
QuACN: Quantitative Analyze of Complex Networks

Laurin AJ Mueller, Michael Schutte, Karl G Kugler, Matthias Dehmer∗

October 18, 2011

Contents

1 Overview 1
1.1 Installation . 1

2 Networks 2
2.1 graphNEL . 2
2.2 Adjacency Matrix . 2
2.3 Extract the Largest Connected Subgraph . 3
2.4 Enumerate Edge-Deleted Subgraphs . 3

3 Network Descriptors 3
3.1 Descriptors Based on Distances in a Graph . 4
3.2 Descriptors Based on Other Graph-Invariants . 7
3.3 Classical Entropy-based descriptors . 10
3.4 More recent Graph Complexity Measures . 13
3.5 Parametric Graph Entropy Measures . 16
3.6 Eigenvalue-based Descriptors . 18
3.7 Subgraph Measures . 23
3.8 ID numbers . 24

4 Calculating Multiple Descriptors at Once 26

5 Session Info 27

1 Overview

For information about the actual build see the projects website:

• R-Forge: http://quacn.r-forge.r-project.org/

• CRAN: http://cran.r-project.org/web/packages/QuACN/

This vignette provides an overview about the usage of QuACN.
Chapter 2 will describe how to import already exiting networks. In Chapter 3 a brief description of the

implemented measures is presented, and it demonstrates how to call the related method in R.

1.1 Installation

QuACN uses the packages graph and RBGL from the Bioconductor project. Before installing QuACN, Bioconductor
with the corresponding packages needs to be installed. For instructions see the Bioconductor website:

• Bioconductor: http://www.bioconductor.org/

Note, that QuACN also depends on the Rmpfr package. Therefore, the software GMP (http://gmplib.org/)
and MPFR (http://www.mpfr.org/) needs to be installed to install the package correctly:

∗Corresponding author.

1

http://quacn.r-forge.r-project.org/
http://cran.r-project.org/web/packages/QuACN/
http://www.bioconductor.org/
http://gmplib.org/
http://www.mpfr.org/

• Windows: The package should install without problems.

• Ubuntu/Debian: Make sure that the libraries libgmp3-dev and libmpfr-dev are installed.

For more information see the corresponding websites, or the documentation of the Rmpfr package (http://
rmpfr.r-forge.r-project.org/).

After installing GMP and MPFR everything is ready to install QuACN. Other dependencies will be installed
automatically during the installation. To install the package from CRAN simply type:

> install.packages("QuACN")

2 Networks

This section shows how to create networks in R to use them with QuACN.

2.1 graphNEL

We generate a random graph with 8 nodes. This graph will be used to explain the implemented methods. To
analyze a network the network has to be represented by a graphNEL-object, which is part of the Bioconductor
graph package.

> library("QuACN")

Loading C code of R package 'Rmpfr': GMP using 64 bits per limb

> set.seed(666)

> g <- randomGraph(1:8, 1:5, 0.36)

> g

A graphNEL graph with undirected edges

Number of Nodes = 8

Number of Edges = 16

2.2 Adjacency Matrix

To create a graphNEL object from an adjacency matrix A, just type following command:

> A

1 2 3 4 5 6 7 8

1 0 1 1 2 1 0 1 1

2 1 0 1 1 1 0 0 0

3 1 1 0 1 1 0 0 0

4 2 1 1 0 1 0 1 1

5 1 1 1 1 0 1 0 0

6 0 0 0 0 1 0 0 0

7 1 0 0 1 0 0 0 1

8 1 0 0 1 0 0 1 0

> g <- as(A, "graphNEL")

> g

A graphNEL graph with undirected edges

Number of Nodes = 8

Number of Edges = 16

Some descriptors, which are specially marked throughout this document, require vertex and/or edge weights.
Known attributes are:

• "atom": Atomic number of a graph vertex.

2

http://rmpfr.r-forge.r-project.org/
http://rmpfr.r-forge.r-project.org/

• "weight": Conventional bond order of an edge, i.e. 1 for single bonds, 2 for double bonds, 3 for triple
bonds and 1.5 for aromatic bonds.

These can be set as follows:

> nodeDataDefaults(g, "atom") <- 6

> nodeData(g, "6", "atom") <- 8

> edgeDataDefaults(g, "weight") <- 1

> edgeData(g, "2", "3", "weight") <- 2

If existing networks are to be analyzed with QuACN, R offers several ways to import them. (It is important
that the networks are represented by graphNEL-objects.) Note that there is no general procedure to get networks
into an R workspace. Some possibilities to import network data are listed below:

• Adjacency matrix: A representation of a network as an adjacency matrix can be easily imported and
converted into a graphNEL object.

• Node- and Edge-List: With a list of nodes and Edges it is easy to create a graphNEL-object.

• read.graph(): The read.graph() method of the graph-package offers the possibility to import graphs
that a represented in different formats. For details see the manual of the graph-package.

• System Biology Markup Language(SBML) [1]: With the RSBML-package it is possible to import
SBML-Models.

• igrah-package: Networks created with the igraph-package can be converted into graphNEL objects.

2.3 Extract the Largest Connected Subgraph

Many of the topological network descriptors that are implemented in QuACN only work on connected graphs.
Often this is not the case with biological networks, so that the largest connected component (LCC) has to be
extracted first. For extracting the LCC we provide the method getLargestSubgraph(g), as shown in [2]:

> g2 <- randomGraph(paste("A", 1:100, sep = ""), 1:4, p = 0.03)

> lcc <- getLargestSubgraph(g2)

> lcc

A graphNEL graph with undirected edges

Number of Nodes = 7

Number of Edges = 12

2.4 Enumerate Edge-Deleted Subgraphs

Some descriptors require a list of all distinct subgraphs which can be generated from a graph by removing one
or two edges. The concerning methods obtain this information automatically, but for efficiency reasons, the user
might want to pre-calculate and reuse it:

> sg.1ed <- edgeDeletedSubgraphs(g)

> sg.2ed <- edgeDeletedSubgraphs(sg.1ed)

Note that the method edgeDeletedSubgraphs(g) accepts lists or single instances of graphNEL objects or
adjacency matrices, but it always returns a list of adjacency matrices.

3 Network Descriptors

This section provides a overview of the network descriptors that are included in the QuACN package. Here we
describe the respective descriptor and how to call it in R.

Many descriptors have at least two parameters, the graphNEL-object and the distance matrix representing
the network. It is not necessary to pass the distance matrix to a function. If the parameters stays empty or is
set to NULL the distance matrix will be estimated within each function. But if the user wants to calculate more

3

than one descriptor, it is recommended to calculate the distance matrix separately and pass it to each method.
Some of the methods need the degree of each node or the adjacency matrix to calculate their results. If they
were calculated once they should have kept for later use. For large networks in particular, it saves a lot of time
to not calculate these parameters for each descriptor again, and will enhance the performance of the program to
be developed.

> mat.adj <- adjacencyMatrix(g)

> mat.dist <- distanceMatrix(g)

> vec.degree <- graph::degree(g)

> ska.dia <- diameter(g)

> ska.dia <- diameter(g, mat.dist)

In the definitions below, let G = (N(G), E(G)) be a finite and connected graph. N(G) and E(G) are called
vertex and edge set of G, respectively. As |N(G)| < inf, we can define |N(G)| := N .

3.1 Descriptors Based on Distances in a Graph

This section describes network measures based on distances in the network.

Wiener Index [3]:

W (G) :=
1

2

N∑
i=1

N∑
j=1

d(vi, vj). (1)

d(vi, vj) stands for shortest distances between vi, vj ∈ N(G).

> wien <- wiener(g)

> wiener(g, mat.dist)

[1] 44

Hararay Index [4]:

H(G) :=
1

2

N∑
i=1

N∑
j=1

(d(vi, vj))
−1, i 6= j. (2)

> harary(g)

[1] 20.66667

> harary(g, mat.dist)

[1] 20.66667

Balaban J Index [5]:

J(G) :=
|E|
µ+ 1

∑
(vi,vj)∈E

[DSiDSj]
− 1

2 , (3)

> balabanJ(g)

[1] 2.207272

> balabanJ(g, mat.dist)

[1] 2.207272

where |E(G)| := |E| denotes the number of edges of the complex network, DSi denotes the distance sum (row
sum) of vi and µ := |E|+ 1−N denotes the cyclomatic number.

Mean distance deviation [6]:

See subsection 3.1.

4

Compactness [7]:

C(G) :=
4W

N(N − 1)
. (4)

> compactness(g)

[1] 3.142857

> compactness(g, mat.dist)

[1] 3.142857

> compactness(g, mat.dist, wiener(g, mat.dist))

[1] 3.142857

Product of Row Sums Index [8]:

PRS(G) =

N∏
i=1

µ(vi) or log
(
PRS(G)

)
= log

(
N∏
i=1

µ(vi)

)
. (5)

> productOfRowSums(g, log = FALSE)

[1] 190531440

> productOfRowSums(g, log = TRUE)

[1] 27.50545

> productOfRowSums(g, mat.dist, log = FALSE)

[1] 190531440

> productOfRowSums(g, mat.dist, log = TRUE)

[1] 27.50545

Hyper-distance-path Index [9]

DP (G) :=
1

2

N∑
i=1

N∑
j=1

d(vi, vj) +
1

2

N∑
i=1

N∑
j=1

(
d(vi, vj)

2

)
. (6)

> hyperDistancePathIndex(g)

[1] 62

> hyperDistancePathIndex(g, mat.dist)

[1] 62

> hyperDistancePathIndex(g, mat.dist, wiener(g, mat.dist))

[1] 62

5

Skorobogatov and Dobrynin [6]:

This method calculates several descriptors:

1. Vertex Eccentricity [6]:
e(v) := maxu∈N(G)d(u, v) (7)

> dob <- dobrynin(g)

> dob <- dobrynin(g, mat.dist)

> dob$eccentricityVertex

1 2 3 4 5 6 7 8

2 2 2 2 2 3 3 3

2. Eccentricity of a graph [6]:

e(G) :=
∑

v∈N(G)

e(v) (8)

> dob$eccentricityGraph

[1] 19

3. Average Vertex Eccentricity of a Graph [6]:

eav(G) :=
e(G)

N
(9)

> dob$avgeccOfG

[1] 2.375

4. Vertex Eccentric [6]:
∆e(v) := |e(v)− eav(G)| (10)

> dob$ecentricVertex

1 2 3 4 5 6 7 8

0.375 0.375 0.375 0.375 0.375 0.625 0.625 0.625

5. Eccentric of a Graph [6]:

∆G :=
1

N

∑
v∈N(G)

∆e(v) (11)

> dob$ecentricGraph

[1] 0.46875

6. Vertex Centrality [6]:

D(v) :=
∑

v∈N(G)

d(v, u) (12)

> dob$vertexCentrality

1 2 3 4 5 6 7 8

9 11 11 9 9 15 12 12

7. Graph Integration [6]:

D(G) :=
1

2

∑
v∈N(G)

D(v) (13)

> dob$graphIntegration

[1] 44

6

8. Unipolarity [6]:
D∗(G) := minu∈N(G)D(v) (14)

> dob$unipolarity

[1] 9

9. Distance Vertex Deviation [6]:
∆D∗(v) := D(v)−D∗(G) (15)

> dob$vertexDeviation

1 2 3 4 5 6 7 8

0 2 2 0 0 6 3 3

10. Variation of a Graph [6]:
var(g) := maxu∈N(G)∆D

∗(v) (16)

> dob$variation

[1] 6

11. Centralization [6]:

∆G∗ :=
∑

v∈N(G)

∆D∗(v) (17)

> dob$centralization

[1] 16

12. Average Distance of Graph Vertices [6]:

Dav(g) :=
2D(g)

N
(18)

> dob$avgDistance

[1] 11

13. Distance Vertex Deviation [6]:
∆D(v) := |D(v)−Dav(G)| (19)

> dob$distVertexDeviation

1 2 3 4 5 6 7 8

2 0 0 2 2 4 1 1

14. Mean Distance Deviation [6]:

∆D(G) :=
1

N

∑
v∈N(G)

∆D(v) (20)

> dob$meanDistVertexDeviation

[1] 1.5

3.2 Descriptors Based on Other Graph-Invariants

This section describes network measures based on other invariants than distances.

7

Index of Total Adjacency [10]:

A(G) :=
1

2

N∑
i=1

N∑
j=1

aij . (21)

> totalAdjacency(g)

[1] 18

> totalAdjacency(g, mat.adj)

[1] 18

Zagreb Group Indices [11, 12]:

Z1(G) :=

N∑
i=1

kvi , (22)

where kvi is the degree of the node vi.

Z2(G) :=
∑

(vi,vj)∈E

kvikvj . (23)

Modified, augmented and variable Zagreb indices:

MZI (G) :=
∑

(vi,vj)∈E

1

kvikvj
, (24)

AZI (G) :=
∑

(vi,vj)∈E

(
kvikvj

kvi + kvj − 2

)3

, (25)

VZI (G) :=
∑

(vi,vj)∈E

kvi + kvj − 2

kvikvj
. (26)

> zagreb1(g)

[1] 32

> zagreb1(g, vec.degree)

[1] 32

> zagreb2(g)

[1] 282

> zagreb2(g, vec.degree)

[1] 282

> modifiedZagreb(g)

[1] 0.8666667

> modifiedZagreb(g, vec.degree)

[1] 0.8666667

> augmentedZagreb(g)

[1] 310.0767

> augmentedZagreb(g, vec.degree)

[1] 310.0767

> variableZagreb(g)

[1] 5.433333

> variableZagreb(g, vec.degree)

[1] 5.433333

8

Randić Connectivity Index [13]:

R(G) :=
∑

(vi,vj)∈E

[kvikvj]
− 1

2 . (27)

> randic(g)

[1] 3.352215

> randic(g, vec.degree)

[1] 3.352215

The Complexity Index B [10]:

B(G) :=

N∑
i=1

kvi
µ(vi)

. (28)

> complexityIndexB(g)

[1] 3.182828

> complexityIndexB(g, mat.dist)

[1] 3.182828

> complexityIndexB(g, mat.dist, vec.degree)

[1] 3.182828

Normalized Edge Complexity [10]:

EN (G) :=
A(G)

N2
. (29)

> normalizedEdgeComplexity(g)

[1] 0.28125

> normalizedEdgeComplexity(g, totalAdjacency(g, mat.adj))

[1] 0.28125

Atom-bond Connectivity [14]:

ABC (G) :=
∑

(vi,vj)∈E

√
kvi + kvj − 2

kvikvj
(30)

> atomBondConnectivity(g)

[1] 8.643594

> atomBondConnectivity(g, vec.degree)

[1] 8.643594

9

Geometric-arithmetic Indices [15]:

GA1 (G) :=
∑

(vi,vj)∈E

√
kvikvj

1
2 (kvi + kvj)

(31)

GA2 (G) :=
∑

(vi,vj)∈E

√
ninj

1
2 (ni + nj)

(32)

GA3 (G) :=
∑

(vi,vj)∈E

√
mimj

1
2 (mi +mj)

(33)

where

ni := |{x ∈ N(G) : d(x, vi) < d(x, vj)}|, (34)

nj := |{x ∈ N(G) : d(x, vj) < d(x, vi)}|, (35)

mi := |{f ∈ E : d(f, vi) < d(f, vj)}|, (36)

mj := |{f ∈ E : d(f, vj) < d(f, vi)}|. (37)

In this context, the distance between an edge f = {x, y} and a vertex v is defined as d(f, v) := min{d(x, v), d(y, v)}.

> geometricArithmetic1(g)

[1] 13.41511

> geometricArithmetic1(g, vec.degree)

[1] 13.41511

> geometricArithmetic2(g)

[1] 12.77876

> geometricArithmetic2(g, mat.dist)

[1] 12.77876

> geometricArithmetic3(g)

[1] 11.81318

> geometricArithmetic3(g, mat.dist)

[1] 11.81318

Narumi-Katayama Index [16]:

NK :=

N∏
i=1

kvi (38)

> narumiKatayama(g)

[1] 25920

> narumiKatayama(g, vec.degree)

[1] 25920

3.3 Classical Entropy-based descriptors

These measures are based on grouping the elements of an arbitrary graph invariant (vertices, edges, and distances
etc.) using an equivalence criterion.

10

Topological Information Content [17, 18]:

IVorb(G) := −
k∑
i=1

|NV
i |
N

log

(
|NV

i |
N

)
. (39)

|NV
i | denotes the number of vertices belonging to the i-th vertex orbit.

> topologicalInfoContent(g)

$entropy

[1] 2.25

$orbits

[1] 2 2 1 1 2

> topologicalInfoContent(g, mat.dist)

$entropy

[1] 2.25

$orbits

[1] 2 2 1 1 2

> topologicalInfoContent(g, mat.dist, vec.degree)

$entropy

[1] 2.25

$orbits

[1] 2 2 1 1 2

Bonchev - Trinajstić Indices [19]:

ID(G) := − 1

N
log

(
1

N

)
−
ρ(G)∑
i=1

2ki
N2

log

(
2ki
N2

)
, (40)

IWD (G) := W (G) log(W (G))−
ρ(G)∑
i=1

iki log(i). (41)

ρ(G) is the diameter of the graph (the maximum distance between two nodes). ki is the occurrence of a distance
possessing value i in the distance matrix of G.

> #I_D(G)

> bonchev1(g)

[1] 1.229843

> bonchev1(g, mat.dist)

[1] 1.229843

> #I^W_D(G)

> bonchev2(g)

[1] 173.1954

> bonchev2(g, mat.dist)

[1] 173.1954

> bonchev2(g, mat.dist, wiener(g))

[1] 173.1954

11

BERTZ Complexity Index [20]:

C(G) := 2N log(N)−
k∑
i=1

|Ni| log (|Ni|) . (42)

|Ni| are the cardinalities of the vertex orbits as defined in Eqn. (39).

> bertz(g)

[1] 42

> bertz(g, mat.dist)

[1] 42

> bertz(g, mat.dist, vec.degree)

[1] 42

Radial Centric Information Index [21]:

IC,R(G) :=

k∑
i=1

|Ne
i |
N

log

(
|Ne

i |
N

)
. (43)

|Ne
i | is the number of vertices having the same eccentricity.

> radialCentric(g)

[1] 0.954434

> radialCentric(g, mat.dist)

[1] 0.954434

Vertex Degree Equality-based Information Index [21]:

Ideg(G) :=

k̄∑
i=1

|Nkv
i |
N

log

(
|Nkv

i |
N

)
. (44)

|Nkv
i | is the number of vertices with degree equal to i and k̄ := maxv∈N(G) kv.

> vertexDegree(g)

[1] 2.25

> vertexDegree(g, vec.degree)

[1] 2.25

Balaban-like Information Indices [22]:

Note that this class of Descriptors return Inf for graphs with N < 3.

U(G) :=
|E|
µ+ 1

∑
(vi,vj)∈E

[u(vi)u(vj)]
− 1

2 , (45)

X(G) :=
|E|
µ+ 1

∑
(vi,vj)∈E

[x(vi)x(vj)]
− 1

2 , (46)

12

where

u(vi) := −
σ(vi)∑
j=1

j|Sj(vi, G)|
µ(vi)

log

(
j

µ(vi)

)
, (47)

x(vi) := −µ(vi) log(d(vi))− yi, (48)

yi :=

σ(vi)∑
j=1

j|Sj(vi, G)| log(j), (49)

µ(vi) :=

N∑
j=1

d(vi, vj) =

N∑
j=1

j|Sj(vi, G)|. (50)

> #Balaban-like information index U(G)

> balabanlike1(g)

[1] 8.236938

> balabanlike1(g, mat.dist)

[1] 8.236938

> #Balaban-like information index X(G)

> balabanlike2(g)

[1] 0.7589271

> balabanlike2(g, mat.dist)

[1] 0.7589271

Graph Vertex Complexity Index [23]:

IV (G) :=

N∑
i=1

vci , (51)

where vci is the so-called vertex complexity expressed by

vci :=

σ(vi)∑
j=0

kvij
N

log

(
kvij
N

)
. (52)

kvik is the number of distances starting from Vi ∈ N(G) equal to j.

> graphVertexComplexity(g)

[1] -12.08022

> graphVertexComplexity(g, mat.dist)

[1] -12.08022

3.4 More recent Graph Complexity Measures

Medium Articulation [24]:

MAg(G) := MAR(G) ·MAI(G) (53)

with the redundancy

MAR(G) := 4

(
R(G)−Rpath(G)

Rclique(G)−Rpath(G)

)(
1− R(G)−Rpath(G)

Rclique(G)−Rpath(G)

)
(54)

R(G) :=
1

m

∑
i,j>i

log(didj) (55)

Rclique(G) = 2 log(N − 1) (56)

Rpath(G) = 2
N − 2

N − 1
log 2 (57)

13

and the mutual information

MAI(G) := 4

(
I(G)− Iclique(G)

Ipath(G)− Iclique(G)

)(
1− I(G)− Iclique(G)

Ipath(G)− Iclique(G)

)
(58)

I(G) :=
1

m

∑
i,j>i

log

(
2m

didj

)
(59)

Iclique(G) = log
N

N − 1
(60)

Ipath(G) = log(N − 1)− N − 3

N − 1
log 2 (61)

> mediumArticulation(g)

[1] 0.7722091

Efficiency Complexity [24]:

Ce(G) := 4

(
E(G)− Epath(G)

1− Epath(G)

)(
1− E(G)− Epath(G)

1− Epath(G)

)
(62)

E(G) :=
2

N(N − 1)

∑
i

∑
j>i

1

dij
(63)

Epath(G) =
2

N(N − 1)

∑
i=1

N − 1
N − i
i

(64)

> efficiency(g)

[1] 0.999175

> efficiency(g, mat.dist)

[1] 0.999175

Graph Index Complexity [24]:

Cr(G) := 4cr(1− cr) (65)

where cr =
r−2 cos π

N+1

N−1−2 cos π
N+1

and r is the largest eigenvalue of the adjacency matrix of the graph.

> graphIndexComplexity(g)

[1] 0.8886164

Offdiagonal complexity [24]:

OdC (G) := − 1

log(N − 1)

kmax−1∑
n=0

ãn log ãn, (66)

with ãn = an∑kmax−1
m=0 am

and an =
∑kmax−N
i=1 ci,i+N , where kmax is the maximum degree of all nodes in the graph,

and cij is the number of all neighbors with degree j ≥ i of all nodes with degree i.

> offdiagonal(g)

[1] 0.772423

> offdiagonal(g, vec.degree)

[1] 0.772423

14

Spanning Tree Sensitivity [24]:

STS (G) :=
−
∑
l al log al

logmcu
, (67)

with mcu = n1.68 − 10, al =
Slij∑k
r S

r
ij

, Sij = sij − (min{sij} − 1) and {S1
ij , S

2
ij , . . . , S

k
ij} being an ordered list of

all k different Sij . sij is the number of spanning trees in the graph minus the number of spanning trees of the
subgraph with the edge {vi, vj} deleted. Analogously, the spanning tree sensitivity differences measure is defined
as

STSD(G) :=
−
∑
l bl log bl

logmcu
, (68)

with bl = Ldl∑d
r Ldr

, where {Ld1,Ld2, . . . ,Ldd} is the ordered list of all unique differences Smij − S
m−1
ij .

> spanningTreeSensitivity(g)

$STS

[1] 0.4033211

$STSD

[1] 0.2846556

> spanningTreeSensitivity(g, sg.1ed)

$STS

[1] 0.4033211

$STSD

[1] 0.2846556

Distance Degree/Code Centric Indices [25]:

IC,deg(G) := −
D∑
i=1

di
N

log2

di
N
, (69)

IC,code(G) := −
C∑
i=1

ci
N

log2

ci
N
. (70)

where di is the number of vertices with the same eccentricity and the same vertex distance degree (i. e., equal
row sums in the distance matrix), and ci is the number of vertices with the same vertex distance code (i. e., the
same numbers in their rows in the distance matrix). D and C are the respective numbers of equivalence classes.

> distanceDegreeCentric(g)

[1] 1.905639

> distanceDegreeCentric(g, mat.dist)

[1] 1.905639

> distanceCodeCentric(g)

[1] 1.905639

> distanceCodeCentric(g, mat.dist)

[1] 1.905639

15

3.5 Parametric Graph Entropy Measures

Measures of this group [26, 27] assign a probability value to each vertex of the network using a so-called information
functional f which captures structural information of the network G.

If (G) := −
N∑
i=1

f(vi)∑N
j=1 f(vj)

log

(
f(vi)∑N
j=1 f(vj)

)
, (71)

where If (G) represents a family of graph entropy [26] measures depending on the information functional. Further
we implemented the following measurement[27]:

Iλf (G) := λ

(
log(N) +

N∑
i=1

p(vi) log(p(vi))

)
, (72)

p(vi) :=
f(vi)∑N
j=1 f(vj)

, (73)

where pV (vi) are the vertex probabilities, and λ > 0 is a scaling constant. This measure can be interpreted as the
distance between the entropy defined in equation 71 and maximum entropy (log(N)). We integrated 4 different
information functionals [26, 28]:

1. An information functional using the j-spheres (”sphere”):

fV (vi) := c1|S1(vi, G)|+ c2|S2(vi, G)|+ · · ·+ cρ(G)|Sρ(G)(vi, G)|, (74)

where ck > 0.

2. An information functional using path lengths (”pathlength”):

fP (vi) := c1l(P (LG(vi, 1))) + c2l(P (LG(vi, 2))) + · · ·+ cρ(G)l(P (LG(vi, ρ(G)))), (75)

where ck > 0.

3. An information functional using vertex centrality(”vertcent”) :

fC(vi) := c1β
LG(vi,1)(vi) + c2β

LG(vi,2)(vi) + · · ·+ cρ(G)β
LG(vi,ρ(G))(vi), (76)

where ck > 0.

4. Calculates the degree-degree association index(”degree”) [28]:

f∆(vi) := αc1∆G(vi,1)+c2∆G(vi,2)+···+cρ(G)∆
G(vi,ρ(G)), (77)

where ck > 0, 1 ≤ k ≤ ρ(G) and α > 0. Note that f∆ is well-defined for α > 0. Please consider that the
results of the degree-degree association index are often very close to zero and can only be represented with
a special data type (see the hint at the end of this section).

We implemented 4 different settings (as example settings) for weighting the parameters ci (ρ(G) represents
the diameter of the network):

1. constant
c1 := 1, c2 := 1, · · · , cρ(G) := 1. (78)

2. linear
c1 := ρ(G), c2 := ρ(G)− 1, · · · , cρ(G) := 1. (79)

3. quadratic
c1 := ρ(G)2, c2 := (ρ(G)− 1)2, · · · , cρ(G) := 1. (80)

4. exponential
c1 := ρ(G), c2 := ρ(G)e1, · · · , cρ(G) := ρ(G)e−ρ(G)+1. (81)

16

To call this type of network measure we provide the method infoTheoreticGCM. It has following input pa-
rameters:

• g : the network as a graphNEL object - it is the only mandatory parameter

• dist : the distance matrix of g

• coeff: specifies the weighting parameter: ”const”, ”lin”, ”quad”, ”exp”, ”const” or ”cust” are available con-
stants. If it is set to ”cust”, a customized weighting schema has to be specified through the custCoeff
parameter.

• infofunct : specifies the information functional: ”sphere”, ”pathlength”, ”vertcent” or ”degree” are available
settings.

• lambda: scaling constant for the distance, default set to 1000.

• custCoeff : specifies the customized weighting schema. coeff must be set to ”const” in order to use it.

• alpha: alpha for degree degree association.

• prec: specifies the floating-point precision to use (currently only implemented for degree-degree association).
Values up to 53 are handled with the built-in double data type; larger values trigger the usage of Rmpfr.

Note that some combinations of these settings can cause the descriptor to return NaN. In that case it is the
user’s responsibility to check for warnings. For infofunct="degree" in particular, also see the note below.

The method returns a list with following entries:

• entropy : contains the entropy, see formula 71

• distance: contains the distance described in formula 72

• pis: contains the probability distribution, see formula 73

• fvi : contains the values of the used information functional for each vertex vi

> l1 <- infoTheoreticGCM(g)

> l2 <- infoTheoreticGCM(g, mat.dist, coeff = "lin", infofunct = "sphere",

+ lambda = 1000)

> l3 <- infoTheoreticGCM(g, mat.dist, coeff = "const", infofunct = "pathlength",

+ lambda = 4000)

> l4 <- infoTheoreticGCM(g, mat.dist, coeff = "quad", infofunct = "vertcent",

+ lambda = 1000)

> l5 <- infoTheoreticGCM(g, mat.dist, coeff = "exp", infofunct = "degree",

+ lambda = 1000)

> l1

$entropy

[1] 2.990321

$distance

[1] 9.679226

$pis

1 2 3 4 5 6 7

0.13970588 0.12500000 0.12500000 0.13970588 0.13970588 0.09558824 0.11764706

8

0.11764706

$fvis

1 2 3 4 5 6 7 8

19 17 17 19 19 13 16 16

> l5

17

$entropy

[1] 1.546569

$distance

[1] 1453.431

$pis

1 2 3 4 5 6

4.474312e-01 2.658896e-02 2.658896e-02 4.474312e-01 5.075579e-02 1.196450e-03

7 8

3.710288e-06 3.710288e-06

$fvis

1 2 3 4 5 6

2.540206e-12 1.509538e-13 1.509538e-13 2.540206e-12 2.881564e-13 6.792618e-15

7 8

2.106446e-17 2.106446e-17

Important: Note, the functional based on degree-degree associations (infofunct="degree") can result in
values that cannot be represented by standard data types. This problem manifests itself in NaN as return values.
Note, that this issue can be avoided by specifying a floating-point precision value greater than 53, using the
parameter prec (e.g. prec=128 is usually enough). In this case, the Rmpfr package will be used and the list,
returned by the function will contain vectors of the class mpfr. These vectors can be used as usual numeric
vectors, except that all calculations will result in mpfr vectors. Note, that as.double can be used to convert
such a vector back to the regular numeric vector once the result is in the representable range (between 10−380

and 10380). The following example shows how to work with vectors of type mpfr :

> l5mpfr <- infoTheoreticGCM(g, mat.dist, coeff = "exp", infofunct = "degree",

+ lambda = 1000, prec = 128)

> l5mpfr$entropy

1 'mpfr' number of precision 128 bits

[1] 1.546568792292280720674101903940257498633

> l5mpfr$entropy * 2^3

1 'mpfr' number of precision 128 bits

[1] 12.37255033833824576539281523152205998907

> as.double(l5mpfr$entropy * 2^3)

[1] 12.37255

For more details about mpfr vectors, please consult the Rmpfr documentation.

3.6 Eigenvalue-based Descriptors

This class contains eigenvalue-based Descriptors proposed in Dehmer et. al [28].

HMs
(G) =

k∑
i=1

|λi|
1
s∑k

j=1 |λj |
1
s

log

(
|λi|

1
s∑k

j=1 |λj |
1
s

)
, (82)

SMs
(G) = |λ1|

1
s + |λ2|

1
s + . . .+ |λk|

1
s , (83)

ISMs
(G) =

1

|λ1|
1
s + |λ2|

1
s + . . .+ |λk|

1
s

, (84)

PMs
(G) = |λ1|

1
s · |λ2|

1
s . . . |λk|

1
s , (85)

18

IPMs
(G) =

1

|λ1|
1
s · |λ2|

1
s . . . |λk|

1
s

, (86)

Using this function, it is possible to calculate 5 descriptors (HMs(G), SMs(G) , ISMs(G), PMs(G), IPMs(G)) for
10 different matrices:

1. Adjacency matrix

> eigenvalueBased(g, adjacencyMatrix, 2)

$HMs

[1] 2.924559

$SMs

[1] 10.45478

$ISMs

[1] 0.09565

$PMs

[1] 5.656854

$IPMs

[1] 0.1767767

2. Laplacian matrix

> eigenvalueBased(g, laplaceMatrix, 2)

$HMs

[1] 2.728232

$SMs

[1] 15.14344

$ISMs

[1] 0.06603521

$PMs

[1] 2.335730e-06

$IPMs

[1] 428131.6

3. Distance matrix

> eigenvalueBased(g, distanceMatrix, 2)

$HMs

[1] 2.812274

$SMs

[1] 12.07332

$ISMs

[1] 0.08282723

$PMs

[1] 9.797959

$IPMs

[1] 0.1020621

19

4. Distance path Matrix

> eigenvalueBased(g, distancePathMatrix, 2)

$HMs

[1] 2.770978

$SMs

[1] 14.89195

$ISMs

[1] 0.06715037

$PMs

[1] 36.61967

$IPMs

[1] 0.02730773

5. Augmented vertex degree matrix

> eigenvalueBased(g, augmentedMatrix, 2)

$HMs

[1] 2.798655

$SMs

[1] 13.96496

$ISMs

[1] 0.0716078

$PMs

[1] 28.48828

$IPMs

[1] 0.03510216

6. Extended adjacency matrix

> eigenvalueBased(g, extendedAdjacencyMatrix, 2)

$HMs

[1] 2.926072

$SMs

[1] 10.94290

$ISMs

[1] 0.0913835

$PMs

[1] 8.199051

$IPMs

[1] 0.1219653

7. Vertex Connectivity matrix

> eigenvalueBased(g, vertConnectMatrix, 2)

20

$HMs

[1] 2.942791

$SMs

[1] 4.976892

$ISMs

[1] 0.2009286

$PMs

[1] 0.01643355

$IPMs

[1] 60.85111

8. Random Walk Markov matrix

> eigenvalueBased(g, randomWalkMatrix, 2)

$HMs

[1] 2.942791

$SMs

[1] 4.976892

$ISMs

[1] 0.2009286

$PMs

[1] 0.01643355

$IPMs

[1] 60.85111

9. Weighted structure function matrix IM1

> eigenvalueBased(g, weightStrucFuncMatrix_lin, 2)

$HMs

[1] 0.8690336

$SMs

[1] 3.293587

$ISMs

[1] 0.3036204

$PMs

[1] 1.289736e-29

$IPMs

[1] 7.753523e+28

10. Weighted structure function matrix IM2

> eigenvalueBased(g, weightStrucFuncMatrix_exp, 2)

$HMs

[1] 1.038954

21

$SMs

[1] 3.450187

$ISMs

[1] 0.2898393

$PMs

[1] 9.348347e-36

$IPMs

[1] 1.069708e+35

For a detailed description of this class see Dehmer et. al [28].

Graph Energy and Laplacian Energy [29]:

E(G) :=

N∑
i=1

|λi| (87)

LE (G) :=

N∑
i=1

∣∣∣∣µi − 2m

n

∣∣∣∣ (88)

where λk are the eigenvalues of the adjacency matrix and µk those of the Laplacian matrix of the graph.

> energy(g)

[1] 15.19639

> laplacianEnergy(g)

[1] 21.86179

Estrada [30] and Laplacian Estrada [31] Indices:

EE (G) :=

N∑
i=1

eλi (89)

LEE (G) :=

N∑
i=1

eµi (90)

with λk and µk defined as above.

> estrada(g)

[1] 207.9575

> laplacianEstrada(g)

[1] 10832.26

Spectral Radius:

SpRad(G) := max
i
{|λi|} (91)

> spectralRadius(g)

[1] 5.294174

22

3.7 Subgraph Measures

One-edge-deleted Subgraph Complexity [24]:

C1e,ST (G) :=
N1e,ST − 1

mcu − 1
(92)

C1e,Spec(G) :=
N1e,Spec − 1

mcu − 1
(93)

N1e,ST is the number of one-edge-deleted subgraphs which are different with regard to the number of spanning
trees. Similarly, N1e,Spec is the number of one-edge-deleted subgraphs which are different with regard to spectra
of the Laplacian and signless Laplacian matrix. mcu is defined as n1.68 − 10.

> oneEdgeDeletedSubgraphComplexity(g)

$C_1eST

[1] 0.3196399

$C_1eSpec

[1] 0.593617

> oneEdgeDeletedSubgraphComplexity(g, sg.1ed)

$C_1eST

[1] 0.3196399

$C_1eSpec

[1] 0.593617

Two-edges-deleted Subgraph Complexity [24]:

C2e,Spec(G) :=
N2e,Spec − 1(

mcu

2

)
− 1

(94)

where mcu is defined like above and N2e,Spec is the number of two-edges-deleted subgraphs which are different
with regard to spectra of the Laplacian and signless Laplacian matrix.

> twoEdgesDeletedSubgraphComplexity(g)

[1] 0.3603647

> twoEdgesDeletedSubgraphComplexity(g, sg.2ed)

[1] 0.3603647

Local Clustering Coefficient [32, 33]:

Let GN(v) = (VN(v), EN(v)) be the subgraph of G that contains all neighborhood vertices and their edges. Then
the local clustering coefficient of a graph G is defined by

Cv(G) :=
EN(v)

VN(v)∗(VN(v)−1)

2

. (95)

> localClusteringCoeff(g)

1 2 3 4 5 6 7 8

0.6 1.0 1.0 0.6 0.6 0.0 1.0 1.0

> localClusteringCoeff(g, deg = vec.degree)

1 2 3 4 5 6 7 8

0.6 1.0 1.0 0.6 0.6 0.0 1.0 1.0

23

Global Clustering Coefficient [32, 33]:

C(G) :=
∑

v∈N(g)

:=
1

N
∗ Cv (96)

> loccc <- localClusteringCoeff(g)

> globalClusteringCoeff(g)

[1] 0.725

> globalClusteringCoeff(g, loc = loccc)

[1] 0.725

3.8 ID numbers

Randić Connectivity ID Number [34]:

CID := N +
∑
mpij

wij , (97)

where mpij are all paths of length m > 0, and wij is a path weight defined as

wij =

m∏
b=1

(
δb(1)δb(2)

)−1/2

b
, (98)

with the sum running over all edges in the path and b(1), b(2) referring to the two vertices incident to the bth
edge.

> connectivityID(g)

[1] 17.53585

> connectivityID(g, deg = vec.degree)

[1] 17.53585

MINCID [35]:

MINCID := N +
∑

minpij

wij , (99)

where the sum runs over all shortest paths minpij between the vertices vi and vj , and wij is taken from equation
98.

> minConnectivityID(g)

[1] 12.76619

> minConnectivityID(g, deg = vec.degree)

[1] 12.76619

Prime ID Number [36]:

PID := N +
∑
mpij

wij , (100)

with mpij like above and the path weight wij

wij =

m∏
b=1

pn
−1/2
b , (101)

where pnb is a prime number chosen according to the degrees of the vertices adjacent to the bth edge.

> primeID(g)

[1] 16.08181

> primeID(g, deg = vec.degree)

[1] 16.08181

24

Conventional Bond Order ID Number [37]:

πID := N +
∑
mpij

wij , (102)

with mpij like above and the path weight wij

wij =

m∏
b=1

π∗b , (103)

where π∗b is the conventional bond order of the bth edge.
The conventional bond order must be set as the "weight" edge data attribute of the input graph.

> bondOrderID(g)

[1] 2048

Balaban ID Number [38]:

BID := N +
∑
mpij

wij , (104)

with mpij like above and the path weight wij

wij =
m∏
b=1

(
σb(1) · σb(2)

)−1/2

b
, (105)

where σk is the vertex distance degree and b(1), b(2) refer to the vertices adjacent to the edge b.

> balabanID(g)

[1] 10.36261

> balabanID(g, dist = mat.dist)

[1] 10.36261

MINBID [35]:

MINBID := N +
∑

minpij

wij , (106)

where the sum runs over all shortest paths minpij between the vertices vi and vj , and wij is taken from equation
105.

> minBalabanID(g)

[1] 9.741806

> minBalabanID(g, dist = mat.dist)

[1] 9.741806

Weighted ID Number [39]:

WID := N − 1

N
+

ID∗

N2
, (107)

with

ID∗ :=

N∑
i=1

N∑
j=1

w∗ij , (108)

W ∗ :=

N−1∑
k=0

σχk, (109)

where σχ is the distance-sum-connectivity matrix.

25

> weightedID(g)

$WID

[1] 8.091842

$SID

[1] 8.482815

Hu-Xu ID Number [40]:

HXID :=

N∑
i=1

AID2
i (110)

with

AID i :=

N∑
j=1

wij , (111)

wij :=

m+1∏
a=2

(
π∗a−1,a

·
1

δ′a−1 · δ′a

)1/2

, (112)

δ′a := δa ·
√
Za, (113)

where Za is the atomic number of va.
The huXuID method requires the input graph to store the atomic numbers in the "atom" vertex data attribute

and the conventional bond order in the "weight" edge data attribute.

> huXuID(g)

[1] 1.014972

> huXuID(g, deg = vec.degree)

[1] 1.014972

4 Calculating Multiple Descriptors at Once

The calculateDescriptors function provides a simple interface to calculate a set of descriptors on a list of input
graphs. The result is returned as a data frame. The desired functions can be specified by name or by number.
It is also possible to name the columns according to the names given in this document.

Please see the function documentation for a detailed description and a full list of the supported descriptors
together with their numbers.

> calculateDescriptors(g, "wiener")

wiener

1 44

> calculateDescriptors(g, 1001)

wiener

1 44

> calculateDescriptors(g, 2000, labels = TRUE)

A Z[1] Z[2] MZI AZI VZI R B E[N] ABC

1 18 32 282 0.8666667 310.0767 5.433333 3.352215 3.182828 0.28125 8.643594

GA1 GA2 GA3 NK

1 13.41511 12.77876 11.81318 25920

26

5 Session Info

> sessionInfo()

R version 2.12.1 (2010-12-16)

Platform: x86_64-pc-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=C LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] QuACN_1.3.4 Rmpfr_0.4-3 combinat_0.0-8 igraph_0.5.5-2 RBGL_1.28.0

[6] graph_1.28.0

loaded via a namespace (and not attached):

[1] tools_2.12.1

References

[1] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, A. P. Arkin, B. J. Bornstein, D. Bray,
A. Cornish-Bowden, A. A. Cuellar, S. Dronov, E. D. Gilles, M. Ginkel, V. Gor, I. I. Goryanin, W. J. Hedley,
T. C. Hodgman, J.-H. Hofmeyr, P. J. Hunter, N. S. Juty, J. L. Kasberger, A. Kremling, U. Kummer, N. L.
Novère, L. M. Loew, D. Lucio, P. Mendes, E. Minch, E. D. Mjolsness, Y. Nakayama, M. R. Nelson, P. F.
Nielsen, T. Sakurada, J. C. Schaff, B. E. Shapiro, T. S. Shimizu, H. D. Spence, J. Stelling, K. Takahashi,
M. Tomita, J. Wagner, J. Wang, and S. B. M. L. Forum, “The Systems Biology Markup Language (SBML):
A Medium for Representation and Exchange of Biochemical Network Models.” Bioinformatics, vol. 19, no. 4,
pp. 524–531, Mar 2003.

[2] F. Hahne, W. Huber, R. Gentleman, and S. Falcon, Bioconductor Case Studies, 1st ed. Springer Publishing
Company, Incorporated, 2008.

[3] H. Wiener, “Structural Determination of Paraffin Boiling Points,” Journal of the American Chemical
Society, vol. 69, no. 1, pp. 17–20, Jan. 1947. [Online]. Available: http://dx.doi.org/10.1021/ja01193a005

[4] A. T. Balaban and O. Ivanciuc, “Historical Development of Topological Indices,” in Topological Indices and
Related Descriptors in QSAR and QSPAR, J. Devillers and A. T. Balaban, Eds. Gordon and Breach Science
Publishers, 1999, pp. 21–57, amsterdam, The Netherlands.

[5] A. T. Balaban, “Highly Discriminating Distance-based Topological Index,” Chem.Phys.Lett., vol. 89, pp.
399–404, 1982.

[6] V. A. Skorobogatov and A. A. Dobrynin, “Metrical Analysis of Graphs,” Commun. Math. Comp. Chem.,
vol. 23, pp. 105–155, 1988.

[7] J. K. Doyle and J. E. Garver, “Mean Distance in a Graph,” Discrete Mathematics, vol. 17, pp. 147–154,
1977.

[8] H. P. Schultz, E. B. Schultz, and T. P. Schultz, “Topological Organic Chemistry. 4. Graph Theory, Matrix
Permanents, and Topological Indices of Alkanes,” Journal of Chemical Information and Computer Sciences,
vol. 32, no. 1, pp. 69–72, 1992.

[9] R. Todeschini, V. Consonni, and R. Mannhold, Handbook of Molecular Descriptors. Wiley-VCH, 2002,
weinheim, Germany.

27

http://dx.doi.org/10.1021/ja01193a005

[10] D. Bonchev and D. H. Rouvray, Complexity in Chemistry, Biology, and Ecology, ser. Mathematical and
Computational Chemistry. Springer, 2005, New York, NY, USA.

[11] M. V. Diudea, I. Gutman, and L. Jantschi, Molecular Topology. Nova Publishing, 2001, new York, NY,
USA.

[12] S. Nikolić, G. Kovačević, A. Milicević, and N. Trinajstić, “The Zagreb Indices 30 Years After,” Croatica
Chemica Acta, vol. 76, pp. 113–124, 2003.

[13] X. Li and I. Gutman, Mathematical Aspects of Randić-Type Molecular Structure Descriptors, ser. Mathe-
matical Chemistry Monographs. University of Kragujevac and Faculty of Science Kragujevac, 2006.

[14] E. Estrada, L. Torres, L. Rodŕıguez, and I. Gutman, “An Atom-Bond Connectivity Index: Modelling the
Enthalpy of Formation of Alkanes.” Indian Journal of Chemistry, vol. 37A, pp. 849–855, 1998.

[15] B. Zhou, I. Gutman, B. Furtula, and Z. Du, “On two Types of Geometric-Arithmetic Index,” Chemical
Physics Letters, vol. 482, pp. 153–155, 2009.

[16] H. Narumi and M. Katayama, “Simple Topological Index. A Newly Devised Index Characterizing the Topo-
logical Nature of Structural Isomers of Saturated Hydrocarbons.” Mem. Fac. Engin. Hokkaido Univ., vol. 16,
p. 209, 1984.

[17] A. Mowshowitz, “Entropy and the Complexity of the Graphs I: An Index of the Relative Complexity of a
Graph,” Bull. Math. Biophys., vol. 30, pp. 175–204, 1968.

[18] N. Rashevsky, “Life, Information Theory, and Topology,” Bull. Math. Biophys., vol. 17, pp. 229–235, 1955.

[19] D. Bonchev and N. Trinajstić, “Information Theory, Distance Matrix and Molecular Branching,” J. Chem.
Phys., vol. 67, pp. 4517–4533, 1977.

[20] S. H. Bertz, “The First General Index of Molecular Complexity,” Journal of the American Chemical Society,
vol. 103, pp. 3241–3243, 1981.

[21] D. Bonchev, Information Theoretic Indices for Characterization of Chemical Structures. Research Studies
Press, Chichester, 1983.

[22] A. T. Balaban and T. S. Balaban, “New Vertex Invariants and Topological Indices of Chemical Graphs
Based on Information on Distances,” J. Math. Chem., vol. 8, pp. 383–397, 1991.

[23] C. Raychaudhury, S. K. Ray, J. J. Ghosh, A. B. Roy, and S. C. Basak, “Discrimination of Isomeric Structures
using Information Theoretic Topological Indices,” Journal of Computational Chemistry, vol. 5, pp. 581–588,
1984.

[24] J. Kim and T. Wilhelm, “What is a Complex Graph?” Physica A: Statistical Mechanics and its Applications,
vol. 387, no. 11, pp. 2637 – 2652, 2008.

[25] M. Dehmer and L. Sivakumar, “On Distance-Based Entropy Measures,” MATCH Commun. Math. Comput.
chem, vol. MCM12, 2011.

[26] M. Dehmer, “Information Processing in Complex Networks: Graph Entropy and Information Functionals,”
Applied Mathematics and Computation, vol. 201, pp. 82–94, 2008.

[27] M. Dehmer, K. Varmuza, S. Borgert, and F. Emmert-Streib, “On Entropy-based Molecular Descriptors:
Statistical Analysis of Real and Synthetic Chemical Structures,” J. Chem. Inf. Model., vol. 49, pp. 1655–
1663, 2009.

[28] M. Dehmer, F. Emmert-Streib, Y. Tsoy, and K. Varmuza, “Quantifying Structural Complexity of Graphs:
Information Measures in Mathematical Chemistry,” in Quantum Frontiers of Atoms and Molecules, M. Putz,
Ed. Nova Publishing, 2010, ch. 18, pp. 479–497.

[29] I. Gutman and B. Zhou, “Laplacian Energy of a Graph,” Linear Algebra and its Applications, vol. 414, no. 1,
pp. 29 – 37, 2006.

[30] E. Estrada, “Characterization of 3D Molecular Structure,” Chemical Physics Letters, vol. 319, pp. 713–718,
2000.

28

[31] G. H. Fath-Tabar, A. R. Ashrafi, and I. Gutman, “Note on Estrada and L-Estrada Indices of Graphs,” Classe
des Sciences Mathématiques et Naturelles, Sciences mathématiques naturelles / sciences mathematiques, vol.
CXXXIX, no. 34, pp. 1–16, 2009.

[32] D. Watts, Small Worlds: The Dynamics of Networks Between Order and Randomness. Princeton Univ Pr,
2003.

[33] D. Watts and S. Strogatz, “Collective dynamics of ?Small-World? Networks,” Nature, vol. 393, no. 6684, pp.
440–442, 1998.

[34] M. Randic, “On Molecular Identification Numbers,” Journal of Chemical Information and Computer Sci-
ences, vol. 24, no. 3, pp. 164–175, 1984.

[35] O. Ivanciuc and A. Balaban,“Design of Topological Indices. Part 3. New Identification Numbers for Chemical
Structures: MINID and MINSID,” Croatica chemica acta, vol. 69, pp. 9–16, 1996.

[36] M. Randic, “Molecular ID numbers: By Design,” Journal of Chemical Information and Computer Sciences,
vol. 26, no. 3, pp. 134–136, 1986.

[37] M. Randić and P. Jurs,“On a Fragment Approach to Structure-activity Correlations,”Quantitative Structure-
Activity Relationships, vol. 8, no. 1, pp. 39–48, 1989.

[38] A. T. Balaban, “Numerical Modelling of Chemical Structures: Local Graph Invariants and Topological
Indices,” in Graph Theory and Topology in Chemistry, R. King and D. Rouvray, Eds. Elsevier, Amsterdam,
1987, pp. 159–176.

[39] K. Szymanski, W. Müller, J. Knop, and N. Trinajstić, “On the Identification Numbers for Chemical Struc-
tures,” International Journal of Quantum Chemistry, vol. 30, no. S20, pp. 173–183, 1986.

[40] C. Hu and L. Xu, “On Hall and Kier’s Topological State and Total Topological Index,” Journal of Chemical
Information and Computer Sciences, vol. 34, no. 6, pp. 1251–1258, 1994.

29

	Overview
	Installation

	Networks
	graphNEL
	Adjacency Matrix
	Extract the Largest Connected Subgraph
	Enumerate Edge-Deleted Subgraphs

	Network Descriptors
	Descriptors Based on Distances in a Graph
	Descriptors Based on Other Graph-Invariants
	Classical Entropy-based descriptors
	More recent Graph Complexity Measures
	Parametric Graph Entropy Measures
	Eigenvalue-based Descriptors
	Subgraph Measures
	ID numbers

	Calculating Multiple Descriptors at Once
	Session Info

