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1 Overview
For information about the actual build see the projects website:
e R-Forge: http://quacn.r-forge.r-project.org/
e CRAN: http://cran.r-project.org/web/packages/QuACN/

This vignette provides an overview about the usage of QuACN.
Chapter 2| will describe how to import already exiting networks. In Chapter |3| a brief description of the
implemented measures is presented, and it demonstrates how to call the related method in R.

1.1 Installation

QuACN uses the packages graph and RBGL from the Bioconductor project. Before installing QuACN, Biocon-
ductor with the corresponding packages needs to be installed. For instructions see the Bioconductor website:

e Bioconductor: http://www.bioconductor.org/

Note, that QuACN also depends on the Rmpfr package. Therefore, the software GMP (http://gmplib.
org/) and MPFR ( http://www.mpfr.org/) needs to be installed to install the package correctly:

e Windows: The package should install without problems.

e Ubuntu/Debian: Make sure that the libraries libgmp3-dev and libmpfr-dev are installed.

For more information see the corresponding websites, or the documentation of the Rmpfr package (http:
//rmpfr.r-forge.r-project.org/).

After installing GMP and MPFR everything is ready to install QuACN. Other dependencies will be installed
automatically during the installation. To install the package from CRAN simply type:

> install.packages ("QuACN")

2 Networks

This section shows how to create networks in R to use them with QuACN.

2.1 graphNEL

We generate a random graph with 8 nodes. This graph will be used to explain the implemented methods. To
analyze a network the network has to be represented by a graphNEL-object, which is part of the Bioconductor
graph package.

> library("QuACN")
Loading C code of R package 'Rmpfr': GMP using 64 bits per limb

> set.seed(666)
> g <- randomGraph(1:8, 1:5, 0.36)

> 8
A graphNEL graph with undirected edges

Number of Nodes = 8
Number of Edges = 16
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2.2 Adjacency Matrix

To create a graphNEL object from an adjacency matrix A, just type following command:

> A

12345678
101121011
210111000
311011000
421101011
511110100
600001000
710010001
810010010
> g <- as(A, "graphNEL")
> g

A graphNEL graph with undirected edges
Number of Nodes = 8
Number of Edges = 16

Some descriptors, which are specially marked throughout this document, require vertex and/or edge
weights. Known attributes are:

e "atom": Atomic number (such as 8) or chemical symbol (such as "0") of a graph vertex.

e "bond": Conventional bond order of an edge, i.e. 1 for single bonds, 2 for double bonds, 3 for triple
bonds and 1.5 for aromatic bonds.

These can be set as follows:

> nodeDataDefaults(g, "atom") <- "C"
> nodeData(g, "6", "atom") <- "O"
> edgeDataDefaults(g, "bond") <- 1
> edgeData(g, "2", "3", "bond") <- 2

If existing networks are to be analyzed with QuACN, R offers several ways to import them. (It is important
that the networks are represented by graphNEL-objects.) Note that there is no general procedure to get
networks into an R workspace. Some possibilities to import network data are listed below:

e Adjacency matrix: A representation of a network as an adjacency matrix can be easily imported
and converted into a graphNEL object.

e Node- and Edge-List: With a list of nodes and Edges it is easy to create a graphINEL-object.

e read.graph(): The read.graph() method of the graph-package offers the possibility to import graphs
that a represented in different formats. For details see the manual of the graph-package.

e System Biology Markup Language(SBML) [1]: With the RSBML-package it is possible to import
SBML-Models.

e igrah-package: Networks created with the igraph-package can be converted into graphNEL objects.

2.3 Extract the Largest Connected Subgraph

Many of the topological network descriptors that are implemented in QuACN only work on connected graphs.
Often this is not the case with biological networks, so that the largest connected component (LCC) has to
be extracted first. For extracting the LCC we provide the method getLargestSubgraph(g), as shown in [2]:

> g2 <- randomGraph(paste("A", 1:100, sep=""), 1:4, p=0.03)
> lcc <- getLargestSubgraph (g2)
> lcc

A graphNEL graph with undirected edges
Number of Nodes = 7
Number of Edges = 12
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2.4 Enumerate Edge-Deleted Subgraphs

Some descriptors require a list of all distinct subgraphs which can be generated from a graph by removing
one or two edges. The concerning methods obtain this information automatically, but for efficiency reasons,
the user might want to pre-calculate and reuse it:

> sg.led <- edgeDeletedSubgraphs(g)
> sg.2ed <- edgeDeletedSubgraphs(sg.led)

Note that the method edgeDeletedSubgraphs(g) accepts lists or single instances of graphNEL objects
or adjacency matrices, but it always returns a list of adjacency matrices.

3 Network Descriptors

This section provides a overview of the network descriptors that are included in the QuACN package. Here
we describe the respective descriptor and how to call it in R. The gray numbers in the left margin show the
necessary descriptor numbers for the calculateDescriptors method; see section [f] below for details.

Many descriptors have at least two parameters, the graphNEL-object and the distance matrix representing
the network. It is not necessary to pass the distance matrix to a function. If the parameters stays empty or
is set to NULL the distance matrix will be estimated within each function. But if the user wants to calculate
more than one descriptor, it is recommended to calculate the distance matrix separately and pass it to each
method. Some of the methods need the degree of each node or the adjacency matrix to calculate their results.
If they were calculated once they should have kept for later use. For large networks in particular, it saves a
lot of time to not calculate these parameters for each descriptor again, and will enhance the performance of
the program to be developed.

> mat.adj <- adjacencyMatrix(g)
mat.dist <- distanceMatrix(g)
vec.degree <- graph::degree(g)
ska.dia <- diameter(g)

ska.dia <- diameter(g, mat.dist)

In the definitions below, let G = (N(G), E(G)) be a finite and connected graph. N(G) and E(G) are
called vertex and edge set of G, respectively. As |[N(G)| < inf, we can define |[N(G)| := N.

vV VvV VvV

3.1 Descriptors Based on Distances in a Graph

This section describes network measures based on distances in the network.

Wiener Index [3]:

XN
W(G) = §ZZd(vi,vj). (1)

i=1 j=1
d(v;, v;) stands for shortest distances between v;,v; € N(G).

> wien <- wiener(g)
> wiener(g, mat.dist)

[1] 43

Harary Index [4]:

> harary(g)
[1] 21.16667
> harary(g, mat.dist)

[1] 21.16667



1003

1005

1006

Balaban J Index [5]:

E
J(G) = 1B > [DS;DS;]: (3)
f+1
(vi,v;)EE
> balabanJ(g)
[1] 2.592142
> balabanJ(g, mat.dist)
(1] 2.592142
where |E(G)| := |E| denotes the number of edges of the complex network, D.S; denotes the distance sum
(row sum) of v; and p := |E| 4+ 1 — N denotes the cyclomatic number.
Mean Distance Deviation [6]:
See subsection B.1]
Compactness [7]:
4w
C(Q) = 4
€)= ¥iv T 0

> compactness(g)

[1] 3.071429

> compactness(g, mat.dist)

[1] 3.071429

> compactness(g, mat.dist, wiener(g, mat.dist))

[1] 3.071429

Product of Row Sums Index [8]:

N N

PRS(G) = [[ u(vi) or log (PRS(G)) = log (H u(w)) . (5)
i=1 ;

> productOfRowSums (g, log=FALSE)

[1] 157464000

> productOfRowSums (g, log=TRUE)

[1] 27.23045

> productOfRowSums (g, mat.dist, log=FALSE)

[1] 157464000

> productOfRowSums (g, mat.dist, log=TRUE)

[1] 27.23045
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Hyper-distance-path Index [9]

> hyperDistancePathIndex(g)

[1] 60

> hyperDistancePathIndex(g, mat.dist)

[1] 60

> hyperDistancePathIndex (g, mat.dist, wiener(g, mat.dist))
[1] 60

Skorobogatov and Dobrynin [6]:

This method calculates several descriptors:

1. Vertex Eccentricity [6]:
e(v) := maw,en(c)d(u, v)

A\

dob <- dobrynin(g)
dob <- dobrynin(g, mat.dist)
dob$eccentricityVertex

vV Vv

2345678
2222333

2. Eccentricity of a graph [0]:

> dob$eccentricityGraph
[1] 19
3. Average Vertex Eccentricity of a Graph [0]:

e(G)

ear(G) := N

> dob$avgeccOfG
[1] 2.375

4. Vertex Eccentric [6]:
Ae(v) = [e(v) — ea(G)

> dob$ecentricVertex

1 2 3 4 5 6 7 8
0.375 0.375 0.375 0.375 0.375 0.625 0.625 0.625

5. Eccentric of a Graph [6]:

ZA@

'UEN (@)
> dob$ecentricGraph

[1] 0.46875

(10)

(11)
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10.

11.

12.

13.

Vertex Centrality [6]:

D():= >  d(v,u)

vEN(G)
> dob$vertexCentrality

6 7 8

2 3 4
9 15 12 12

1 5
9 10 10 9

Graph Integration [6]:

> dob$graphIntegration
[1] 43

Unipolarity [6]:
D*(G) == minyen)D(v)

> dob$unipolarity
(11 9

Distance Vertex Deviation [6]:

> dob$vertexDeviation
234 8
110 3

w N

1 56
0 06

Variation of a Graph [6]:
var(g) := mayen(c)AD" (v)
> dob$variation

(1] 6

Centralization [6]:

AG* = Y AD*(v)

veEN(G)
> dob$centralization
[1] 14
Average Distance of Graph Vertices [0]:
2D(9)
Da'u N
(9) N

> dob$avgDistance
[1] 10.75

Distance Vertex Deviation [6]:

> dob$distVertexDeviation

1 2 3 4 5 6 7 8
1.75 0.75 0.75 1.75 1.75 4.25 1.25 1.25

(16)

(19)
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14. Mean Distance Deviation [0]:

> dob$meanDistVertexDeviation

[1] 1.6875

3.2 Descriptors Based on Other Graph-Invariants

This section describes network measures based on other invariants than distances.

Index of Total Adjacency [10]:

> totalAdjacency(g)

(11 17

> totalAdjacency(g, mat.adj)

[1] 17

Zagreb Group Indices [1T], 12]:

TR
i=1 j=1
N
Z(G) =Yk,

where k,, is the degree of the node v;.

Zy(G) = Y kuk,.

(viv;)€E

Modified, augmented and variable Zagreb indices:

> zagrebl(g)
[1] 32
> zagrebl(g,
[1] 32
> zagreb2(g)
[1] 298
> zagreb2(g,

[1] 298

1
MZI(G) = o
(’Ui,Uj)EE Vi U5
az0) = Y (gt
(vivg)eE N v
ky, + Ky, — 2
VZI(G) = Y "
(viv;)EE Vit

vec.degree)

vec.degree)

).

(21)

(23)
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> modifiedZagreb(g)

[1] 0.9291667

> modifiedZagreb(g, vec.degree)
[1] 0.9291667

> augmentedZagreb (g)

[1] 329.0397

> augmentedZagreb(g, vec.degree)
[1] 329.0397

> variableZagreb(g)

[1] 5.808333

> variableZagreb(g, vec.degree)

[1] 5.808333

Randié Connectivity Index [13]:

—1
RG) = Y [kuku] 2.
(vi,vj)EE
> randic(g)
[1] 3.768881
> randic(g, vec.degree)
[1] 3.768881
The Complexity Index B [10]:
Yk
B(G) = -
; 1(vs)

> complexityIndexB(g)

[1] 3.255556

> complexityIndexB(g, mat.dist)

[1] 3.255556

> complexityIndexB(g, mat.dist, vec.degree)

[1] 3.255556

Normalized Edge Complexity [10]:

> normalizedEdgeComplexity(g)
[1] 0.265625
> normalizedEdgeComplexity(g, totalAdjacency(g, mat.adj))

[1] 0.265625

(29)



Atom-bond Connectivity [14]:

2010 ABC(G):= > (30)
(vi,vj)eE
> atomBondConnectivity(g)
[1] 9.255967
> atomBondConnectivity(g, vec.degree)
[1] 9.255967
Geometric-arithmetic Indices [15]:
ky Ky,
2011 GAI(G) := ﬁ (31)
(vi,v;)€EE 2 (o, + ko)
2012 GA2(G) := 17% (32)
(vi.o) € 5(n; +ny)
2013 GAS(G) = > 5 VI (33)
(vio) € 3 (m; +my)
where
ni = [z e N(G):d(x,v) <d(x,v;)}, (34)
n; = |{xe N(QG):d(x,v,) < dx,v)}] (35)
m; = {f € E:d(f,v) <d(f,v)}, (36)
m; = [{f € E:d(f,v;) <d(f,0)}. (37)

In this context, the distance between an edge f = {x, y} and a vertex v is defined as d(f, v) := min{d(z, v), d(y,v)}.

> geometricArithmeticl(g)

[1] 14.41511

> geometricArithmeticl(g, vec.degree)
[1] 14.41511

> geometricArithmetic2(g)

[1] 14.08027

> geometricArithmetic2(g, mat.dist)
[1] 14.08027

> geometricArithmetic3(g)

[1] 13.04009

> geometricArithmetic3(g, mat.dist)

[1] 13.04009

10
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Narumi-Katayama Index [16]:

N
NK =[] kv, (38)
i=1

> narumiKatayama(g)
[1] 25920
> narumiKatayama(g, vec.degree)

[1] 25920

3.3 Classical Entropy-based Descriptors

These measures are based on grouping the elements of an arbitrary graph invariant (vertices, edges, and
distances etc.) using an equivalence criterion.

Topological Information Content [17, [18]:

k v v
v eIV [N;' |
1), (G) = ;:1 N log (N . (39)

|NY| denotes the number of vertices belonging to the i-th vertex orbit.

> topologicalInfoContent (g)

$entropy
[1] 2.25

$orbits
[11] 22112

> topologicallnfoContent(g, mat.dist)

$entropy
[1] 2.25

$orbits
[11] 22112

> topologicalIlnfoContent (g, mat.dist, vec.degree)

$entropy
[1] 2.25

$orbits
[1] 22112

Bonchev - Trinajsti¢ Indices [19]:

(G)
1 1\ R 2k 2k;
In(G) = —Nlog (N) - 2 V2 log <N2> , (40)
p(G)
IN(G) = W(G)log(W(G) — 3 ikilog(i), (41)
i=1
p(G)

2k;

2%k;
15(C) N ; NN —1) NN 1)

(42)

p(G) is the diameter of the graph (the maximum distance between two nodes). k; is the occurrence of a
distance possessing value ¢ in the distance matrix of G.

11
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> #I_D(G)
> bonchevl(g)

[1] 1.208931
> bonchevl(g, mat.dist)
[1] 1.208931

> #I"W_D(G)
> bonchev2(g)

[1] 170.3098

> bonchev2(g, mat.dist)

[1] 170.3098

> bonchev2(g, mat.dist, wiener(g))
[1] 170.3098

> #I"E_D(G)
> bonchev3(g)

[1] 1.283887
> bonchev3(g, mat.dist)

[1] 1.283887

Bertz Complexity Index [20]:

k
C(G) := 2N log(N) — Z | Ni|log (| NVil) -

|N;| are the cardinalities of the vertex orbits as defined in Eqn. (39).
> bertz(g)

[1] 42

> bertz(g, mat.dist)

[1] 42

> bertz(g, mat.dist, vec.degree)

[1] 42

Radial Centric Information Index [21]:
| Vi | VY|

Ten(G) :z o (1361,

|N£| is the number of vertices having the same eccentricity.

> radialCentric(g)
[1] 0.954434
> radialCentric(g, mat.dist)

[1] 0.954434

12
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Vertex Degree Equality-based Information Index [21]:

k k k
NFo Nk
Lieg(@) = Y 'log< . )
=1

|Nf“| is the number of vertices with degree equal to i and k := max,e n(q) ko-

> vertexDegree (g)

[1] 2.25

> vertexDegree (g, vec.degree)
[1] 2.25

Balaban-like Information Indices [22]:

Note that this class of Descriptors return Inf for graphs with NV < 3.

|E| _1
UG):=—— [w(vi)u(v,)] ™2,
et 1 (’L)i%EE
= ﬂ x(v;)x(v —3
X(G) = | (U’igw[ (vi)z(v5)] "2,
where
o(vi)

o JSis G| J
uw) = -2 TRy ()
z(v;) = —p(v;)log(d(vi)) — vi,

o(vi)

vi = ) 1850 G)llog(j),

x N

N('Ui) = Zd(vivvj>:Zj|Sj<vi7G)|'

> #Balaban-like information index U(G)
> balabanlikel(g)

[1] 9.418414
> balabanlikel(g, mat.dist)
[1] 9.418414

> #Balaban-like information index X(G)
> balabanlike2(g)

[1] 0.9109921
> balabanlike2(g, mat.dist)

[1] 0.9109921

13
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Graph Vertex Complexity Index [23]:

N

v 1 c
I o(G) = N Zviv (52)
i=1
where v is the so-called vertex complexity expressed by
U(Ui) V. V;
k i k Ui
c.__ J J
‘7:

k' is the number of distances starting from V; € N(G) equal to j.
> graphVertexComplexity(g)

[1] 1.510027

> graphVertexComplexity (g, mat.dist)

[1] 1.510027

Graph distance complexity [23]:

N
1
Ive(G) =« > Ipcsy (vi), (54)
i=1
Ipc,s, being is the local invariant
ecc(v;) . j j
Ipcsp(v) == 3 a5 5 ORIl (55)

—

Jj=

where ecc(v;) denotes the eccentricity of the vertex v;, a;'- is the number of vertices in its j-sphere, and dp(v;)
is its distance degree.

> graphDistanceComplexity(g)

[1] 2.717164

> graphDistanceComplexity (g, mat.dist)
[1] 2.717164

Information Bond Index [24]:

I :=|B|-logy |E| = ) |Em| -10gy | Enl, (56)
where E,, is the subset of E of edges with a multiplicity of m. The sum runs over all the different edge
multiplicities in the graph.

This descriptor expects the conventional bond order in the "bond" edge data attribute of the input graph.

> informationBondIndex(g)

[1] 5.396641

Mean Information Content on the Edge Equality [25]:

EE | E| | Ey|
I, =— Y- logy —=, (57)
X B |E]

where F, is the subset of E' of edges with an edge connectivity of g. The sum runs over all the different
connectivity values of the edges in the graph.

> edgeEqualityMIC(g)

[11 2.5

> edgeEqualityMIC(g, vec.degree)
[1] 2.5

14
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Mean Information Content on the Edge Magnitude [25]:

_ \—1/2 .\—1/2
By (kik;) g, (Kiky)

VTG RO RG "
where R(G) is the Randi¢ connectivity index and k; are the vertex degrees.
> edgeMagnitudeMIC(g)
[1] 3.860793
> edgeMagnitudeMIC(g, vec.degree)
[1] 3.860793
Symmetry Index [26]:
1
S(G) =+ ; |Aillog | Ai] + log |Aut(G)], (59)
where Aut(G) is the automorphism group with h orbits A;, 1 <1i < h.
> symmetryIndex(g)
[1] 3.75
Mean Information Content of Distance Degrees [6]:
Y op(vi) . plv)
I5,(G) = — Zl 108 oy (60)
where dp(v;) is the distance degree of the ith vertex and W is the Wiener index.
> distanceDegreeMIC(g)
[1] 2.976625
> distanceDegreeMIC(g, mat.dist)
[1] 2.976625
Mean Information Content of Distance-Degree Equality [21]:
k
13,0 =3 Rl og I (61)
where Ny, N, ..., Nj is the vertex partition of N(G) such that each N; contains vertices having the same

distance degree dp.

> distanceDegreeEquality(g)

[1] 1.905639

> distanceDegreeEquality(g, mat.dist)

[1] 1.905639

15
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Compactness Measure Based on Distance Degrees [27]:

I, (G) = 2Wlog(2W) — Y gk log g
K

(62)

where W is the Wiener index and ¢, is the sum of the distance degrees of all vertices located at a topological

distance of k£ from the center of the graph.

> distanceDegreeCompactness(g)

[1] 139.0399

> distanceDegreeCompactness(g, mat.dist)

[1] 139.0399

Information Layer Index [28]:

N ecc(v;

Yai  al
Ispifz Z Nlogﬁ,

i=1 j=1

where ecc(v;) denotes the eccentricity of the vertex v; and aé is the number of vertices in its j-sphere.
> informationLayerIndex(g)

[1] 9.080219

> informationLayerIndex (g, mat.dist)

[1] 9.080219

3.4 More Recent Graph Complexity Measures

This group contains miscellaneous descriptors which have been discovered quite recently.

Medium Articulation [29]:
MAg(G) := MAR(G) - MA;(G)
with the redundancy

o R(G) — Rpatn(G) _ R(G) — Rpain(G)
MAR(G) =1 <Rclique<G) - Rpath(G)> <1 Rclique(G) - Rpath<G))
1
R@) = 5 ; log(d;d;)
Rclique(G) = 2 log(N - 1)
Rpatn(G) = Qx — f log 2

and the mutual information

IO - L) 1(G) — Liige(C)
MA(G) = 4 <Ipath<a> - lfcnque@)) (1 A (e lfcnque@))

1 2|E
1(G) = E|Zlog(d|»d'>
i,5>i b

J>1
N
Icliquc(G) = log N1
N —
Ipatn(G) = log(N —1)— N log 2

> mediumArticulation(g)

[1] 0.8146964

16
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Efficiency Complexity [29]:

- E(G) — Epat (G) E(G) — Epat (G)
Ce(G) o 4( 1 _Epath(g) ) (1 - 1 _Epath(g) ) (73)

2 1
EG) = — (74)
R I
2 N —i
E G) = ——— N -1 75
> efficiency(g)
[1] 0.9982847
> efficiency(g, mat.dist)
[1] 0.9982847
Graph Index Complexity [29]:
Cr(G) :=4e-(1—¢;) (76)
where
T — 208 47
T N 1= 2cos N

and r is the largest eigenvalue of the adjacency matrix of the graph.

> graphIndexComplexity(g)

[1] 0.9479444

Offdiagonal Complexity [29]:

kpax—1
1 RN -
OdC(G) = —m 7; a'rLlOgan, (77)
with
- G
Ap = —~Fmax—1 (78)
Zm:() am
Kmax—N
an =Y G, (79)
i=1

where kpax is the maximum degree of all nodes in the graph, and ¢;; is the number of all neighbors with
degree j > i of all nodes with degree 1.

> offdiagonal(g)
(1] 0.7724231
> offdiagonal (g, vec.degree)

[1] 0.7724231

17
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Spanning Tree Sensitivity [29]:

— 1
STS(G) = AQZQEifglﬂv (80)
log micy
with me, = N168 — 10,
l
ap = iij ) (81)
2 S
Si’ = Sij - (min{sij} — 1), (82)
{S}j,Sfj, . .,Sfj} being an ordered list of all k different S;;. s;; is the number of spanning trees in the

graph minus the number of spanning trees of the subgraph with the edge {v;,v;} deleted. Analogously, the
spanning tree sensitivity differences measure is defined as

— by logd
STSD(G) := M’ (83)
log my,
with
Ld,
bh=——
Zr Ld7

, where {Ldy, Lda, ..., Lds} is the ordered list of all unique differences Si— S;}L_l.
> spanningTreeSensitivity(g)

$STS

[1] 0.3507527

$STSD

[1] 0.2446252

> spanningTreeSensitivity(g, sg.led)

$STS

[1] 0.3507527

$STSD
[1] 0.2446252

Distance Degree/Code Centric Indices [30]:

D g, d;

IC,deg(G) = - Z Nz 10g2 NZa (84)
=1
c C; C;

Iccoae(G) = =) N log, N (85)
i=1

where d; is the number of vertices with the same eccentricity and the same vertex distance degree (i. e., equal
row sums in the distance matrix), and ¢; is the number of vertices with the same vertex distance code (i.e.,
the same numbers in their rows in the distance matrix). D and C are the respective numbers of equivalence
classes.

> distanceDegreeCentric(g)

[1] 1.905639

> distanceDegreeCentric(g, mat.dist)
[1] 1.905639

> distanceCodeCentric(g)

[1] 1.905639

> distanceCodeCentric(g, mat.dist)

[1] 1.905639
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5000

5003,
5004

5005,
5006

5001,
5002

5007,
5008

3.5 Parametric Graph Entropy Measures

Measures of this group [3I], [32] assign a probability value to each vertex of the network using a so-called
information functional f which captures structural information of the network G.

N

) f(vi)
I+(G) = — lo , 86
1 ;Zjil f(v)) g(zjilf(vj)) (88)

where I;(G) represents a family of graph entropy [3I] measures depending on the information functional.
Further we implemented the following measurement[32]:

N
I}(G) = X <10g(N) + Zp(vi)log(p(vi))> ; (87)

=1

v;) = f(vi) 88
PO = SN =

where p¥ (v;) are the vertex probabilities, and A > 0 is a scaling constant. This measure can be interpreted
as the distance between the entropy defined in equation [86{ and maximum entropy (log(NN)). We integrated
4 different information functionals [31 [33]:

1. An information functional using the j-spheres (“sphere”):
FY (i) = el Si(vi, G)| + cal 2 (v, G)| + -+ + ep(e S (vi, ), (89)
where ¢ > 0.
2. An information functional using path lengths (“pathlength”):
P (0i) = al(P(Lg(vi, 1)) + e2l(P(La(vi,2))) + - + eyl P(La (vi, p(G)))), (90)
where ¢, > 0.
3. An information functional using vertex centrality( vertcent”) :
FO (i) = e fEeeD () + e BE D (0) + -+ + i BEE ) (1)), (91)
where ¢, > 0.
4. Calculates the degree-degree association index(”degree”) [33]:

fA (Ui) — aClAG('Ui,l)"rCQAG('Ui,2)+"'+CP(G)AG(U7;,[)(G))’ (92)

where ¢, > 0,1 < k < p(G) and « > 0. Note that f2 is well-defined for o > 0. Please consider that the
results of the degree-degree association index are often very close to zero and can only be represented
with a special data type (see the hint at the end of this section).

We implemented 4 different settings (as example settings) for weighting the parameters ¢; (p(G) represents
the diameter of the network):

1. constant

C1 ‘= ]., Cg = 17‘ M Cp(G) = 1. (93)
2. linear
€1 = P(G), C2 1= p(G> -1, Cp(G) = L. (94)
3. quadratic
C1 = p(G)vaQ = (p(G) - 1) ) 7Cp(G) =1 (95)
4. exponential
C1 = p(G)a C2 1= p(G)ela y Cp(G) = p(G)eip(GHkl' (96)
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When using the calculateDescriptors method, the first (odd) numbers listed in the margin will use
exponential weighting while the second (even) numbers use linear.

To call this type of network measure we provide the method infoTheoreticGCM. It has following input
parameters:

g: the network as a graphNEL object - it is the only mandatory parameter
dist: the distance matrix of g

»

coeff: specifies the weighting parameter: “const”, ”lin”, "quad”, “exp”, ”const” or "cust” are available
constants. If it is set to "cust”, a customized weighting schema has to be specified through the custCoeff
parameter.

infofunct: specifies the information functional: ”sphere”, "pathlength”, "vertcent” or "degree” are avail-
able settings.

lambda: scaling constant for the distance, default set to 1000.
custCoeff: specifies the customized weighting schema. coeff must be set to ”const” in order to use it.
alpha: alpha for degree degree association.

prec: specifies the floating-point precision to use (currently only implemented for degree-degree associ-
ation). Values up to 53 are handled with the built-in double data type; larger values trigger the usage
of Rmpfr.

Note that some combinations of these settings can cause the descriptor to return NaN. In that case it
is the user’s responsibility to check for warnings. For infofunct="degree" in particular, also see the note
below.

The method returns a list with following entries:

entropy: contains the entropy, see formula
distance: contains the distance described in formula [87]

pis: contains the probability distribution, see formula

e fvi: contains the values of the used information functional for each vertex v;

> 11 <- infoTheoreticGCM(g)

> 12 <- infoTheoreticGCM(g, mat.dist, coeff="1lin", infofunct="sphere", lambda=1000)

> 13 <- infoTheoreticGCM(g, mat.dist, coeff="const", infofunct="pathlength", lambda=4000)
> 14 <- infoTheoreticGCM(g, mat.dist, coeff="quad", infofunct="vertcent", lambda=1000)

> 15 <- infoTheoreticGCM(g, mat.dist, coeff="exp", infofunct="degree", lambda=1000)

> 11

$entropy

[1] 2.990011

$distance
[1] 9.9892

$pis

1 2 3 4 5 6 7 8

0.1376812 0.1304348 0.1304348 0.1376812 0.1376812 0.0942029 0.1159420 0.1159420

$fvis

1

2 3 4 5 6 7 8

19 18 18 19 19 13 16 16

> 15
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$entropy
[1] 1.546569

$distance
[1] 1453.431

$pis
1 2 3 4 5 6
4.474312e-01 2.658896e-02 2.658896e-02 4.474312e-01 5.075579e-02 1.196450e-03
7 8

3.710288e-06 3.710288e-06

$fvis
1 2 3 4 5 6
2.540206e-12 1.509538e-13 1.509538e-13 2.540206e-12 2.881564e-13 6.792618e-15
7 8

2.106446e-17 2.106446e-17

Important: Note, the functional based on degree-degree associations (infofunct="degree") can result
in values that cannot be represented by standard data types. This problem manifests itself in NaN as return
values. Note, that this issue can be avoided by specifying a floating-point precision value greater than 53,
using the parameter prec (e.g. prec=128 is usually enough). In this case, the Rmpfr package will be used
and the list, returned by the function will contain vectors of the class mpfr. These vectors can be used as
usual numeric vectors, except that all calculations will result in mpfr vectors. Note, that as.double can be
used to convert such a vector back to the regular numeric vector once the result is in the representable range
(between 107389 and 10387). The following example shows how to work with vectors of type mpfr:

> 15mpfr <- infoTheoreticGCM(g, mat.dist, coeff="exp", infofunct="degree", lambda=1000, prec=128)
> l5mpfr$entropy

1 'mpfr' number of precision 128 Dbits
[1] 1.546568792292280720674101903940257498633

> 1bmpfr$entropy * 273

1 'mpfr' number of precision 128 bits
[1] 12.37255033833824576539281523152205998907

> as.double(15mpfr$entropy * 2°3)
[1] 12.37255

For more details about mpfr vectors, please consult the Rmpfr documentation.

Parametric Entropy Measures for Labeled Graphs [34]:

These three functionals are similar to the ones above, but additionally use vertex or edge labels in order to
distinguish between different bond types and heteroatoms. For practical reasons, they are not implemented
as part of infoTheoreticGCM.

Y1 and £V require the atomic number or chemical symbol in the "atom" vertex data attribute. f¥ needs
the conventional bond order in the "bond" vertex attribute.

The functionals are defined as

p(G) |AT| -
5000, ) = 303 o 8¢ (i, G|, (97)
5010 k=1 p=1
|AT | p(G)
5011 (v = Z o - Z \Vie (La(vi k)| ] (98)
p=1 k=1
p(G)
5012, fPui) = e w(Le(vi, k)). (99)
5013 k=1
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S;"”L is the set of vertices on the j-sphere of v; with the node label I#. |A$}| is the number of distinct node
labels. Lg(v;, ) is called a local information graph regarding v;. Its vertex set consists of the vertices on the
j-sphere of v; and all vertices along all the shortest paths from v; to these vertices. Its edge set contains all
edges that make up these shortest paths. w(Lq(v;,J)) is defined as

kj
w(Lg(vi, j)) = w(Pi(vs)), (100)
w(PZ(vi)) = wlef) + - twlef), (101)

k; being the number of shortest paths of length j from v;, and w(e!’) the conventional bond order of the ith
edge along the path Pﬂ.
The ¢ values are understood as follows:

o fVi(v;): c;ﬁ is the weighting coefficient for vertices on the j-sphere of v; whose label is {#!. It can be
defined by passing as the coeffMatriz parameter to infoTheoreticLabeledV1 a matrix whose columns
represent the elements and whose rows the values of j; the columns have to be named according to
the chemical symbols. The matrix chosen by default represents ¢ = ¢; — mq /238, where m,, is the
atomic mass of the atom a. Values for ¢; can be selected using coeff and custCoeff as described
above; the default is "1in". Again, the first listed descriptor numbers for calculateDescriptors use
exponentially growing weighting coefficients whereas the second numbers use linear.

o fV2(vy): ¢ is the weighting coefficient for vertices whose label is If. Different values can be chosen
by passing a list in the c¢i parameter to infoTheoreticLabeledV2 which maps chemical symbols to
coefficients. By default, all ¢;» are 1.

o fE(v;): ¢y is the weighting coefficient for paths of length k. The coefficient values can be set using the
coeff [ custCoeff mechanism described above; "1in" is selected by default.

For all functions, lambda can be used to set a scaling constant different from the default 1000.

> 1vl <- infoTheoreticLabeledV1(g, coeff="exp")
> lvi$entropy

[1] 2.965957

> 1v2 <- infoTheoreticLabeledV2(g, ci=list(°C” = 0.8, 0 = 1))
> lv2$%entropy

[1] 2.982281

> le <- infoTheoreticLabeledE(g, coeff="quad")
> le$entropy

[1] 2.981284

[34] also defines functionals f¥1'F and fV2'F as the sum of a vertex- and an edge-labeled-based functional.
Given the result of infoTheoreticLabeledEE and one of info TheoreticLabeled V1 or infoTheoreticLabeled V2, the
info TheoreticSum method can be used to calculate these sums correctly.

> lvle <- infoTheoreticSum(lvl, le)
> lvie$entropy

[1] 2.98406

> lv2e <- infoTheoreticSum(lv2, le)
> lv2e$entropy

[1] 2.984652
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3.6 Eigenvalue-based Descriptors

6000  This class contains eigenvalue-based Descriptors proposed in Dehmer et. al [33].

k 1 1
|)‘ig ‘ il®
Hy(G) =) — “log | —; -, (102)
o1 2= AE > =1 Al
Sar (G) = |Aa]* + Aal® + .+ [A]*, (103)
IS.(C) ! (104)
M = T T )
[A1]5 + A2l + .o+ [ Ag]s
Pu (G) = [M]7 - [Xal® o[ A]®, (105)
1Py (G) ! (106)
M = T T T
I)‘l B |)\2 ERN. |>\k|§

Using this function, it is possible to calculate 5 descriptors (Hus, (a), Sar, (@) > 1Swm, @) P> 1Pu, (@)
for 10 different matrices:

6001, 1. Adjacency matrix
6002
> eigenvalueBased(g, adjacencyMatrix,2)
$HMs
[1] 2.91436
$SMs

[1] 9.912979

$ISMs
[1] 0.1008779

$PMs
[1] 3.464102

$IPMs

[1] 0.2886751
6003, 2. Laplacian matrix
6004

> eigenvalueBased(g, laplaceMatrix,2)

$HMs
[1] 2.731375

$SMs
[1] 14.73375

$ISMs
[1] 0.06787137

$PMs
[1] 1.465232e-06

$IPMs

[1] 682485.6
6005, 3. Distance matrix
6006

> eigenvalueBased (g, distanceMatrix,2)
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$HMs
[1] 2.800874

$SMs
[1] 11.81693

$ISMs
[1] 0.08462436

$PMs
[1] 7.745967

$IPMs
(1] 0.1290994

6007, 4. Distance path Matrix

6008
> eigenvalueBased(g,distancePathMatrix,2)

$HMs
[1] 2.776074

$SMs
[1] 14.61724

$ISMs
[1] 0.06841237

$PMs
[1] 36.29049

$IPMs

[1] 0.02755542
60009, 5. Augmented vertex degree matrix
6010

> eigenvalueBased(g, augmentedMatrix,2)

$HMs
[1] 2.805871

$SMs
[1] 13.9841

$ISMs
[1] 0.07150979

$PMs
[1] 31.11596

$IPMs
[1] 0.03213785

6011, 6. Extended adjacency matrix
6012
> eigenvalueBased(g, extendedAdjacencyMatrix,2)

$HMs
[1] 2.926072
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$SMs
[1] 10.9429

$ISMs
[1] 0.09138349

$PMs
[1] 8.199051

$IPMs
[1] 0.1219653

6013, 7. Vertex Connectivity matrix

6014
> eigenvalueBased (g, vertConnectMatrix,2)

$HMs
[1] 2.942791

$SMs
[1] 4.976892

$ISMs
[1] 0.2009286

$PMs
[1] 0.01643355

$IPMs
[1] 60.85111

6015, 8. Random Walk Markov matrix

6016
> eigenvalueBased (g, randomWalkMatrix,2)

$HMs
[1] 2.942791

$SMs
[1] 4.976892

$ISMs
[1] 0.2009286

$PMs
[1] 0.01643355

$IPMs
[1] 60.85111

6017, 9. Weighted structure function matrix I M;
6018
> eigenvalueBased (g, weightStrucFuncMatrix_1lin,2)

$HMs
[1] 0.8482934

$SMs
[1] 3.277543
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6019
6020

6021

6022

6023

6024

$ISMs
[1] 0.3051066

$PMs
[1] 4.932483e-31

$IPMs
[1] 2.027376e+30

10. Weighted structure function matrix I Ms
> eigenvalueBased(g, weightStrucFuncMatrix_exp,2)

$HMs
[1] 1.02449

$SMs
[1] 3.432103

$ISMs
[1] 0.2913665

$PMs
[1] 4.507051e-35

$IPMs
[1] 2.218746e+34

For a detailed description of this class see Dehmer et. al [33].
When using calculateDescriptors with the numbers in the margin, note that the odd ones set s =1
by default (but allows it to be changed through an optional parameter) while the even numbers fix s = 2.

Graph Energy and Laplacian Energy [35]:

N

B(G) = ) I (107)
N

LE(G) := Z‘”_% (108)

where )\ are the eigenvalues of the adjacency matrix and uy those of the Laplacian matrix of the graph.
> energy(g)

[1] 13.83851

> laplacianEnergy(g)

[1] 19.86179

Estrada [36] and Laplacian Estrada [37] Indices:

N

EE(G) > ek (109)
z]:Vl

LEE(G) = Y eM (110)
=1

with A; and uy defined as above.
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6025

7000

7001

7002

> estrada(g)
[1] 159.3759
> laplacianEstrada(g)

[1] 9884.035

Spectral Radius:
SpRad(G) := max {|\;|} (111)
> spectralRadius(g)

[1] 5.023844

3.7 Subgraph Measures

These descriptors are based on the number and properties of certain subgraphs that can be derived for a
given network.

One-edge-deleted Subgraph Complexity [29]:

Nye -1

CresT(G) = ‘7%f§szf’ (112)
N —1

Cle,Spec(G) = % (113)

Nic st is the number of one-edge-deleted subgraphs which are different with regard to the number of spanning
trees. Similarly, Nye gpec is the number of one-edge-deleted subgraphs which are different with regard to
spectra of the Laplacian and signless Laplacian matrix. m, is defined as N*68 — 10.

> oneEdgeDeletedSubgraphComplexity (g)

$C_1eST
[1] 0.2283142

$C_1leSpec
[1] 0.6392798

> oneEdgeDeletedSubgraphComplexity (g, sg.led)

$C_1eST
[1] 0.2283142

$C_1leSpec
[1] 0.6392798

Two-edges-deleted Subgraph Complexity [29]:

N e,Spec — 1
CQe,Spec(G) = 72,%;“17 1 (114)
( 2 ) -
where m, is defined like above and Ny, spec is the number of two-edges-deleted subgraphs which are different
with regard to spectra of the Laplacian and signless Laplacian matrix.

> twoEdgesDeletedSubgraphComplexity (g)
[1] 0.4164214
> twoEdgesDeletedSubgraphComplexity(g, sg.2ed)

[1] 0.4164214
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7003

8000

8001

Local Clustering Coefficient 38} [39]:

Let Gnw) = (VN@)s En(w)) be the subgraph of G that contains all neighborhood vertices and their edges.
Then the local clustering coefficient of a graph G is defined by

En )
2

> localClusteringCoeff (g)

1 2 3 4 5 6 7 8
0.6 1.01.0 0.6 0.6 0.01.01.0

> localClusteringCoeff (g, deg=vec.degree)

1 2 3 4 5

6 7 8
0.61.01.00.6 0.6 0.01.01.0

1

Global Clustering Coefficient [38], [39]:

1
CG)= Y = ~ Co (116)
> loccc <- localClusteringCoeff (g)
> globalClusteringCoeff (g)
[1] 0.725
> globalClusteringCoeff (g, loc=loccc)

[1] 0.725

3.8 ID numbers

This group contains descriptors which are computed by adding up weights along certain paths in a graph.

Randié¢ Connectivity ID Number [40]:

CID := N + Y wi, (117)
M Pij
where "p;; are all paths of length m > 0, and w;; is a path weight defined as

m
1/2

Wij = H (koykn)), / ; (118)
b=1

with the sum running over all edges in the path and ky(1), ky(2) referring to the degrees of the two vertices
incident to the bth edge.

> connectivityID(g)
[1] 17.53585
> connectivityID(g, deg=vec.degree)

[1] 17.53585
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8002

8003

8004

8005

MINCID [41]:

MINCID := N + Y wyj, (119)
minp .

where the sum runs over all shortest paths ™"
equation [TT8

> minConnectivityID(g)
[1] 12.76619

pij between the vertices v; and v;, and w;; is taken from

> minConnectivityID(g, deg=vec.degree)
[1] 12.76619

Prime ID Number [42]:

PID := N+ Y wij, (120)
Mpij

with ™p;; like above and the path weight w;;

wij = [ pny 2, (121)
b=1

where pn, is a prime number chosen according to the degrees of the vertices adjacent to the bth edge.
> primeID(g)

[1] 16.08181

> primeID(g, deg=vec.degree)

[1] 16.08181

Conventional Bond Order ID Number [43]:

wlD := N + Wij, 122
J
mPij

with ™p;; like above and the path weight w;;

m
wi; = [ 7, (123)
b=1
where 7} is the conventional bond order of the bth edge.
The conventional bond order must be set as the "bond" edge data attribute of the input graph.
> bondOrderID(g)
[1] 1719

Balaban ID Number [44]:

BID :=N+ > wy, (124)
M Dij

with ™p;; like above and the path weight w;;

Wij = H (1) '%(2));1/27 (125)
b=1

where oy, is the vertex distance degree and b(1), b(2) refer to the vertices adjacent to the edge b.
> balabanID(g)

[1] 10.44625

> balabanID(g, dist=mat.dist)

[1] 10.44625
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MINBID [41]:

8006 MINBID := N + Z wij, (126)

ming, .
p

where the sum runs over all shortest paths ™"p;; between the vertices v; and v;, and w;; is taken from

equation [T25

> minBalabanID(g)
[1] 9.78495
> minBalabanID(g, dist=mat.dist)

[1] 9.78495
Weighted ID Number [45]:

8007 WID := N — — + — (127)

with

N N
ID* = ZZ% (128)

=1 j5=1
N-1
w* o= 7k, (129)
k=0
where 7y is the distance-sum-connectivity matrix.
> weightedID(g)
$WID
[1] 8.096099
$SID
[1] 8.516505
Hu-Xu ID Number [46]:
N
8008 HXID :=Y_ AID} (130)
i=1
with
N
j=1
m+1 * 1/2
Ta—1,a 1 )
Wi = e , (132)
k. = ka-Za, (133)

where Z, is the atomic number of v, and k, is the degree of the vertex v,.
The huXuID method requires the input graph to store the atomic numbers or chemical symbols in the
"atom" vertex data attribute and the conventional bond order in the "bond" edge data attribute.

> huXuID(g)
[1] 0.9615091
> huXuID(g, deg=vec.degree)

[1] 0.9615091
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4 Calculating Multiple Descriptors at Once

The calculateDescriptors function provides a simple interface to calculate a set of descriptors on a list of
input graphs. The result is returned as a data frame. The desired functions can be specified by name or by
number, the latter of which can be found in gray type in the margin of this vignette. Numbers divisible by
1000 will trigger the calculation of all the descriptors from a group. It is also possible to name the resulting
columns according to the names given in this document.

The function documentation contains a detailed usage description and a full list of the supported descrip-
tors together with their numbers.

> calculateDescriptors(g, "wiener")

wiener
1 43

> calculateDescriptors(g, 1001)

wiener
1 43

> calculateDescriptors(g, 2000, labels=TRUE)

A Z[1] z[2] MZI AZI VZI R B E[N] ABC
117 32 298 0.9291667 329.0397 5.808333 3.768881 3.255556 0.265625 9.255967
GA1l GA2 GA3 NK

1 14.41511 14.08027 13.04009 25920

5 Session Info
> sessionInfo()

R version 2.15.1 RC (2012-06-16 r59569)
Platform: x86_64-unknown-linux-gnu (64-bit)

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=C LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] QuACN_1.6 Rmpfr_0.4-8 gmp_0.5-2 combinat_0.0-8
[5] igraph0_0.5.5-2 RBGL_1.32.0 graph_1.34.0

loaded via a namespace (and not attached):
[1] BiocGenerics_0.2.0 tools_2.15.1
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