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1 Overview
For information about the actual build see the projects website:
e R-Forge: http://quacn.r-forge.r-project.org/
e CRAN: http://cran.r-project.org/web/packages/QuACN/

This vignette provides an overview about the usage of QuACN.
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Chapter [2| will describe how to import already exiting networks. In Chapter [3| a brief description of the

implemented measures is presented, and it demonstrates how to call the related method in R.

1.1 Installation

QuACN uses the packages graph and RBGL from the Bioconductor project. Before installing QuACN, Bioconductor

with the corresponding packages needs to be installed. For instructions see the Bioconductor website:

e Bioconductor: http://www.bioconductor.org/

Note, that QuACN also depends on the Rmpfr package. Therefore, the software GMP (http://gmplib.org/)

and MPFR ( http://www.mpfr.org/) needs to be installed to install the package correctly:

*Corresponding author.
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e Windows: The package should install without problems.

e Ubuntu/Debian: Make sure that the libraries libgmp3-dev and libmpfr-dev are installed.

For more information see the corresponding websites, or the documentation of the Rmpfr package (http://
rmpfr.r-forge.r-project.org/).

After installing GMP and MPFR everything is ready to install QuACN. Other dependencies will be installed
automatically during the installation. To install the package from CRAN simply type:

> install.packages ("QuACN")

2 Networks

This section shows how to create networks in R to use them with QuACN.

2.1 graphNEL

We generate a random graph with 8 nodes. This graph will be used to explain the implemented methods. To
analyze a network the network has to be represented by a graphNEL-object, which is part of the Bioconductor
graph package.

> library ("QuACN")
Loading C code of R package 'Rmpfr': GMP using 64 bits per limb

> set.seed(666)

> g <- randomGraph(1:8, 1:5, 0.36)

> 8

A graphNEL graph with undirected edges

Number of Nodes 8
Number of Edges 16

2.2 Adjacency Matrix

To create a graphNEL object from an adjacency matrix A, just type following command:

> A
123456738
101121011
210111000
311011000
421101011
511110100
600001000
710010001
810010010
> g <- as(A, "graphNEL")

> 8

A graphNEL graph with undirected edges
Number of Nodes = 8
Number of Edges = 16

Some descriptors, which are specially marked throughout this document, require vertex and/or edge weights.
Known attributes are:

e "atom": Atomic number of a graph vertex.
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e "weight": Conventional bond order of an edge, i.e. 1 for single bonds, 2 for double bonds, 3 for triple
bonds and 1.5 for aromatic bonds.

These can be set as follows:

> nodeDataDefaults(g, "atom") <- 6

> nodeData(g, "6", "atom") <- 8

> edgeDataDefaults(g, "weight") <- 1
> edgeData(g, "2", "3", "weight") <- 2

If existing networks are to be analyzed with QuACN, R offers several ways to import them. (It is important
that the networks are represented by graphNEL-objects.) Note that there is no general procedure to get networks
into an R workspace. Some possibilities to import network data are listed below:

e Adjacency matrix: A representation of a network as an adjacency matrix can be easily imported and
converted into a graphNEL object.

e Node- and Edge-List: With a list of nodes and Edges it is easy to create a graphINEL-object.

e read.graph(): The read.graph() method of the graph-package offers the possibility to import graphs
that a represented in different formats. For details see the manual of the graph-package.

e System Biology Markup Language(SBML) [1]: With the RSBML-package it is possible to import
SBML-Models.

e igrah-package: Networks created with the igraph-package can be converted into graphNEL objects.

2.3 Extract the Largest Connected Subgraph

Many of the topological network descriptors that are implemented in QuACN only work on connected graphs.
Often this is not the case with biological networks, so that the largest connected component (LCC) has to be
extracted first. For extracting the LCC we provide the method getLargestSubgraph(g), as shown in [2]:

> g2 <- randomGraph(paste("A", 1:100, sep = ""), 1:4, p = 0.03)
> lcc <- getLargestSubgraph(g2)
> Icc

A graphNEL graph with undirected edges
Number of Nodes = 7
Number of Edges = 12

2.4 Enumerate Edge-Deleted Subgraphs

Some descriptors require a list of all distinct subgraphs which can be generated from a graph by removing one
or two edges. The concerning methods obtain this information automatically, but for efficiency reasons, the user
might want to pre-calculate and reuse it:

> sg.led <- edgeDeletedSubgraphs(g)
> sg.2ed <- edgeDeletedSubgraphs (sg.1led)

Note that the method edgeDeletedSubgraphs(g) accepts lists or single instances of graphNEL objects or
adjacency matrices, but it always returns a list of adjacency matrices.

3 Network Descriptors

This section provides a overview of the network descriptors that are included in the QuACN package. Here we
describe the respective descriptor and how to call it in R.

Many descriptors have at least two parameters, the graphNFEL-object and the distance matrix representing
the network. It is not necessary to pass the distance matrix to a function. If the parameters stays empty or is
set to NULL the distance matrix will be estimated within each function. But if the user wants to calculate more



than one descriptor, it is recommended to calculate the distance matrix separately and pass it to each method.
Some of the methods need the degree of each node or the adjacency matrix to calculate their results. If they
were calculated once they should have kept for later use. For large networks in particular, it saves a lot of time
to not calculate these parameters for each descriptor again, and will enhance the performance of the program to
be developed.

mat.adj <- adjacencyMatrix(g)
mat.dist <- distanceMatrix(g)
vec.degree <- graph::degree(g)
ska.dia <- diameter(g)

ska.dia <- diameter(g, mat.dist)

vV V.V VvV

In the definitions below, let G = (N(G), E(G)) be a finite and connected graph. N(G) and E(G) are called
vertex and edge set of G, respectively. As |[N(G)| < inf, we can define |[N(G)| := N

3.1 Descriptors Based on Distances in a Graph

This section describes network measures based on distances in the network.

Wiener Index [3]:

Z Vi, Vj). (1)

13
d(v;, v;) stands for shortest distances between v;,v; € ( ).

l\DM—l
Mz

> wien <- wiener(g)
> wiener(g, mat.dist)

[1] 44

Hararay Index [4]:

| NN
iz d(vi,v;))7, i # g (2)
i=1 ]:1
> harary(g)
[1] 20.66667
> harary(g, mat.dist)
[1] 20.66667
Balaban J Index [5]:
— 1B 3,
J(G) : o (vL%eE[DS DS~ (3)
> balabanJ(g)
[1] 2.207272
> balabanJ(g, mat.dist)
[1]1 2.207272
where |E(G)| := |E| denotes the number of edges of the complex network, DS; denotes the distance sum (row
sum) of v; and u := |E| + 1 — N denotes the cyclomatic number.

Mean distance deviation [6]:

See subsection [B.1]



Compactness [7]:

> compactness(g)

[1] 3.142857

> compactness (g, mat.dist)

[1] 3.142857

> compactness(g, mat.dist, wiener(g, mat.dist))

[1] 3.142857

Product of Row Sums Index [§]:

N

PRS(G) = [[ u(vi) or log(PRS(G)) = log

i=1

> productOfRowSums (g, log = FALSE)
[1] 190531440
> productOfRowSums (g, log = TRUE)

[1] 27.50545

> productOfRowSums (g, mat.dist, log = FALSE)
[1] 190531440
> productOfRowSums (g, mat.dist, log = TRUE)

[1] 27.50545

Hyper-distance-path Index [9]

N N
sz(vivvj) +

i=1 j=1

DP(G) =

|~

> hyperDistancePathIndex(g)
[1] 62
> hyperDistancePathIndex(g, mat.dist)

[1] 62

> hyperDistancePathIndex (g, mat.dist, wiener(g, mat.dist))

[1] 62

_‘\E‘ﬁ"z
WE

s
I

—
<

—

N

D)

i=1

d(vg vj)>'

) |



Skorobogatov and Dobrynin [6]:

This method calculates several descriptors:

1. Vertex Eccentricity [6]:

e(v) == mazr,eng)d(u,v)

> dob <- dobrynin(g)
> dob <- dobrynin(g, mat.dist)
> dob$eccentricityVertex

12345678
22222333
. Eccentricity of a graph [0]:
e(G):= Y ev)
vEN(G)

> dob$eccentricityGraph
(11 19

. Average Vertex Eccentricity of a Graph [6]:

> dob$avgeccOfG
[1] 2.375

. Vertex Eccentric [6]:

Ae(v) :=|e(v) — eqrn(G)]
> dob$ecentricVertex

1 2 3 4 5 6 7 8
0.375 0.375 0.375 0.375 0.375 0.625 0.625 0.625

. Eccentric of a Graph [6]:

1
AG = Z Ae(v)
vEN(G)

> dob$ecentricGraph
[1] 0.46875

. Vertex Centrality [6]:

> dob$vertexCentrality

6 7 8

1 2 3 4 5
91111 9 9 15 12 12

. Graph Integration [6]:

> dob$graphIntegration

[1] 44

(10)

(11)
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3.2

This section describes network measures based on other invariants than distances.

Unipolarity [6]:
D*(G) := minyen(c)D(v)

> dob$unipolarity
(11 9

Distance Vertex Deviation [6]:

AD*(v) := D(v) — D*(G)
> dob$vertexDeviation
23456
22006

w N

1 5 8
0 0 3

Variation of a Graph [6]:
var(g) := mar,en e AD*(v)
> dob$variation

[1] 6

Centralization [6]:

AG*:= > AD*(v)

vEN(G)
> dob$centralization
[1] 16
Average Distance of Graph Vertices [6]:
2D(g)
Dav — T a7
(9) N

> dob$avgDistance
[1] 11

Distance Vertex Deviation [6]:

AD(v) := |D(v) — Dgu(G)|
> dob$distVertexDeviation
234
002

56738
2 11

1 6
2 4
Mean Distance Deviation [6]:

vEN(G)

> dob$meanDistVertexDeviation

[1] 1.5

Descriptors Based on Other Graph-Invariants

(16)

(17)

(18)

(20)



Index of Total Adjacency [10]:

i=1 j=1

> totalAdjacency(g)

[1] 18

> totalAdjacency(g, mat.adj)

[1] 18

Zagreb Group Indices [1T], 12]:
N

Z1(G) = "k,

i=1

where k,, is the degree of the node v;.

(vi,v;)EE
Modified, augmented and variable Zagreb indices:
1
MZI =
(@) 2
(viyvj)eE 7
ky. ko,
AZI = G
() Z (ky.+kvv 2
(vi,v;)EE ‘ ’
ko, +ky — 2
VZI = . z
(@) 2 Tk
(vi,v;)EE B

> zagrebl(g)

[1] 32

> zagrebl(g, vec.degree)

[1] 32

> zagreb2(g)

[1] 282

> zagreb2(g, vec.degree)

[1] 282

> modifiedZagreb(g)

[1] 0.8666667

> modifiedZagreb(g, vec.degree)
[1] 0.8666667

> augmentedZagreb(g)

[1] 310.0767

> augmentedZagreb(g, vec.degree)
[1] 310.0767

> variableZagreb(g)

[1] 5.433333

> variableZagreb(g, vec.degree)

[1] 5.433333

(21)

(22)

(23)



Randié¢ Connectivity Index [13]:

R(G) = (N
(vi,vj)EE
> randic(g)
[1] 3.352215
> randic(g, vec.degree)
[1] 3.352215
The Complexity Index B [10]:
N ko,
BG) = ; 1(vi)

> complexityIndexB(g)

[1] 3.182828

> complexityIndexB(g, mat.dist)

[1] 3.182828

> complexityIndexB(g, mat.dist, vec.degree)

[1] 3.182828

Normalized Edge Complexity [10]:

> normalizedEdgeComplexity(g)
[1] 0.28125
> normalizedEdgeComplexity(g, totalAdjacency(g, mat.adj))

[1] 0.28125

Atom-bond Connectivity [14]:

ABC(G):= >

(vi,v;)EE

Ko, ko,
> atomBondConnectivity(g)
[1] 8.643594

> atomBondConnectivity(g, vec.degree)

[1] 8.643594

Ko, + ko, — 2

(27)

(28)

(30)



Geometric-arithmetic Indices [15]:

Ko, ko,
e = (w%&E %(k“ + ko) &0
cAz(q) = Y (32)

(vi,vj)EE §(ni +nj)
GA3(G) = A . 33
@ = 2 Towrmy (33

where

n; = |{z e N(G):d(z,v;) <d(z,vj)}, (34)
n; = Nz e N(G):d(z,v;) < d(z,v)}, (35)
m; = [{f € E:d(f,v) <d(f,v;)}], (36)
m; = [{f € E:d(f,v;) <d(f vi)}- (37)

In this context, the distance between an edge f = {z,y} and a vertex v is defined as d(f, v) := min{d(z, v), d(y, v)}.

> geometricArithmeticl1(g)

(1] 13.41511

> geometricArithmeticl(g, vec.degree)
[1] 13.41511

> geometricArithmetic2(g)

[1] 12.77876

> geometricArithmetic2(g, mat.dist)
[1] 12.77876

> geometricArithmetic3(g)

[1] 11.81318

> geometricArithmetic3(g, mat.dist)

[1] 11.81318

Narumi-Katayama Index [16]:

NK =[] ko, (38)
i=1
> narumiKatayama (g)
[1] 25920

> narumiKatayama(g, vec.degree)

[1] 25920

3.3 Classical Entropy-based descriptors

These measures are based on grouping the elements of an arbitrary graph invariant (vertices, edges, and distances
etc.) using an equivalence criterion.

10



Topological Information Content [17, 18]:

k
NY| INY|
v ::_E ‘7%1 L BB
orb(G) P N Og( N > (39)

|NY| denotes the number of vertices belonging to the i-th vertex orbit.

> topologicallnfoContent (g)

$entropy
[1] 2.25

$orbits
[1] 22112

> topologicalInfoContent (g, mat.dist)

$entropy
[1] 2.25

$orbits
[1] 22112

> topologicallnfoContent (g, mat.dist, vec.degree)

$entropy
[1] 2.25

$orbits
[11] 22112

Bonchev - Trinajsti¢ Indices [19]:

p(G) 5 .
Ip(G) = —%log (]if) P4 ?\];21 log (?\52) , (40)
p(G)
I (G) = W(G)log(W(G)) — > _ ik;log(i). (41)

i=1
p(G) is the diameter of the graph (the maximum distance between two nodes). k; is the occurrence of a distance
possessing value 4 in the distance matrix of G.

> #I_D(G)
> bonchevl(g)

[1] 1.229843
> bonchevl(g, mat.dist)
[1] 1.229843

> #I"W_D(G)
> bonchev2(g)

[1] 173.1954

> bonchev2(g, mat.dist)

[1] 173.1954

> bonchev2(g, mat.dist, wiener(g))

[1] 173.1954

11



BERTZ Complexity Index [20]:

k
C(G) :=2Nlog(N) — Z |Ni|log (| NVil) -

|N;| are the cardinalities of the vertex orbits as defined in Eqn. (39).
> bertz(g)

[1] 42

> bertz(g, mat.dist)

[1] 42

> bertz(g, mat.dist, vec.degree)

[1] 42

Radial Centric Information Index [21]:

k
Ne Ne
toa@) = Y- Sl ox (551,
=1

|N£| is the number of vertices having the same eccentricity.

> radialCentric(g)
[1] 0.954434
> radialCentric(g, mat.dist)

[1] 0.954434

Vertex Degree Equality-based Information Index [21]:

k k k
N_ v N v
Ideg(G) ::Z| ](f 10g<| ]<7 >
=1

|Nf”| is the number of vertices with degree equal to i and k := max,c N(G) K-

> vertexDegree(g)

[1] 2.25

> vertexDegree(g, vec.degree)
[1] 2.25

Balaban-like Information Indices [22]:

Note that this class of Descriptors return Inf for graphs with NV < 3.

E| -1
U(G) = —— [u(vi)u(v;)] ™2,
K +1 (vi§€E
E| -3
X(G) = =L [2(vi)z(v;)] "2,
Bt 1 (vi%EE

12

(43)



where

o(v;)
S (vi, G| o J

wo) = 2 TR os (7).
z(vi) = —p(v;)log(d(vi)) — vi,

o(vi)

v =Y 419(vs, G)[log(j),

j=1

N N
() = Zd(vi,vj)zzj\sj(%Gﬂ-

> #Balaban-like information index U(G)
> balabanlikel(g)

[1] 8.236938
> balabanlikel(g, mat.dist)
[1] 8.236938

> #Balaban-like information index X(G)
> balabanlike2(g)

[1] 0.7589271
> balabanlike2(g, mat.dist)
[1] 0.7589271

Graph Vertex Complexity Index [23]:

k' is the number of distances starting from V; € N(G) equal to j.
> graphVertexComplexity(g)

[1] -12.08022

> graphVertexComplexity (g, mat.dist)

[1] -12.08022

3.4 More recent Graph Complexity Measures
Medium Articulation [24]:

MAg(G) := MAR(G) - MA;(G)
with the redundancy

(@) = 4 (g e @) (' Rona@ - Frael)
R(G) := % > log(did;)
Retique(G) = 2102& —1)
Rpatn(G) = 2% : i log 2

13

(51)

(52)



and the mutual information

I(G) - Icli ue(G) ) ( I(G) - Icli ue(G) >
MA(G) = 4 1 1-— 1 58
I( ) (Ipath<G) - Iclique(G) Ipath(G) - Iclique(G) ( )
1 2m
1 = —
(@) m ‘Z‘log (didj) (59)
,)>1
N
Lijique(G) = log N1 (60)
N —
Ipath(G) = 10g(N - 1) - N_—1 10g2 (61)
> mediumArticulation(g)
[1] 0.7722091
Efficiency Complexity [24]:
E(G)-FE ath(G)) ( E(G)-FE ath(G))
Ce(G) = 4 P 1- P 62
( ) ( 1- Epath<G) 1- Epath<G) ( )
B(G) = N T PIp I i (63)
i >0
Ean(G) = ———— N 64
> efficiency(g)
[1] 0.999175
> efficiency(g, mat.dist)
[1] 0.999175
Graph Index Complexity [24]:
Cr(G) :=4er(1 —¢p) (65)
where ¢, = #ﬁ% and r is the largest eigenvalue of the adjacency matrix of the graph.
> graphIndexComplexity(g)
[1] 0.8886164
Offdiagonal complexity [24]:
kmax—1
0dC(6) = ~j Ty Z i 10g i, (66)
with a,, = #’Lla and a, = Zfi’f"’N Cii+ N, Where kpax is the maximum degree of all nodes in the graph,

and c¢;; is themﬂtimbe? of all neighbors with degree j > i of all nodes with degree 1.

> offdiagonal (g)
[1] 0.772423
> offdiagonal (g, vec.degree)

[1] 0.772423

14



Spanning Tree Sensitivity [24]:

STS(G) = M’ (67)

log m¢y

. St . . .
with me, = n'% — 10, a; = Ekiéz’ Sij = sij — (min{s;;} — 1) and {S};, 57, .. .,Sfj} being an ordered list of

all £ different S;;. s;; is the number of spanning trees in the graph minus the number of spanning trees of the

subgraph with the edge {v;,v;} deleted. Analogously, the spanning tree sensitivity differences measure is defined
as

STSD(G)::;:EQJ&B§QQ7 (68)

log mey

with b; = %, where {Ldy, Lds, ..., Ldg} is the ordered list of all unique differences Si— S{’;*l.
> spanningTreeSensitivity(g)

$STS
[1] 0.4033211

$STSD
[1] 0.2846556

> spanningTreeSensitivity(g, sg.led)

$STS
[1] 0.4033211

$STSD
[1] 0.2846556

Distance Degree/Code Centric Indices [25]:

7 _ 2. d; d;

Caeg(G) = _ZNIOgQ N’ (69)
i=1
¢ C; C;

Ic.coae(G) = —ZﬁlogQN. (70)
i=1

where d; is the number of vertices with the same eccentricity and the same vertex distance degree (i.e., equal
row sums in the distance matrix), and ¢; is the number of vertices with the same vertex distance code (i.e., the
same numbers in their rows in the distance matrix). D and C are the respective numbers of equivalence classes.

> distanceDegreeCentric(g)

[1] 1.905639

> distanceDegreeCentric(g, mat.dist)
[1] 1.905639

> distanceCodeCentric(g)

[1] 1.905639

> distanceCodeCentric(g, mat.dist)

[1] 1.905639

15



3.5 Parametric Graph Entropy Measures

Measures of this group [26, 27] assign a probability value to each vertex of the network using a so-called information
functional f which captures structural information of the network G.

N
F(o0) f(3)
[(G) ==Y i —log | =l |, 71
1 iﬂEﬁJﬂw>g<zﬁnwn> =

where I;(G) represents a family of graph entropy [26] measures depending on the information functional. Further
we implemented the following measurement|27]:

I}G) =X <10g(N) + Zp(vi) log(p(vi))> , (72)

v;) = f(vy) 73
PO Ty "

where p¥ (v;) are the vertex probabilities, and A > 0 is a scaling constant. This measure can be interpreted as the
distance between the entropy defined in equation [71] and maximum entropy (log(N)). We integrated 4 different
information functionals [26], [28]:

1. An information functional using the j-spheres (”sphere”):
FV (i) = ]S (vi, Q)| + eal Sa (i, G)| + - + co(a| Sp(en (vi, G, (74)
where ¢ > 0.
2. An information functional using path lengths (“pathlength”):
fP(vi) = ell(P(La(vi,1))) + ol (P(La(vi, 2))) + -+ 4 o)l (P(La (v, p(G)))), (75)
where ¢ > 0.
3. An information functional using vertex centrality( ertcent”) :
fC () = e1fEevoD (1) + e L WD (1) 4 -+ - + Cp(G)BLG(Ui7p(G))(Ui>7 (76)
where ¢, > 0.
4. Calculates the degree-degree association index("degree”) [28]:

fA (Uz) = aclAG(vi,1)+02AG(1}¢,2)+~~+cp(g)AG(vi,p(G)), (77)

where ¢ > 0, 1 < k < p(G) and a > 0. Note that f2 is well-defined for o > 0. Please consider that the
results of the degree-degree association index are often very close to zero and can only be represented with
a special data type (see the hint at the end of this section).

We implemented 4 different settings (as example settings) for weighting the parameters ¢; (p(G) represents
the diameter of the network):

1. constant
Ccl = ]_, Cy = ]., ey, Cp(G) =1. (78)
2. linear
c1 = [)(C})7 Co = p(G) — 17 Ty Cp(@) = 1. (79)
3. quadratic
o1 = p(G) e 1= (p(G) = 1)%, -+ Loy = 1. (80)
4. exponential
e1 = p(@), 2= pl(G)e! s+ ey = p(@he "D, (81)

16



To call this type of network measure we provide the method infoTheoreticGCM. It has following input pa-

rameters:

e ¢: the network as a graphINEL object - it is the only mandatory parameter

e dist: the distance matrix of g

7N

e coeff: specifies the weighting parameter: ”const”, ”lin”, "quad”, "exp”, "const” or "cust” are available con-
stants. If it is set to “cust”, a customized weighting schema has to be specified through the custCoeff

parameter.

e infofunct: specifies the information functional: ’
settings.

'sphere”, "pathlength”, "vertcent” or "degree” are available

e [ambda: scaling constant for the distance, default set to 1000.

e custCoeff: specifies the customized weighting schema. coeff must be set to ”const” in order to use it.

e alpha: alpha for degree degree association.

e prec: specifies the floating-point precision to use (currently only implemented for degree-degree association).
Values up to 53 are handled with the built-in double data type; larger values trigger the usage of Rmpfr.

Note that some combinations of these settings can

cause the descriptor to return NalN. In that case it is the

user’s responsibility to check for warnings. For infofunct="degree" in particular, also see the note below.

The method returns a list with following entries:

e entropy: contains the entropy, see formula

o distance: contains the distance described in formula [72]

e pis: contains the probability distribution, see formula

e fuvi: contains the values of the used information functional for each vertex v;

11 <- infoTheoreticGCM(g)

12 <- infoTheoreticGCM(g, mat.dist, coeff
lambda = 1000)

13 <- infoTheoreticGCM(g, mat.dist, coeff
lambda = 4000)

14 <- infoTheoreticGCM(g, mat.dist, coeff
lambda = 1000)

15 <- infoTheoreticGCM(g, mat.dist, coeff
lambda = 1000)

11

vV +V +V +V + VYV

$entropy
[1] 2.990321

$distance
[1] 9.679226

$pis
1 2 3 4
0.13970588 0.12500000 0.12500000 0.13970588 0
8
0.11764706
$fvis

1 2 3 4 5 6 7 8
19 17 17 19 19 13 16 16

> 15

"1in", infofunct = "sphere",
"const", infofunct = "pathlength",
"quad", infofunct = "vertcent",

"exp", infofunct = '"degree",

5 6 7
.13970588 0.09558824 0.11764706
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$entropy
[1] 1.546569

$distance
[1] 1453.431

$pis
1 2 3 4 5 6
4.474312e-01 2.658896e-02 2.658896e-02 4.474312e-01 5.075579e-02 1.196450e-03
7 8

3.710288e-06 3.710288e-06

$fvis
1 2 3 4 5 6
2.540206e-12 1.509538e-13 1.509538e-13 2.540206e-12 2.881564e-13 6.792618e-15
7 8

2.106446e-17 2.106446e-17

Important: Note, the functional based on degree-degree associations (infofunct="degree") can result in
values that cannot be represented by standard data types. This problem manifests itself in Na/N as return values.
Note, that this issue can be avoided by specifying a floating-point precision value greater than 53, using the
parameter prec (e.g. prec=128 is usually enough). In this case, the Rmpfr package will be used and the list,
returned by the function will contain vectors of the class mpfr. These vectors can be used as usual numeric
vectors, except that all calculations will result in mpfr vectors. Note, that as.double can be used to convert
such a vector back to the regular numeric vector once the result is in the representable range (between 10380
and 10%%Y). The following example shows how to work with vectors of type mpfr:

> 15mpfr <- infoTheoreticGCM(g, mat.dist, coeff = "exp", infofunct = "degree",
+ lambda = 1000, prec = 128)
> 1bmpfr$entropy

1 'mpfr' number of precision 128 bits
[1] 1.546568792292280720674101903940257498633

> 1bmpfr$entropy * 2°3

1 'mpfr' number of precision 128 bits
[1] 12.37255033833824576539281523152205998907

> as.double(15mpfr$entropy * 2°3)
[1] 12.37255
For more details about mpfr vectors, please consult the Rmpfr documentation.

3.6 Eigenvalue-based Descriptors

This class contains eigenvalue-based Descriptors proposed in Dehmer et. al [28].

Hy (G) zk: Al log ( Al ) (82)
MG =2 Sk L =k 1/
i=1 Zj:l |>‘j|i Ej:l |)‘j :
Sar (G) = [MaI7 + Dol + .+ [l (83)
ISy (G) ! (84)
Mg = 5
|)\1%+|)\2%+...+|>\k%

Po (G) = |A1]7 - [Xal® oo [ Anl®, (85)
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_ 1
Pals - DalE - wlE
Using this function, it is possible to calculate 5 descriptors (Has, (@), Sa, (@) » ISm. (@), Pu.(a), IPu,()) for
10 different matrices:

1Py, (G)

(86)

1. Adjacency matrix
> eigenvalueBased(g, adjacencyMatrix, 2)

$HMs
[1] 2.924559

$SMs
[1] 10.45478

$ISMs
[1] 0.09565

$PMs
[1] 5.656854

$IPMs
[1] 0.1767767

2. Laplacian matrix
> eigenvalueBased(g, laplaceMatrix, 2)

$HMs
[1] 2.728232

$SMs
[1] 15.14344

$ISMs
[1] 0.06603521

$PMs
[1] 2.335730e-06

$IPMs
[1] 428131.6

3. Distance matrix
> eigenvalueBased(g, distanceMatrix, 2)

$HMs
[1] 2.812274

$SMs
[1] 12.07332

$ISMs
[1] 0.08282723

$PMs
[1] 9.797959

$IPMs
[1] 0.1020621
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4. Distance path Matrix

> eigenvalueBased(g, distancePathMatrix, 2)

$HMs
[1] 2.770978

$SMs
[1] 14.89195

$ISMs
[1] 0.06715037

$PMs
[1] 36.61967

$IPMs
[1] 0.02730773

5. Augmented vertex degree matrix
> eigenvalueBased(g, augmentedMatrix, 2)

$HMs
[1] 2.798655

$SMs
[1] 13.96496

$ISMs
[1] 0.0716078

$PMs
[1] 28.48828

$IPMs
[1] 0.03510216

6. Extended adjacency matrix

> eigenvalueBased(g, extendedAdjacencyMatrix, 2)

$HMs
[1] 2.926072

$SMs
[1] 10.94290

$ISMs
[1] 0.0913835

$PMs
[1] 8.199051

$IPMs
[1] 0.1219653

7. Vertex Connectivity matrix

> eigenvalueBased(g, vertConnectMatrix, 2)
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$HMs
[1] 2.942791

$SMs
[1] 4.976892

$ISMs
[1] 0.2009286

$PMs
[1] 0.01643355

$IPMs
[1] 60.85111

8. Random Walk Markov matrix
> eigenvalueBased(g, randomWalkMatrix, 2)

$HMs
[1] 2.942791

$SMs
[1] 4.976892

$ISMs
[1] 0.2009286

$PMs
[1] 0.01643355

$IPMs
[1] 60.85111

9. Weighted structure function matrix I M;
> eigenvalueBased (g, weightStrucFuncMatrix_lin, 2)

$HMs
[1] 0.8690336

$SMs
[1] 3.293587

$ISMs
[1] 0.3036204

$PMs
[1] 1.289736e-29

$IPMs
[1] 7.753523e+28

10. Weighted structure function matrix IMs

> eigenvalueBased (g, weightStrucFuncMatrix_exp, 2)

$HMs
[1] 1.038954
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$SMs
[1] 3.450187

$ISMs
[1] 0.2898393

$PMs
[1] 9.348347e-36

$IPMs
[1] 1.069708e+35

For a detailed description of this class see Dehmer et. al [28].

Graph Energy and Laplacian Energy [29]:

I
-
T

E(G) (87)
i=1
N 2m
LE(G) = i — — 88
(©) = X3 (55)
where Ay are the eigenvalues of the adjacency matrix and pj those of the Laplacian matrix of the graph.
> energy(g)
[1] 15.19639
> laplacianEnergy(g)
[1] 21.86179
Estrada [30] and Laplacian Estrada [31] Indices:
N
EE(G) = ) e (89)
i=1
N
LEE(G) = Y e (90)
i=1
with Ar and uy defined as above.
> estrada(g)
[1] 207.9575
> laplacianEstrada(g)
[1] 10832.26
Spectral Radius:
SpRad(@G) := max {|\;|} (91)

> spectralRadius(g)

[1] 5.294174
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3.7 Subgraph Measures
One-edge-deleted Subgraph Complexity [24]:

Nye -1
N 1
Cle,Spec(G) = % (93)

Nic,s7 is the number of one-edge-deleted subgraphs which are different with regard to the number of spanning
trees. Similarly, Nye spec is the number of one-edge-deleted subgraphs which are different with regard to spectra
of the Laplacian and signless Laplacian matrix. m., is defined as n'-%8 — 10.

> oneEdgeDeletedSubgraphComplexity(g)

$C_1eST
[1] 0.3196399

$C_1leSpec
[1] 0.593617

> oneEdgeDeletedSubgraphComplexity (g, sg.led)

$C_1eST
[1] 0.3196399

$C_leSpec
[1] 0.593617
Two-edges-deleted Subgraph Complexity [24]:

N26 Spec — 1
CQe,Spec(G) = %
(m2“> -1

where m, is defined like above and Ng. spe is the number of two-edges-deleted subgraphs which are different
with regard to spectra of the Laplacian and signless Laplacian matrix.

(94)

> twoEdgesDeletedSubgraphComplexity(g)
[1] 0.3603647
> twoEdgesDeletedSubgraphComplexity(g, sg.2ed)

[1] 0.3603647

Local Clustering Coefficient [32] [33]:

Let Gnw) = (VN(v)s En(w)) be the subgraph of G that contains all neighborhood vertices and their edges. Then
the local clustering coefficient of a graph G is defined by

En()
Cl8) = B0 (95)
2

> localClusteringCoeff (g)

1 2 3 4 5 6 7 8
0.6 1.01.0 0.6 0.6 0.01.01.0

> localClusteringCoeff (g, deg = vec.degree)
3 4 5 6 7 8
.0 0.6 0.6 0.0 1.0 1.0

1 2
0.6 1.01 0
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Global Clustering Coefficient [32] [33]:

> loccc <- localClusteringCoeff(g)
> globalClusteringCoeff (g)

[1] 0.725
> globalClusteringCoeff (g, loc = loccc)
[1] 0.725

3.8 ID numbers

Randié¢ Connectivity ID Number [34]:
CID := N+ Y wi, (97)
mPij
where "'p;; are all paths of length m > 0, and w;; is a path weight defined as

m

wiy = [T (Gunyone), 7 (98)

b=1

with the sum running over all edges in the path and b(1), b(2) referring to the two vertices incident to the bth
edge.

> connectivityID(g)

[1] 17.53585

> connectivityID(g, deg = vec.degree)
[1] 17.53585

MINCID [35]:
MINCID := N + > wyj, (99)

mingy. .
Pij
min

where the sum runs over all shortest paths

> minConnectivityID(g)

pij between the vertices v; and v;, and w;; is taken from equation

[1] 12.76619
> minConnectivityID(g, deg = vec.degree)
[1] 12.76619

Prime ID Number [36]:

PID :=N+ ) wy, (100)
MPij
with ™p;; like above and the path weight w;;
wij = [ oy 7, (101)
b=1

where pn, is a prime number chosen according to the degrees of the vertices adjacent to the bth edge.
> primeID(g)

[1] 16.08181

> primeID(g, deg = vec.degree)

[1] 16.08181
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Conventional Bond Order ID Number [37]:

7ID =N+ Y wi,
-

with ™p;; like above and the path weight w;;

m
wij = H 7'(';7
b=1
where 7} is the conventional bond order of the bth edge.
The conventional bond order must be set as the "weight" edge data attribute of the input graph.
> bondOrderID(g)

[1] 2048

Balaban ID Number [38]:
BID := N+ > wy,

MPij
with ™p;; like above and the path weight w;;

~1/2
(b)),

s

wij =

o
Il
—_

where oy, is the vertex distance degree and b(1), b(2) refer to the vertices adjacent to the edge b.
> balabanID(g)

[1] 10.36261

> balabanID(g, dist = mat.dist)

[1] 10.36261

MINBID [35]:
MINBID := N + > wy,

mingy,. .
Pij

(102)

(103)

(104)

(105)

(106)

where the sum runs over all shortest paths mi“pij between the vertices v; and v;, and w;; is taken from equation

[105]

> minBalabanID(g)

[1] 9.741806

> minBalabanID(g, dist = mat.dist)

[1] 9.741806

Weighted ID Number [39]:

with
N N
* —— *
ID* = Z Z wj;,
W* = an
where 7y is the distance-sum-connectivity matrix.
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> weightedID(g)

$WID
[1] 8.091842

$SID
[1] 8.482815

Hu-Xu ID Number [40]:

N
HXID :=_ AID} (110)
i=1
with
N
j=1
m+1 * 1/2
Tg— ,a 1
a=2 a—1 a
8 = bu N Za, (113)

where Z, is the atomic number of v,.
The huXuID method requires the input graph to store the atomic numbers in the "atom" vertex data attribute
and the conventional bond order in the "weight" edge data attribute.

> huXuID(g)
[1] 1.014972
> huXuID(g, deg = vec.degree)

[1] 1.014972

4 Calculating Multiple Descriptors at Once

The calculateDescriptors function provides a simple interface to calculate a set of descriptors on a list of input
graphs. The result is returned as a data frame. The desired functions can be specified by name or by number.
It is also possible to name the columns according to the names given in this document.

Please see the function documentation for a detailed description and a full list of the supported descriptors
together with their numbers.

> calculateDescriptors(g, "wiener")

wiener
1 44

> calculateDescriptors(g, 1001)

wiener
1 44

> calculateDescriptors(g, 2000, labels = TRUE)

A Z[1] Z[2] MZI AZI VZI R B E[N] ABC
118 32 282 0.8666667 310.0767 5.433333 3.352215 3.182828 0.28125 8.643594
GA1l GA2 GA3 NK

1 13.41511 12.77876 11.81318 25920
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5

Session Info

> sessionInfo()

R version 2.12.1 (2010-12-16)
Platform: x86_64-pc-linux-gnu (64-bit)

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
[5] LC_MONETARY=C LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

(1]

stats graphics grDevices utils datasets methods  base

other attached packages:

[1] QuACN_1.3.4 Rmpfr_0.4-3 combinat_0.0-8 igraph_0.5.5-2 RBGL_1.28.0
[6] graph_1.28.0
loaded via a namespace (and not attached):
[1] tools_2.12.1
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