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Qtools: A Collection of Models and Tools
for Quantile Inference
by Marco Geraci

Abstract Quantiles play a fundamental role in statistics. The quantile function defines the distribution
of a random variable and, thus, provides a way to describe the data that is specular but equivalent
to that given by the corresponding cumulative distribution function. There are many advantages in
working with quantiles, starting from their properties. The renewed interest in their usage seen in the
last years is due to the theoretical, methodological, and software contributions that have broadened
their applicability. This paper presents the R package Qtools, a collection of utilities for unconditional
and conditional quantiles.

Introduction

Quantiles have a long history in applied statistics, especially the median. The analysis of astronomical
data by Galileo Galilei in 1632 (Hald, 2003, p.149) and geodic measurements by Roger Boscovich in
1757 (Koenker, 2005, p.2) are presumably the earliest examples of application of the least absolute
deviation (L1) estimator in its, respectively, unconditional and conditional forms. The theoretical
studies on quantiles of continuous random variables started to appear in the statistical literature of
the 20th century. In the case of discrete data, studies have somewhat lagged behind most probably
because of the analytical drawbacks surrounding the discontinuities that characterise discrete quantile
functions. Some forms of approximation to continuity have been recently proposed to study the
large sample behavior of quantile estimators. For example, Ma et al. (2011) have demonstrated the
asymptotic normality of unconditional sample quantiles based on the definition of the mid-distribution
function (Parzen, 2004). Machado and Santos Silva (2005) proposed inferential approaches to the
estimation of conditional quantiles for counts based on data jittering.

Functions implementing quantile methods can be found in common statistical software. A con-
siderable number of R packages that provide such functions are available on the Comprehensive
R Archive Network (CRAN). The base package stats contains basic functions to estimate sample
quantiles or compute quantiles of common parametric distributions. The quantreg package (Koenker,
2013) is arguably a benchmark for distribution-free estimation of linear quantile regression models, as
well as the base for other packages which make use of linear programming (LP) algorithms (Koenker
and D’Orey, 1987; Koenker and Park, 1996). Other contributions to the modelling of conditional
quantile functions include packages for Bayesian regression, e.g. bayesQR (Benoit et al., 2014) and
BSquare (Smith and Reich, 2013), and the lqmm package (Geraci and Bottai, 2014; Geraci, 2014) for
random-effects regression.

The focus of this paper is on the R package Qtools, a collection of models and tools for quantile
inference. These include commands for

• quantile-based analysis of the location, scale and shape of a distribution;

• transformation-based quantile regression;

• goodness of fit and restricted quantile regression;

• quantile regression for discrete data;

• quantile-based multiple imputation.

The emphasis will be put on the first two topics listed above as they represent the main contribution
of the package, while a short description of the other topics is given for completeness.

Unconditional quantiles

Definition and estimation of quantiles

Let Y be a random variable with cumulative distribution function (CDF) FY and support SY . The CDF
calculated at y ∈ SY returns the probability FY(y) ≡ p = Pr (Y ≤ y). The quantile function (QF) is
defined as Q(p) = infy{FY(y) ≥ p}, for 0 < p < 1. (Some authors consider 0 ≤ p ≤ 1. For practical
purposes, it is simpler to exclude the endpoints 0 and 1.) When FY is continuous and strictly monotone
(hence, fY(y) ≡ F′Y(y) > 0 for all y ∈ SY), the quantile function is simply the inverse of FY . In other
cases, the quantile p is defined, by convention, as the smallest value y such that FY(y) is at least p.
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Quantiles enjoy a number of properties. An excellent overview is given by Gilchrist (2000). In
particular, the Q-tranformation rule (Gilchrist, 2000) or equivariance to monotone transformations
states that if h(·) is a non-decreasing function on R, then Qh(Y)(p) = h {QY(p)}. Hence QY(p) =

h−1
{

Qh(Y)(p)
}

. Note that this property does not generally hold for the expected value.

Sample quantiles for a random variable Y can be calculated in a number of ways, depending on
how they are defined (Hyndman and Fan, 1996). For example, the function quantile in the base
package stats provides nine different sample quantile estimators, which are based on the sample order
statistics or the inverse of the empirical CDF. These estimators are distribution-free as they do not
depend on any parametric assumption about F (or Q).

Let Y1, Y2, . . . , Yn be a sample of n independent and identically distributed (iid) observations from
the population FY . Let ξp denote the pth population quantile and ξ̂p the corresponding sample quantile.
(The subscripts will be dropped occasionally to ease notation, e.g. F will be used in place of FY or ξ in
place of ξp.) In the continuous case, it is well known that

√
n
(
ξ̂p − ξp

)
is approximately normal with

mean zero and variance

ω2 =
p(1− p)
{ fY(ξp)}2 . (1)

A more general result is obtained when the Yi’s, i = 1, . . . , n, are independent but not identically
distributed (nid). The density evaluated at the pth quantile, f (ξp), is called density-quantile function
by Parzen (1979). Its reciprocal, s(p) ≡ 1/ f (ξp), is called sparsity function (Tukey, 1965) or quantile-
density function (Parzen, 1979).

As mentioned previously, the discontinuities of FY when Y is discrete represent a mathematical
inconvenience. Ma et al. (2011) derived the asymptotic distribution of the sample mid-quantiles, that
is, the sample quantiles based on the mid-distribution function (mid-CDF). The latter is defined as
Fmid

Y (y) = FY(y)− 0.5pY(y), where pY(y) denotes the probability mass function (Parzen, 2004). In

particular, they showed that, as n becomes large,
√

n
(

ξ̂mid
p − ξp

)
is approximately normal with mean

0. Under iid assumptions, the expression for the sampling variance is similar to that in (1); see Ma et al.
(2011) for details.

The package Qtools provides the functions midecdf and midquantile, which return objects of
class "midecdf" or "midquantile", respectively, containing: the values or the probabilities at which
mid-cumulative probabilities or mid-quantiles are calculated (‘x’), the mid-cumulative probabilities or
the mid-quantiles (‘y’), and the functions that linearly interpolate those coordinates (‘fn’). An example
is shown below using data simulated from a Poisson distribution.

> library("Qtools")
> set.seed(467)
> y <- rpois(1000, 4)
> pmid <- midecdf(y)
> xmid <- midquantile(y, probs = pmid$y)
> pmid

Empirical mid-ECDF
Call:
midecdf(x = y)

> xmid

Empirical mid-ECDF
Call:
midquantile(x = y, probs = pmid$y)

A confidence interval for sample mid-quantiles can be obtained using confint.midquantile.
This function is applied to the output of midquantile and returns an object of class "data.frame"
containing sample mid-quantiles, lower and upper bounds of the confidence intervals of a given level
(95% by default), along with standard errors as an attribute named ‘stderr’. This is shown below
using the sample ‘y’ generated in the previous example.

> xmid <- midquantile(y, probs = 1:3/4)
> x <- confint(xmid, level = 0.95)
> x

midquantile lower upper
25% 2.540000 2.416462 2.663538
50% 3.822816 3.693724 3.951907
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Figure 1: Cumulative distribution (a) and quantile (b) functions for simulated Poisson data. The
ordinary cumulative distribution function (CDF) and quantile function (QF) are represented by step-
functions (grey lines), with the convention that, at the point of discontinuity or ‘jump’, the function
takes its value corresponding to the ordinate of the filled circle as opposed to that of the hollow circle.
The mid-CDF and mid-QF are represented by filled squares, while the piecewise linear functions
(dashed lines) connecting the squares represent continuous versions of, respectively, the ordinary CDF
and QF.

75% 5.254902 5.072858 5.436946

> attr(x, "stderr")
[1] 0.06295447 0.06578432 0.09276875

Finally, a plot method is available for both midecdf and midquantile objects. An illustration is
given in Figure 1. The mid-distribution and mid-quantile functions are discrete and their values
are marked by filled squares. The piecewise linear functions connecting the filled squares represent
continuous versions of the CDF and QF which interpolate between the steps of, respectively, the
ordinary CDF and quantile functions. Note that the argument jumps is a logical value indicating
whether values at jumps should be marked.

> par(mfrow = c(1,2))
> plot(pmid, xlab = "y", ylab = "CDF", jumps = TRUE)
> points(pmid$x, pmid$y, pch = 15)
> plot(xmid, xlab = "p", ylab = "Quantile", jumps = TRUE)
> points(xmid$x, xmid$y, pch = 15)

LSS - Location, scale and shape of a distribution

Since the cumulative distribution and quantile functions are two sides of the same coin, the location,
scale, and shape (LSS) of a distribution can be examined using one or the other. Well-known quantile-
based measures of location and scale are the median and inter-quartile range (IQR), respectively.
Similarly, there are also a number of quantile-based measures for skewness and kurtosis (Groeneveld
and Meeden, 1984; Groeneveld, 1998; Jones et al., 2011).

Define the ‘central’ portion of the distribution as that delimited by the quantiles Q(p) and Q(1− p),
0 < p < 0.5, and define the ‘tail’ portion as that lying outside these quantiles. Let IPR(p) =
Q(1− p)−Q(p) denote the inter-quantile range at level p. Building on the results by Horn (1983) and
Ruppert (1987), Staudte (2014) considered the following identity:

IPR(p)
IPR(r)︸ ︷︷ ︸
kurtosis

=
IPR(p)
IPR(q)︸ ︷︷ ︸

tail-weight

· IPR(q)
IPR(r)︸ ︷︷ ︸

peakedness

, (2)

where 0 < p < q < r < 0.5. These quantile-based measures of shape are sign, location and scale
invariant. As compared to moment-based indices, they are also more robust to outliers and easier to
interpret (Groeneveld, 1998; Jones et al., 2011).
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It is easy to verify that a quantile function can be written as

Q(p) = Q(0.5)︸ ︷︷ ︸
median

+
1
2

IPR(0.25)︸ ︷︷ ︸
IQR

· IPR(p)
IPR(0.25)︸ ︷︷ ︸
shape index

·
(

Q(p) + Q(1− p)− 2Q(0.5)
IPR(p)︸ ︷︷ ︸

skewness index

−1
)

. (3)

This identity establishes a relationship between the location (median), scale (IQR) and shape of a
distribution. (This identity appears in Gilchrist (2000, p.74) with an error of sign. See also Benjamini
and Krieger (1996, eq.1).) The quantity IPR(p)/IPR(0.25) in (3) is loosely defined as the ‘shape index’
(Gilchrist, 2000, p.72), although it can be seen as the tail-weight measure given in (2) when p < 0.25.
For symmetric distributions, the contribution of the skewness index vanishes. Note that the skewness
index not only is location and scale invariant, but is also bounded between −1 and 1 (as opposed to
the Pearson’s third standardised moment which can be infinite or even undefined). When this index is
near the bounds −1 or 1, then Q(1− p) ≈ Q(0.5) or Q(p) ≈ Q(0.5), respectively.

The function qlss provides a quantile-based LSS summary with the indices defined in (3) of either
a theoretical or an empirical distribution. It returns an object of class "qlss", which is a list containing
measures of location (median), scale (IQR and IPR), and shape (skewness and shape indices) for each
of the probabilities specified in the argument probs (by default, probs = 0.1). The quantile-based LSS
summary of the normal distribution is given in the example below for p = 0.1. The argument fun
can take any quantile function whose probability argument is named ‘p’ (this is the case for many
standard quantile functions in R, e.g. qt, qchisq, qf, etc. ).

> qlss(fun = "qnorm", probs = 0.1)

call:
qlss.default(fun = "qnorm", probs = 0.1)

Unconditional Quantile-Based Location, Scale, and Shape

** Location **
Median
[1] 0
** Scale **
Inter-quartile range (IQR)
[1] 1.34898
Inter-quantile range (IPR)

0.1
2.563103
** Shape **
Skewness index
0.1
0

Shape index
0.1

1.900031

An empirical example is now illustrated using the faithful data set, which contains 272 observa-
tions on waiting time (minutes) between eruptions and the duration (minutes) of the eruption for the
Old Faithful geyser in Yellowstone National Park, Wyoming, USA. Summary statistics are given in
Table 1.

Minimum Q1 Q2 Q3 Maximum

Waiting time 43.0 58.0 76.0 82.0 96.0
Duration 1.6 2.2 4.0 4.5 5.1

Table 1: Minimum, maximum and three quartiles (Q1, Q2, Q3) for waiting time and duration in the
Old Faithful Geyser data set.

Suppose the interest is in describing the distribution of waiting times. The density is plotted in
Figure 2, along with the mid-quantile function. The distribution is bimodal with peaks at around 54
and 80 minutes. Note that the arguments of the base function quantile, including the argument type,
can be passed on to qlss.
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Figure 2: Estimated density (a) and empirical mid-quantile (b) functions of waiting time between
eruptions in the Old Faithful Geyser data set.

> y <- faithful$waiting
> par(mfrow = c(1,2))
> plot(density(y))
> plot(midquantile(y, probs = p), jumps = FALSE)
> qlss(y, probs = c(0.05, 0.1, 0.25), type = 7)

call:
qlss.numeric(x = y, probs = c(0.05, 0.1, 0.25), type = 7)

Unconditional Quantile-Based Location, Scale, and Shape

** Location **
Median
[1] 76
** Scale **
Inter-quartile range (IQR)
[1] 24
Inter-quantile range (IPR)
0.05 0.1 0.25
41 35 24

** Shape **
Skewness index

0.05 0.1 0.25
-0.3658537 -0.4285714 -0.5000000
Shape index

0.05 0.1 0.25
1.708333 1.458333 1.000000

At p = 0.1, the skewness index is approximately −0.43, which denotes a rather strong left
asymmetry. As for the shape index, which is equal to 1.46, one could say that the tails of this
distribution weigh less than those of a normal distribution (1.90), though of course a comparison
between unimodal and bimodal distributions is not meaningful.

Conditional quantiles

Linear models

In general, the pth linear QR model is of the form

QY|X(p) = x>β(p) (4)
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where x is a k-dimensional vector of covariates (including 1 as first element) and β(p) = [β0(p), β1(p),
. . . , βk−1(p)]> is a vector of coefficients. The ‘slopes’ β j(p), j = 1, . . . , k− 1, have the usual interpreta-
tion of partial derivatives. For example, in case of the simple model QY|X(p) = β0(p) + β1(p)x, one
obtains

∂QY|X(p)
∂x

= β1(p).

If x is a dummy variable, then β1(p) = QY|X=1(p)−QY|X=0(p), i.e. the so-called ‘quantile treatment
effect’ (Doksum, 1974; Lehmann, 1975; Koenker and Xiao, 2002). Estimation can be carried out using
LP algorithms which, given a sample (xi, yi), i = 1, . . . , n, solve

min
b∈Rk

n

∑
i=1

κp

(
yi − x>i b

)
,

where κp(u) = u(p − I(u < 0)), 0 < p < 1, is the check loss function. Large-n approximation
of standard errors can be obtained from the sampling distribution of the linear quantile estimators
(Koenker and Bassett, 1978).
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Figure 3: (a) Waiting times between eruptions against durations of eruptions (dashed vertical line
drawn at 3 minutes) in the Old Faithful Geyser data set. (b) Mid-CDF of waiting time by duration of
eruption (solid line, shorter than 3 minutes; dashed line, longer than 3 minutes).

Waiting times between eruptions are plotted against the durations of the eruptions in Figure 3.
Two clusters of observations can be defined for durations below and above 3 minutes (see also
Azzalini and Bowman, 1990). The distribution shows a strong bimodality as already illustrated in
Figure 2. A dummy variable for durations equal to or longer than 3 minutes is created to define
the two distributions and included as covariate X in a model as the one specified in (4). The latter
is then fitted to the Old Faithful Geyser data using the function rq in the package quantreg for
p ∈ {0.1, 0.25, 0.5, 0.75, 0.9}.

> require("quantreg")
> y <- faithful$waiting
> x <- as.numeric(faithful$eruptions >= 3)
> fit <- rq(formula = y ~ x, tau = c(0.1, 0.25, 0.5, 0.75, 0.9))
> fit

Call:
rq(formula = y ~ x, tau = c(0.1, 0.25, 0.5, 0.75, 0.9))

Coefficients:
tau= 0.10 tau= 0.25 tau= 0.50 tau= 0.75 tau= 0.90

(Intercept) 47 50 54 59 63
x 26 26 26 25 25

Degrees of freedom: 272 total; 270 residual

From the output above, it is quite evident that the distribution of waiting times is shifted by an
approximately constant amount at all considered values of p. The location-shift hypothesis can be
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tested by using the Khmaladze test. The null hypothesis is that two distributions, say F0 and F1, differ
by a pure location shift (Koenker and Xiao, 2002), that is

H0 : F−1
1 (p) = F−1

0 (p) + δ0,

where δ0 is the quantile treatment effect, constant over p. The location–scale-shift specification of the
test considers

H0 : F−1
1 (p) = δ1F−1

0 (p) + δ0.

The alternative hypothesis is that the model is more complex than the one specified in the null
hypothesis. The Khmaladze test is implemented in quantreg (see ?quantreg::KhmaladzeTest for
further details). The critical values of the test and corresponding significance levels (Koenker, 2005)
are not readily available in the same package. These have been hardcoded in the Qtools function
KhmaladzeFormat which can be applied to "KhmaladzeTest" objects. For the Old Faithful Geyser data,
the result of the test is not statistically significant at the 10% level.

> kt <- KhmaladzeTest(formula = y ~ x, taus = seq(.05, .95, by = .01),
> KhmaladzeFormat(kt, 0.05)

Khmaladze test for the location-shift hypothesis
Joint test is not significant at 10% level
Test(s) for individual slopes:
not significant at 10% level

Goodness of fit

Distribution-free quantile regression does not require introducing an assumption on the functional
form of the error distribution (Koenker and Bassett, 1978), but only weaker quantile restrictions (Powell,
1994). Comparatively, the linear specification of the conditional quantile function in Equation 4 is a
much stronger assumption and thus plays an important role for inferential purposes.

The problem of assessing the goodness of fit (GOF) is rather neglected in applications of QR.
Although some approaches to GOF have been proposed (Zheng, 1998; Koenker and Machado, 1999;
He and Zhu, 2003; Khmaladze and Koul, 2004), there is currently a shortage of software code available
to users. The function GOFTest implements a test based on the cusum process of the gradient vector
(He and Zhu, 2003). Briefly, the test statistic is given by the largest eigenvalue of

n−1
n

∑
i

Rn(xi)R
>
n (xi)

where Rn(t) = n−1/2 ∑n
j=1 ψp(rj)xj I(xj ≤ t) is the residual cusum (RC) process and ψp(rj) is the

derivative of the loss function κp calculated for residual rj = yj − x>j β(p). The sampling distribution
of this test statistic is non-normal (He and Zhu, 2003) and a resampling approach is used to obtain the
p-value under the null hypothesis.

An example is provided further below using the New York Air Quality data set, which contains
111 complete observations on daily mean ozone (parts per billion – ppb) and solar radiation (Langleys
– Ly). For simplicity, wind speed and maximum daily temperature, also included in the data set, are
not analysed here.

Suppose that the model of interest is

Qozone(p) = β0(p) + β1(p) · Solar.R. (5)

Three conditional quantiles (p ∈ {0.1, 0.5, 0.9}) are estimated and plotted using the following code:

> dd <- airquality[complete.cases(airquality), ]
> dd <- dd[order(dd$Solar.R), ]
> fit.rq <- rq(Ozone ~ Solar.R, tau = c(.1, .5, .9), data = dd)
> x <- seq(min(dd$Solar.R), max(dd$Solar.R), length = 200)
> yhat <- predict(fit.rq, newdata = data.frame(Solar.R = x))
> plot(Ozone ~ Solar.R, data = dd)
> apply(yhat, 2, function(y,x) lines(x,y), x = x)

As a function of solar radiation, the median of the ozone daily averages increases by 0.09 ppb for
each Ly increase in solar radiation (Figure 4). The 90th centile of conditional ozone shows a steeper
slope at 0.39 ppb/Ly, about nine times larger than the slope of the conditional 10th centile at 0.04
ppb/Ly.
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Figure 4: Predicted 10th (solid line), 50th (dashed line), and 90th (dot-dashed line) centiles of ozone
conditional on solar radiation in the New York Air Quality data set.

The RC test applied to the the object fit.rq provides evidence of lack of fit for all quantiles
considered, particularly for p = 0.1 and p = 0.5. Therefore the straight-line model in Equation 5 for
these three conditional quantiles does not seem to be appropriate. The New York Air Quality data
set will be analysed again in the next section, where a transformation-based approach to nonlinear
modelling is discussed.

> gof.rq <- GOFTest(fit.rq, alpha = 0.05, B = 1000, seed = 987)
> gof.rq

Goodness-of-fit test for quantile regression based on the cusum process
Quantile 0.1: Test statistic = 0.1057; p-value = 0.001
Quantile 0.5: Test statistic = 0.2191; p-value = 0
Quantile 0.9: Test statistic = 0.0457; p-value = 0.018

Transformation models

Complex dynamics may result in nonlinear effects in the relationship between the covariates and the
response variable. For instance, in kinesiology, pharmacokinetics, and enzyme kinetics, the study of
the dynamics of an agent in a system involves the estimation of nonlinear models; phenomena like
human growth, certain disease mechanisms and the effects of harmful environmental substances such
as lead and mercury, may show strong nonlinearities over time. In this section, the linear model is
abandoned in favor of a more general model of the type

QY|X(p) = g
{

x>β(p)
}

, (6)

for some real-valued function g. If g is nonlinear, the alternative approaches to conditional quantile
modelling are

1. nonlinear parametric models—this approach may provide a model with substantive inter-
pretability, possibly parsimonious (in general more parsimonious than polynomials), and valid
beyond the observed range of the data. A nonlinear model depends on either prior knowledge of
the phenomenon or the introduction of new, strong theory to explain the observed relationship
with potential predictive power. Estimation may present challenges;

2. polynomial models and smoothing splines—this approach goes under the label of nonparametric
regression, in which the complexity of the model is approximated by a sequence of locally
linear polynomials (a naïve global polynomial trend can be considered to be a special case). A
nonparametric model need not introducing strong assumptions about the relationship and is
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essentially data-driven. Estimation is based on linear approximations and, typically, requires
the introduction of a penalty term to control the degree of smoothing; and

3. transformation models—a flexible, parsimonious family of parametric transformations is ap-
plied to the response seeking to obtain approximate linearity on the transformed scale. The
data provide information about the ‘best’ transformation among a family of transformations.
Estimation is facilitated by the application of methods for linear models.

The focus of this section is on the third approach. More specifically the functions available in Qtools
refer to the methods for transformation-based QR models developed by Powell (1991), Chamberlain
(1994), Mu and He (2007), Dehbi et al. (2016) and Geraci and Jones (2015). Examples of approaches to
nonlinear QR based on parametric models or splines can be found in Koenker and Park (1996) and Yu
and Jones (1998), respectively.

The goal of transformation-based QR is to fit the model

Qh(Y;λp)(p) = x>β(p). (7)

The assumption is that the transformation h is the inverse of g, h(Y; λp) ≡ g−1(Y), so that the pth
quantile function of the transformed response variable is linear. (In practice, it is satisfactory to achieve
approximate linearity.) The parameter λp is a low-dimensional parameter that gives some flexibility to
the shape of the transformation and is estimated from the data. In general, the interest is on predicting
QY|X(p) and estimating the effects of the covariates on QY|X(p). If h is a non-decreasing function on
R (as is the case for all transformations considered here), predictions can be easily obtained from (7)
by virtue of the equivariance property of quantiles,

QY|X(p) = h−1
{

x>β(p); λp

}
. (8)

The marginal effect of the jth covariate xj can be obtained by differentiating the quantile function
QY|X(p) with respect to xj. This can be written as the derivative of the composition Q ◦ η, i.e.

∂Q(p)
∂xj

=
∂Q(p)
∂η(p)

· ∂η(p)
∂xj

, (9)

η(p) = x>β(p). Once the estimates β̂(p) and λ̂p are obtained, these can be plugged in Equations 8
and 9.

The package Qtools provides several transformation families, namely the Box–Cox (Box and
Cox, 1964), Aranda-Ordaz (Aranda-Ordaz, 1981), and Jones (Jones, 2007; Geraci and Jones, 2015)
transformations. A distinction between these families is made in terms of the support of the response
variable to which the transformation is applied and the number of transformation parameters. The Box–
Cox model is a one-parameter family of transformations which applies to singly bounded variables,
y > 0. The Aranda-Ordaz symmetric and asymmetric transformations too have one parameter and
are used when responses are bounded on the unit interval, 0 < y < 1 (doubly bounded). Geraci and
Jones (2015) developed two families of transformations which can be applied to either singly or doubly
bounded responses:

• Proposal I transformations – this family has one parameter and it comes in both symmetric and
asymmetric forms;

• Proposal II transformations – this family has two parameters, with one parameter modelling
the symmetry (or lack thereof) of the transformation.

Originally, Box and Cox (1964) proposed using power transformations to address lack of linearity,
homoscedasticity and normality of the residuals in mean regression modelling. Sakia (1992, p.175)
reported that “seldom does this transformation fulfil the basic assumptions of linearity, normality and
homoscedasticity simultaneously as originally suggested by Box & Cox (1964). The Box-Cox transfor-
mation has found more practical utility in the empirical determination of functional relationships in a
variety of fields, especially in econometrics”.

Indeed, the practical utility of power transformations has been long recognised in QR modelling
(Powell, 1991; Buchinsky, 1995; Chamberlain, 1994; Mu and He, 2007). Model 7 is the Box–Cox QR
model if

hBC
(
Y; λp

)
=


Yλp − 1

λp
if λp 6= 0

log Y if λp = 0.

(10)

Note that when λp 6= 0, the range of this transformation is not R but the singly bounded interval
(−1/λp, ∞). This implies that the inversion in (8) is defined only for λpx>β(p) + 1 > 0.
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The ‘symmetric’ Aranda-Ordaz transformation is given by

hAOs
(
Y; λp

)
=


2

λp

Yλp − (1−Y)λp

Yλp + (1−Y)λp
if λp 6= 0,

log
(

Y
1−Y

)
if λp = 0.

(11)

(The symmetry here is that hAOs(θ; λp) = −hAOs(1− θ; λp) = hAOs(θ;−λp).) There is a range problem
with this transformation too since, for all λp 6= 0, the range of hAOs is not R, but (−2/|λp|, 2/|λp|).
The ‘asymmetric’ Aranda-Ordaz transformation is given by

hAOa
(
Y; λp

)
=


log

{
(1−Y)−λp − 1

λp

}
if λp 6= 0,

log {− log (1−Y)} if λp = 0.

(12)

For λp = 0, this is equivalent to the complementary log-log. The asymmetric Aranda-Ordaz trans-
formation does have range R. Note that hAOa(Y; 1) = log(Y/(1− Y)), i.e. the transformation is
symmetric.

To overcome range problems, which give rise to computational difficulties, Geraci and Jones (2015)
proposed to use instead one-parameter transformations with range R. Proposal I is written in terms of
the variable (say) W, where

hI
(
W; λp

)
=


1

2λp

(
Wλp − 1

Wλp

)
if λp 6= 0

log W if λp = 0,

(13)

which takes on four forms depending on the relationship of W to Y, as described in Table 2. For each
of domains (0, ∞) and (0, 1), there are symmetric and asymmetric forms.

Support of Y Symmetric Asymmetric

(0, ∞) W = Y W = log(1 + Y)
hIs(Y; λp) hIa(Y; λp)

(0, 1) W = Y/(1−Y) W = − log(1−Y)
hIs(Y; λp) hIa(Y; λp)

Table 2: Choices of W and corresponding notation for transformations based on (13).

Since the transformation in (13) has range R for all λp, it admits an explicit inverse transformation.
In addition, in the case of a single covariate, every estimated quantile that results will be monotone
increasing, decreasing or constant, although different estimated quantiles can have different shapes
from this collection. Geraci and Jones (2015) also proposed a transformation that unifies the symmetric
and asymmetric versions of hI into a single two-parameter transformation, namely

hI I(W; λp) = hI(Wδp ; λp), (14)

where hI is given in (13) and

Wδp = hBC(1 + W; δp) =


(1 + W)δp − 1

δp
if δp > 0

log(1 + W) if δp = 0,

with W = Y, if Y > 0, and W = Y/(1− Y), if Y ∈ (0, 1). The additional parameter δp controls the
asymmetry: symmetric forms of hI correspond to δp = 1 while asymmetric forms of hI to δp = 0.

All transformation models discussed above can be fitted using a two-stage (TS) estimator (Cham-
berlain, 1994; Buchinsky, 1995) whereby β(p) is estimated conditionally on a fine grid of values for
the transformation parameter(s). Alternatively, point estimation can be approached using the RC
process (Mu and He, 2007), which is akin to the process that leads to the RC test introduced in the pre-
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vious section. The RC estimator avoids the troublesome inversion of the Box-Cox and Aranda-Ordaz
transformations, but it is computationally more intensive than the TS estimator.

There are several methods for interval estimation, including those based on large-n approximations
and the ubiquitous bootstrap. Both the TS and RC estimators have an asymptotic normal distribution.
The large-sample properties of the TS estimator for monotonic quantile regression models have been
studied by Powell (1991) (see also Chamberlain, 1994; Machado and Mata, 2000). Under regularity
conditions, it can be shown that the TS estimator is unbiased and will converge to a normal distribution
with a sandwich-type limiting covariance matrix which is easy to calculate. In contrast, the form of
the covariance matrix of the sampling distribution for the RC estimator is rather complicated and its
estimation requires resampling (Mu and He, 2007). Finally, if the transformation parameter is assumed
to be known, then conditional inference is apposite. In this case, the estimation procedures simplify to
those for standard quantile regression problems.

In Qtools, model fitting for one-parameter transformation models can be carried out using the
function tsrq. The formula argument specifies the model for the linear predictor as in (7), while
the argument tsf provides the desired transformation h as specified in Equations 10-13: bc for the
Box–Cox model, ao for Aranda-Ordaz families, and mcjI for proposal I transformations. Additional
arguments in the function tsrq include

• symmetry, a logical flag to specify the symmetric or asymmetric version of ao and mcjI;

• dbounded, a logical flag to specify whether the response variable is doubly bounded (default is
strictly positive, i.e. singly bounded);

• lambda, a numerical vector to define the grid of values for estimating λp; and conditional, a
logical flag indicating whether λp is assumed to be known (in which case the argument lambda
provides such known value).

There are other functions to fit transformation models. The function rcrq fits one-parameter
transformation models using the RC estimator. The functions tsrq2 and nlrq2 are specific to Geraci
and Jones’s (2015) Proposal II transformations. The former employs a two-way grid search while the
latter is based on Nelder-Mead optimization as implemented in optim. Simulation studies in Geraci
and Jones (2015) suggest that, although computationally slower, a two grid search is numerically more
stable than the derivative-free approach.

A summary of the basic differences between all fitting functions is given in Table 3. The table also
shows the available methods in summary.rqt to estimate standard errors and confidence intervals for
the model’s parameters. Unconditional inference is carried out jointly on β(p) and the transformation
parameter by means of bootstrap using the package boot (Canty and Ripley, 2014; Davison and
Hinkley, 1997). Large-n approximations (Powell, 1991; Chamberlain, 1994; Machado and Mata, 2000)
are also available for the one-parameter TS estimator under iid or nid assumptions.

When summary.rqt is executed with the argument conditional = TRUE, confidence interval
estimation for βp is performed with one of the several methods developed for linear quantile regression
estimators (Koenker, 2005, p.110) (see options rank, iid, nid, ker, and boot in quantreg::summary.rq).

Function Transformation Estimation Standard errors or confidence intervals
name parameters Unconditional Conditional

tsrq 1 Two-stage iid, nid, boot All types

rcrq 1 Residual cusum
process boot All types

tsrq2 2 Two-stage boot All types
nlrq2 2 Nelder–Mead boot –

Table 3: Transformation-based quantile regression in package Qtools. ‘All types’ consists of options
rank, iid, nid, ker, and boot as provided by function summary in package quantreg.

In the New York Air Quality data example, a linear model was found unsuitable to describe
the relationship between ozone and solar radiation. At closer inspection, Figure 4 reveals that the
conditional distribution of ozone may in fact be nonlinearly associated with solar radiation, at least for
some of the conditional quantiles. The model

QhIs{ozone}(p) = β0(p) + β1(p) · Solar.R, (15)

where hIs denotes the symmetric version of (13) for a singly bounded response variable, is fitted for
the quantiles p ∈ {0.1, 0.5, 0.9} using the following code:
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> system.time(fit.rqt <- tsrq(Ozone ~ Solar.R, data = dd, tsf = "mcjI",
+ symm = TRUE, dbounded = FALSE, lambda = seq(1, 3, by = 0.005),
+ conditional = FALSE, tau = c(.1, .5, .9)))

user system elapsed
0.5 0.0 0.5

> fit.rqt

call:
tsrq(formula = Ozone ~ Solar.R, data = dd, tsf = "mcjI", symm = TRUE,

dbounded = FALSE, lambda = seq(1, 3, by = 0.005), conditional = FALSE,
tau = c(0.1, 0.5, 0.9))

Proposal I symmetric transformation (singly bounded response)

Optimal transformation parameter:
tau = 0.1 tau = 0.5 tau = 0.9

2.210 2.475 1.500

Coefficients linear model (transformed scale):
tau = 0.1 tau = 0.5 tau = 0.9

(Intercept) -3.3357578 -48.737341 16.557327
Solar.R 0.4169697 6.092168 1.443407

Degrees of freedom: 111 total; 109 residual

The TS estimator makes a search for λp over the grid 1.000, 1.005, . . . , 2.995, 3.000. The choice of the
search interval usually results from a compromise between accuracy and performance: the coarser the
grid, the faster the computation but the less accurate the estimate. A reasonable approach would be to
start with a coarse, wide-ranging grid (e.g. seq(-5,5,by = 0.5)), then center the interval about the
resulting estimate using a finer grid, and re-fit the model.

The output above reports the estimates β̂(p) and λ̂p for each quantile level specified in tau. Here,
the quantities of interest are the predictions on the ozone scale and the marginal effect of solar radiation,
which can obtained using the function predict.rqt.

> x <- seq(9, 334, length = 200)
> qhat <- predict(fit.rqt, newdata = data.frame(Solar.R = x),
+ type = "response")
> dqhat <- predict(fit.rqt, newdata = data.frame(Solar.R = x),
+ type = "maref", namevec = "Solar.R")
The linear component of the marginal effect is calculated as derivative of
Ozone ~ beta1 * Solar.R
with respect to Solar.R

The calculations above are based on a sequence of 200 ozone values in the interval [9, 334] Ly, as
provided via the argument newdata (if this argument is missing, the function returns the fitted values).
There are three types of predictions available:

1. link—predictions of conditional quantiles on the transformed scale (7), i.e. Q̂h(Y;λ̂p)(p) =

xT β̂(p);

2. response—predictions of conditional quantiles on the original scale (8), i.e. Q̂Y|X(p) =

h−1
{

x> β̂(p); λ̂p

}
; and

3. maref—predictions of the marginal effect (9).

In the latter case, the argument namevec is used to specify the name of the covariate with respect
to which the marginal effect has to be calculated. The function maref.rqt computes derivatives
symbolically using the stats function deriv and these are subsequently evaluated numerically. While
the nonlinear component of the marginal effect in Equation 9 (i.e. ∂Q(p)/∂η(p)) is rather straight-
forward to derive for any of the transformations (10)-(13), the derivative of the linear predictor (i.e.
∂η(p)/∂xj) requires parsing the formula argument in order to obtain an expression suitable for deriv.
The function maref.rqt can handle simple expressions with common functions like log, exp, etc. ,
interaction terms, and ‘as is’ terms (i.e. I()). However, using functions that are not recognised by
deriv will trigger an error.

The predicted quantiles of ozone and the marginal effects of solar radiation are plotted in Figure 5
using the following code:
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Figure 5: Predicted 10th (solid line), 50th (dashed line), and 90th (dot-dashed line) centiles of ozone
conditional on solar radiation (a) and corresponding estimated marginal effects (b) using the symmetric
proposal I transformation in the New York Air Quality data set.

> par(mfrow = c(1, 2))
> plot(Ozone ~ Solar.R, data = dd, xlab = "Solar radiation (lang)",
+ ylab = "Ozone (ppb)")
> for(i in 1:3) lines(x, qhat[ ,i], lty = c(1, 2, 4)[i], lwd = 2)
> plot(range(x), range(dqhat), type = "n", xlab = "Solar radiation (lang)",
+ ylab = "Marginal effect")
> for(i in 1:3) lines(x, dqhat[ ,i], lty = c(1, 2, 4)[i], lwd = 2)

The effect of solar radiation on different quantiles of ozone levels shows a nonlinear behavior,
especially at lower ranges of radiation (below 50 Ly) and on the median ozone. It might be worth
testing the goodness-of-fit of the model. In the previous analysis, it was found evidence of lack of fit
for the linear specification (5). In contrast, the output reported below indicates that, in general, the
goodness of fit of the quantile models based on the transformation model (15) has improved since the
test statistics are now smaller at all values of p. However, such improvement is not yet satisfactory for
the median.

> GOFTest(fit.rqt, alpha = 0.05, B = 1000, seed = 416)

Goodness-of-fit test for quantile regression based on the cusum process
Quantile 0.1: Test statistic = 0.0393; p-value = 0.025
Quantile 0.5: Test statistic = 0.1465; p-value = 0.005
Quantile 0.9: Test statistic = 0.0212; p-value = 0.127

The TS and RC estimators generally provide similar estimates and predictions. However, compu-
tation based on the cusum process tends to be somewhat slow, as shown further below. This is also
true for the RC test provided by GOFTest.

> system.time(fit.rqt <- rcrq(Ozone ~ Solar.R, data = dd, tsf = "mcjI",
+ symm = TRUE, dbounded = FALSE, lambda = seq(1, 3, by = 0.005),
+ tau = c(.1, .5, .9)))

user system elapsed
36.88 0.03 37.64

An example using doubly bounded transformations is demonstrated using the A-level Chemistry
Scores data set. The latter is available from Qtools and it consists of 31022 observations of A-level
scores in Chemistry for England and Wales students, 1997. The data set also includes information
of prior academic achievement as assessed with General Certificate of Secondary Education (GCSE)
average scores. The goal is to evaluate the ability of GCSE to predict A-level scores. The latter are
based on national exams in specific subjects (e.g. chemistry) with grades ranging from A to F. For
practical purposes, scores are converted numerically as follows: A = 10, B = 8, C = 6, D = 4, E = 2,
and F = 0. The response is therefore doubly bounded between 0 ad 10. It should be noted that this
variable is discrete, although, for the sake of simplicity, here it is assumed that the underlying process
is continuous.
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The model considered here is

QhAOa{score}(p) = β0(p) + β1(p) · gcse, (16)

where hAOa denotes the asymmetric Aranda-Ordaz transformation in (12). This model is fitted for
p = 0.9:

> data(Chemistry)
> fit.rqt <- tsrq(score ~ gcse, data = Chemistry, tsf = "ao", symm = FALSE,
+ lambda = seq(0,2,by=0.01), tau = 0.9)

The predicted 90th centile of A-level scores conditional on GCSE and the marginal effect of GCSE
are plotted in Figure 6. There is clearly a positive, nonlinear association between the two scores. The
nonlinearity is partly explained by the floor and ceiling effects which result from the boundedness of
the measurement scale. Note, however, that the S-shaped curve is not symmetric about the inflection
point. As a consequence, the marginal effect is skewed to the left. Indeed, the estimate λ̂0.9 = 0 and
the narrow confidence interval give support to a complementary log-log transformation:

> summary(fit.rqt, conditional = FALSE, se = "nid")

call:
summary.rqt(object = fit.rqt, se = "nid", conditional = FALSE)

Aranda-Ordaz asymmetric transformation (doubly bounded response)

Summary for unconditional inference

tau = 0.9

Optimal transformation parameter:
Value Std. Error Lower bound Upper bound

0.000000000 0.001364422 -0.002674218 0.002674218

Coefficients linear model (transformed scale):
Value Std. Error Lower bound Upper bound

(Intercept) -4.3520060 0.015414540 -4.3822179 -4.3217941
gcse 0.8978072 0.002917142 0.8920898 0.9035247

Degrees of freedom: 31022 total; 31020 residual

Alternatively, one can estimate the parameter δp using a two-parameter transformation:

> coef(tsrq2(score ~ gcse, data = chemsub, dbounded = TRUE,
+ lambda = seq(0, 2, by = 0.1), delta = seq(0, 2, by = 0.1),
+ tau = 0.9), all = TRUE)
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Figure 6: Predicted 90th centile of A-level scores conditional on GCSE scores (a) and corresponding
estimated marginal effect (b) using the asymmetric Aranda-Ordaz transformation in the A-level
Chemistry Scores data set.
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(Intercept) gcse lambda delta
-4.1442274 0.8681246 0.0000000 0.0000000

These results confirm the asymmetric nature of the relationship since δ̂0.9 = 0. Similar results (not
shown) were obtained with nlrq2.

In conclusion, the package Qtools offers several options in terms of transformations and estimation
algorithms, the advantages and disadvantages of which are discussed by Geraci and Jones (2015). In
particular, they found that the symmetric Proposal I transformation improves considerably on the
Box-Cox method and marginally on the Aranda-Ordaz transformation in terms of mean squared error
of the predictions. Also, asymmetric transformations do not seem to improve sufficiently often on
symmetric transformations to be especially recommendable. However, the Box-Cox and the symmetric
Aranda-Ordaz transformations should not be used when individual out-of-range predictions represent
a potential inconvenience as, for example, in multiple imputation (see section further below). Finally,
in some situations transformation-based quantile regression may be competitive as compared to
methods based on smoothing, as demonstrated by a recent application to anthropometric charts
(Boghossian et al., 2016).

Conditional LSS

Quantile-based measures of location, scale, and shape can be assessed conditionally on covariates. A
simple approach is to a fit a linear model as in (4) or a transformation-based model as in (7), and then
predict Q̂Y|X(p) to obtain the conditional LSS measures in Equation 3 for specific values of x.

Estimation of conditional LSS can be carried out by using the function qlss.formula. The con-
ditional model is specified in the argument formula, while the probability p is given in probs. (As
seen in Equation 3, the other probabilities of interest to obtain the decomposition of the conditional
quantiles are 1− p, 0.25, 0.5, and 0.75.) The argument type specifies the required type of regression
model, more specifically rq for linear models and rqt for transformation-based models. The function
qlss.formula will take any additional argument to be passed to quantreg::rq or tsrq (e.g. subset,
weights, etc. ).

Let’s consider the New York Air Quality data example discussed in the previous section and assume
that the transformation model (15) holds for the quantiles p ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}. Then
the conditional LSS summary of the distribution of ozone conditional on solar radiation for p = 0.05
and p = 0.1 is calculated as follows:

> fit.qlss <- qlss(formula = Ozone ~ Solar.R, data = airquality, type =
+ "rqt", tsf = "mcjI", symm = TRUE, dbounded = FALSE, lambda =
+ seq(1, 3, by = 0.005), probs = c(0.05, 0.1))
> fit.qlss

call:
qlss.formula(formula = Ozone ~ Solar.R, probs = c(0.05, 0.1),

data = airquality, type = "rqt", tsf = "mcjI", symm = TRUE,
dbounded = FALSE, lambda = seq(1, 3, by = 0.005))

Conditional Quantile-Based Location, Scale, and Shape
-- Values are averaged over observations --

** Location **
Median
[1] 30.2258
** Scale **
Inter-quartile range (IQR)
[1] 43.40648
Inter-quantile range (IPR)

0.05 0.1
88.02909 73.93430
**Shape**
Skewness index

0.05 0.1
0.5497365 0.5180108
Shape index

0.05 0.1
1.960315 1.661648
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The output, which is of class "qlss", is a named list with the same LSS measures seen in the
case of unconditional quantiles. However, these are now conditional on solar radiation. By default,
the predictions are the fitted values, which are averaged over observations for printing purposes.
An optional data frame for predictions can be given via the argument newdata in predict.qlss. If
interval = TRUE, the latter computes confidence intervals at the specified level using R bootstrap
replications (it is, therefore, advisable to set the seed before calling predict.qlss). The conditional
LSS measures can be conveniently plotted using the plot.qlss function as shown in the code below.
The argument z is required and specifies the covariate used for plotting. Finally, the argument whichp
specifies one probability (and one only) among those given in probs that should be used for plotting
(e.g. p = 0.1 in the following example).

> set.seed(567)
> x <- seq(9, 334, length = 200)
> qhat <- predict(fit.qlss, newdata = data.frame(Solar.R = x),
+ interval = TRUE, level = 0.90, R = 500)
> plot(qhat, z = x, whichp = 0.1, interval = TRUE, type = "l",
+ xlab = "Solar radiation (lang)", lwd = 2)

Figure 7 shows that both the median and the IQR of ozone increase nonlinearly with increasing
solar radiation. The distribution of ozone is skewed to the right and the degree of asymmetry is highest
at low values of solar radiation. This is due to the extreme curvature of the median which takes on
values close to the 10th centile (Figure 5). (Recall that the index approaches 1 when Q(p) ≈ Q(0.5).)
However, the sparsity of observations at the lower end of the observed range of solar radiation
determines substantial uncertainty as reflected by the wider confidence interval (Figure 7). At p = 0.1,
the conditional shape index is on average equal to 1.66 and it increases monotonically from 1.32 to
about 1.85, remaining always below the tail-weight threshold of a normal distribution (1.90).
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Figure 7: Location, scale and shape of ozone levels conditional on solar radiation in the New York Air
Quality data set. Dashed lines denote the bootstrapped 90% point-wise confidence intervals.
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Other functions in Qtools

Restricted quantile regression

Besides a loss of precision, high sparsity (low density) might also lead to a violation of the basic
property of monotonicity of quantile functions. Quantile crossing occurs when x>i β̂(p) > x>i β̂(p′)
for some xi and p < p′. This problem typically occurs in the outlying regions of the design space
(Koenker, 2005) where also sparsity occurs more frequently. Balanced designs with larger sample sizes
would then offer some assurance against quantile crossing, provided, of course, that the QR models
are correctly specified. Model’s misspecification, indeed, can still be a cause of crossing of the quantile
curves. Restricted regression quantiles (RRQ) (He, 1997) might offer a practical solution when little
can be done in terms of modelling. This approach applies to a subclass of linear models

Y = x>β + ε

and linear heteroscedastic models
Y = x>β + (x>γ) ε,

where x>γ > 0 and ε ∼ F. Basically, it consists in fitting a reduced regression model passing through
the origin. The reader is referred to He (1997) for details. Here, it is worth stressing that when the
restriction does not hold, i.e. if the model is more complex than a location–scale-shift model, then RRQ
may yield unsatisfactory results He (1997). See also Zhao (2000) for an examination of the asymptotic
properties of the restricted QR estimator. In particular, the relative efficiency of RRQ as compared to
RQ depends on the error distribution. For some common unimodal distributions, Zhao (2000) showed
that RRQ in iid models is more efficient than RQ. This property is lost when the error is asymmetric. In
contrast, the efficiency of RRQ in heteroscedastic models is comparable to that of RQ even for small
samples.
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Figure 8: Predicted quantiles of number of bindings conditional on esterase concentration using
regression quantiles (a) and restricted regression quantiles (b) in the Esterase data set.

The package Qtools provides the functions rrq, rrq.fit and rrq.wfit which are, respectively,
the ‘restricted’ analogous of rq, rq.fit, and rq.wfit in quantreg. S3 methods print, coef, predict,
fitted, residuals, and summary are available for objects of class "rrq". In particular, confidence
intervals are obtained using the functions boot and boot.ci from package boot. Future versions of
the package will develop the function summary.rrq to include asymptotic standard errors (Zhao, 2000).
An application is shown below using an example discussed by Zhao (2000). The data set, available
from Qtools, consists of 118 measurements of esterase concentrations and number of bindings counted
in binding experiments.

> data("esterase")
> taus <- c(.1, .25, .5, .75, .9)
> fit.rq <- rq(Count ~ Esterase, data = esterase, tau = taus)
> yhat1 <- fitted(fit.rq)
> fit.rrq <- rrq(Count ~ Esterase, data = esterase, tau = taus)
> yhat2 <- fitted(fit.rrq)

The predicted 90th centile curve crosses the 50th and 75th curves at lower esterase concentrations
(Figure 8). The crossing is removed in predictions based on RRQs.
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As discussed above, the reliability of the results depends on the validity of the restriction carried
by RRQ. A quick check can be performed using the location–scale-shift specification of the Khmaladze
test.

> kt <- KhmaladzeTest(formula = Count ~ Esterase, data = esterase,
+ taus = seq(.05,.95,by = .01), nullH = "location-scale")
> KhmaladzeFormat(kt, 0.05)

Khmaladze test for the location-shift hypothesis
Joint test is not significant at 10% level
Test(s) for individual slopes:
not significant at 10% level

The quantile crossing problem can be approached also by directly rearranging the fitted values
Q̂Y|X=x(p) to obtain monotone (in p) predictions for each x (Chernozhukov et al., 2010). This method is
implemented in the package Rearrangement (Graybill et al., 2016). As compared to RRQ, this approach
is more general as it is not confined to, for example, location–scale-shift models (Chernozhukov et al.,
2010); however, in contrast to RRQ, it does not yield estimates of parameters (e.g. slopes) of the
model underlying the final monotonised curves. Such estimates, available from rrq objects, may be of
practical utility when summarising the results.

Conditional quantiles of discrete data

Modelling conditional functions of discrete data is less common and, on a superficial level, might
even appear as an unnecessary complication. However, a deeper look at its rationale will reveal that
a distribution-free analysis can provide insightful information in the discrete case as it does in the
continuous case. Indeed, methods for conditional quantiles of continuous distributions can be—and
have been—adapted to discrete responses.

The package Qtools offers some limited functionalities for count and binary data. Further research
is needed to develop the theory of QR for discrete data and to improve computational algorithms.
Therefore, the user should use these functions with caution.

Let Y be a count variable such as, for example, the number of car accidents during a week or the
number of times a patient visits their doctor during a year. As usual, X denotes a vector of covariates.
Poisson regression, which belongs to the family of generalised linear models (GLMs), is a common
choice for this kind of data, partly because of its availability in many statistical packages. Symbolically,

Y ∼ Pois(θ), where θ ≡ IE(Y|X = x) = h−1
(

x>β
)

and h is the logarithmic link function. Note that
the variance also is equal to θ. Indeed, moments of order higher than 2 governing the shape of the
distribution depend on the same parameter. Every component of the conditional LSS in a Poisson
model is therefore controlled by θ. If needed, more flexibility can be achieved using a distribution-free
approach.

Machado and Santos Silva (2005) proposed the model

Qh(Z;p)(p) = x>β(p), (17)

where Z = Y + U is obtained by jittering Y with a [0, 1)-uniform noise U, independent of Y and
X. In principle, any monotone transformation h can be considered. Given the continuity between
counts induced by jittering, standard inference for linear quantile functions (Koenker and Bassett,
1978) can be applied to fit (17). In practice, a sample of M jittered responses Z is taken to estimate
β̂m(p), m = 1, . . . , M; the noise is then averaged out, β̂(p) = 1

M ∑m β̂m(p).
Machado and Santos Silva’s (2005) methods, including large-n approximations for standard errors,

are implemented in the function rq.counts. The formula argument specifies a linear model as in (17),
while the argument tsf provides the desired transformation h. By default, this is the log transformation
(i.e. Box-Cox with parameter λp = 0) but other transformations are allowed. Note that GOFTest can be
applied to rq.counts objects as well.

Qtools provides functions for modelling binary responses as well. First of all, it is useful to note
that the classical GLM for a binary response Y ∼ Bin(1, π) establishes a relationship between the
probability Pr (Y = 1) = π and a set of predictors x. The application of QR to binary outcomes relies
on the continuous latent variable regression formulation

Y∗ = x>β + ε (18)

and assumes that the binary observations are the result of the dichotomization Y = I(Y∗ > 0), with
Y∗ unobserved.
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Maximum score estimation, originally developed by Manski (1975, 1985), is equivalent to esti-
mating the conditional quantiles of the latent variable Y∗. However, the optimization problem offers
numerical challenges due to the the piecewise linearity of the indicator function and the nonconvexity
of the loss function. The function rq.bin is the main function to obtain binary regression quantiles.
It is a wrapper for the function rqbin.fit which calls Fortran code written for simulated anneal-
ing estimation (Goffe et al., 1994). Qtools offers a limited number of functions for objects of class
"rq.bin" including coef and predict. These methods should be considered still experimental. In
particular, the user should be aware that the estimates obtained from the fitting procedure may be
sensitive to different settings of the simulated annealing algorithm. The latter can be controlled using
rqbinControl.

Quantile-based multiple imputation

Regression models play an important role in conditional imputation of missing values. QR can be
used as an effective approach for multiple imputation (MI) when location-shift models are inadequate
(Muñoz and Rueda, 2009; Bottai and Zhen, 2013; Geraci, 2016).

In Qtools, mice.impute.rq and mice.impute.rrq are auxiliary functions written to be used along
with the functions of the R package mice (van Buuren and Groothuis-Oudshoorn, 2011). The former is
based on the standard QR estimator (rq.fit) while the latter on the restricted counterpart (rrq.fit).
Both imputation functions allow for the specification of the transformation-based QR models discussed
previously. The equivariance property is useful to achieve linearity of the conditional model and to
ensure that imputations lie within some interval when imputed variables are bounded. An example is
available from the help file ‘?mice.impute.rq’ using the nhanes data set. See also Geraci (2016) for a
thorough description of these methods.

Final remarks

Quantiles have long occupied an important place in statistics. The package Qtools builds on re-
cent methodological and computational developments of quantile functions and related methods to
promote their application in statistical data modelling.
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