf", "png", "tiff", "bmp", "jpg", or "svg".

height the height of the image to be created (in inches).

width the width of the image to be created (in inches).

bw logical. Should the image be created in black and white?

ggplot2 logical. Should the ggplot2 package be used to produce the plot, or should the
base graphics be used? (see ?RAM.plotting).

Note

Please be aware that the ’whiskers’ in the plot may differ depending on the setting of ggplot2.
Please see geom_boxplot and boxplot/boxplot.stats for more information on how the whiskers
are calculated.

transpose.OTU 39

Author(s)

Wen Chen and Joshua Simpson.

See Also

RAM.plotting

Examples

Not run:
data(ITS1, ITS2)

plots the top 10 OTUs (by default) at five ranks
group.top.number(ITS1, ITS2)

plots all OTUs w/ relative abundance > 10% (as specified) at five ranks
and saves the result as a .tiff file (only using ITS1 data)
group.top.percent(ITS1, top=10, file="my/file/path", ext="tiff")
End(Not run)

transpose.OTU Take the Transpose of an OTU Table

Description

Returns the transpose of the given OTU table, excluding the last column (which should contain
taxonomic information).

Usage

transpose.OTU(data)

Arguments

data The OTU table to be transposed.

Value

Returns a data frame with rows equal to the columns of the original OTU, and columns equal to the
rows of the original OTU. (Excluding the taxonomy column).

Author(s)

Wen Chen and Joshua Simpson.

Examples

data(ITS1)

ITS1.t <- transpose.OTU(ITS1)

40 write.OTU

valid.OTU Validate an OTU Table

Description

This function consumes one or two OTU tables and checks if they are formatted properly and
contain valid data.

Usage

valid.OTU(otu1, otu2 = NULL)

Arguments

otu1 the first OTU table to check.

otu2 the second OTU table to check.

Value

If the table is not valid, an error will be raised with a description explaining the problem. If the table
is valid, NULL will be returned invisibly.

Author(s)

Dr. Chen Wen and Joshua Simpson.

Examples

data(ITS1, ITS2)

valid.OTU(ITS1)
valid.OTU(ITS1, ITS2)

write.OTU Write OTU-Style Table to .csv File

Description

Creates a .csv-formatted file with the data from the specified OTU table data. The file will be
created in your current working directory (see ?getwd and ?setwd), unless specified otherwise by
file. Note that if the file field does not end in .csv, ".csv" will be appended to the end of file.

Usage

write.OTU(data, file)

write.OTU 41

Arguments

data The OTU table containing the data to be used.

file The name of the .csv file to be created.

Author(s)

Wen Chen and Joshua Simpson.

See Also

write.csv, getwd, setwd

Examples

data(ITS1)
Not run:
write.OTU(ITS1, "my_file_name.csv")
End(Not run)

Index

∗Topic IO
read.meta, 29
read.OTU, 30
write.OTU, 40

∗Topic array
transpose.OTU, 39

∗Topic datagen
dissim, 5
shared.OTU, 32

∗Topic datasets
ITS1/ITS2, 21
meta, 22

∗Topic error
valid.OTU, 40

∗Topic file
read.meta, 29
read.OTU, 30
write.OTU, 40

∗Topic hplot
dissim.heatmap, 6
dissim.plot, 8
group.abundance, 13
group.heatmap, 14
group.heatmap.simple, 15
group.indicators, 17
group.spatial, 18
group.temporal, 20
pcoa.plot, 23
sample.locations, 31
top.groups.plot, 38

∗Topic manip
diversity.indices, 10
get.rank, 11
percent.classified, 25
tax.abund, 33
tax.fill, 35
tax.split, 36

∗Topic models
assist.ordination, 3

∗Topic package
RAM-package, 2

anova.cca, 4
as.Date, 26
assist.cca (assist.ordination), 3
assist.ordination, 3
assist.rda (assist.ordination), 3

boxplot, 38
boxplot.stats, 38

cca, 4
cut.Date, 19

Date, 26
decostand, 7, 15, 33
dissim, 5, 9
dissim.alleig.plot (dissim.plot), 8
dissim.clust.plot (dissim.plot), 8
dissim.eig.plot (dissim.plot), 8
dissim.GOF.plot (dissim.plot), 8
dissim.heatmap, 6
dissim.ord.plot (dissim.plot), 8
dissim.plot, 6, 8
dissim.pvar.plot (dissim.plot), 8
dissim.tree.plot (dissim.plot), 8
diversity.indices, 10

evenness (diversity.indices), 10

factor, 7, 16, 24

geom_boxplot, 38
get.rank, 11, 29, 37
getwd, 30, 31, 41
ggplot, 9, 28
ggplot2, 3
group.abundance, 13
group.heatmap, 14
group.heatmap.simple, 15

42

INDEX 43

group.indicators, 17
group.spatial, 3, 18
group.temporal, 20
group.top.number (top.groups.plot), 38
group.top.percent (top.groups.plot), 38

hclust, 6, 9
heatmap.2, 7, 16

ITS1 (ITS1/ITS2), 21
ITS1/ITS2, 21
ITS2 (ITS1/ITS2), 21

location.formatting, 22

meta, 22
multipatt, 18

pcoa.plot, 23
percent.classified, 25

RAM (RAM-package), 2
RAM-package, 2
RAM.dates, 19, 20, 26
RAM.factors, 7, 14, 16, 17, 20, 24, 27, 32
RAM.plotting, 27, 39
RAM.rank.formatting, 12, 14, 19, 20, 29, 34,

36
read.meta, 27, 29
read.OTU, 30
read.table, 30, 31

sample.locations, 31
setwd, 30, 31, 41
shared.OTU, 32

tax.abund, 29, 33
tax.fill, 35
tax.split, 36
top.groups.plot, 38
transpose.OTU, 39
true.diversity (diversity.indices), 10

valid.OTU, 40
vegan, 3
vegdist, 6, 7, 9, 24, 25

write.csv, 41
write.OTU, 40

	RAM-package
	assist.ordination
	dissim
	dissim.heatmap
	dissim.plot
	diversity.indices
	get.rank
	group.abundance
	group.heatmap
	group.heatmap.simple
	group.indicators
	group.spatial
	group.temporal
	ITS1/ITS2
	location.formatting
	meta
	pcoa.plot
	percent.classified
	RAM.dates
	RAM.factors
	RAM.plotting
	RAM.rank.formatting
	read.meta
	read.OTU
	sample.locations
	shared.OTU
	tax.abund
	tax.fill
	tax.split
	top.groups.plot
	transpose.OTU
	valid.OTU
	write.OTU
	Index

