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1 Introduction

QCA3 can do various types of qualitative comparative analysis, namely crisp set QCA, fuzzy
set QCA and multi-value QCA. It allows inclusion of simplifying assumptions and can produce
intermediate solutions.

All examples in Rihoux and Ragin (2009) can be reproduced by QCA3 package. To reproduce
the following examples, you need to load the QCA3 package first by

> library(QCA3)

2 Crisp set QCA

Before conducting crisp set QCA (csQCA) with QCA3, you need to import your dataset into R. If
your data is in Excel format, I would recommend you to export the data to a csv file and import
the csv file into R by read.csv function. In this article, all datasets are shipped with the QCA3
package, thus I will skip the steps of data import.

In crisp set QCA (csQCA), all variables are binary (0 or 1). The dataset in this example is
Lipset cs. The first step is to construct a truth table. You can use the function of cs truthTable
to do it.

> (cst <- cs_truthTable(Lipset_cs,outcome="SURVIVAL",

+ condition=c("GNPCAP", "URBANIZA", "LITERACY", "INDLAB", "GOVSTAB"),

+ cases="CASEID"))

configuration distribution
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=====

GNPCAP URBANIZA LITERACY INDLAB GOVSTAB NCase freq1 freq0 OUT

122 0 0 0 0 0 3 0 3 0

131 0 0 1 0 0 2 0 2 0

159 1 0 1 1 0 1 0 1 0

162 1 1 1 1 0 1 0 1 0

203 0 0 0 0 1 2 0 2 0

212 0 0 1 0 1 1 0 1 0

213 1 0 1 0 1 2 2 0 1

240 1 0 1 1 1 2 2 0 1

243 1 1 1 1 1 4 4 0 1

Cases
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122 GRE, POR, SPA

131 HUN, POL

159 AUS

162 GER

203 ITA, ROM

212 EST

213 FIN, IRE

240 FRA, SWE

243 BEL, CZE, NET, UK

The above command constructs a truth table and assigns it to an object called cst, which
can be used in the following analyses. You can choose any legitimate object name to store the
produced truth table as long as it is a legitimate name in R.

In this command, Lipset cs is the data frame which contains all the variables. The argument
of outcome specificifies the explained variable, say ”SURVIVAL” in this example (note that you
need to enclose SURVIVAL with quotation mark). The argument of condition specificies the
explanatory variables. It is a string vector, each element of which is a condition or explanatory
variable. At least two conditions are needed. In this example, five conditions are provided. All
variables, be outcome or conditions, are in the data frame of Lipset cs. For more details, you can
refer to the help page of cs truthTable.

The truth table is constructed by cs truthTable in an automatic manner. However, you can
also manually override the outcome by function of setOUT, but I will not go through the details
here.

At this moment, you need to examine the truth table closely. Perhaps, it is a good idea
to make connections between the truth table and the detailed empirical evidence about each
case. Special attention should be paid to contradictory configurations, and you need to to handle
such contradictory configurations if any. Once you have a truth table without contradictory
configuration or you have come up a strategy to handle them, you can move to the next step,
minimization of the truth table without remainders. All you need to d is to pass the truth table,
cst, produced previously, to the reduce function.

> reduce(cst)

Call:

reduce(x = cst)

----------------

Explaining 3 configuration(s)

----------------

Prime implicant No. 1 with 2 implicant(s)

GNPCAP*urbaniza*LITERACY*GOVSTAB + GNPCAP*LITERACY*INDLAB*GOVSTAB

Common configuration: GNPCAP*LITERACY*GOVSTAB

The default explains positive outcome (in this case, SURVIVAL=1). If you want to explain
negative outcome, you need to set the argument of explain to ”negative”, which is the third step.

> reduce(cst, explain="negative")

Call:

reduce(x = cst, explain = "negative")
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----------------

Explaining 6 configuration(s)

----------------

Prime implicant No. 1 with 2 implicant(s)

gnpcap*urbaniza*indlab + GNPCAP*LITERACY*INDLAB*govstab

Common configuration: None

By default, remainders are not used and no simplifying assumption is made. The fourth step is
to get the most parsimonious solution to positive outcome by including remainders. All you need
to do is to set the argument of remainders to ”include”.

> reduce(cst, remainders="include")

Call:

reduce(x = cst, remainders = "include")

----------------

Explaining 3 configuration(s)

----------------

Prime implicant No. 1 with 1 implicant(s)

GNPCAP*GOVSTAB

Common configuration: GNPCAP*GOVSTAB

Similarly, you can explain negative outcome by including remainders. Now, you need to specify
both arguments of explain and remainders.

> reduce(cst, explain="negative", remainders="include")

Call:

reduce(x = cst, explain = "negative", remainders = "include")

----------------

Explaining 6 configuration(s)

----------------

Prime implicant No. 1 with 2 implicant(s)

gnpcap + govstab

Common configuration: None

Now, you may wonder what remainders have been included. It is always a good idea to examine
them. To do so, you need to assign the return of reduce to an object first. Take the explanation
of negative outcome for example. Let assign it to an object called ansNeg. Then you can pass
ansNeg to the function of SA, which will return a list of remainders used in the minimization
(which are also called simplifying assuptions). It shows that 18 remainders have been included.
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> ansNeg <- reduce(cst, explain="negative", remainders="include")

> SA(ansNeg)

Simplifying Assumptions

----------------

Prime implicant No. 1 with 18 implicant(s)

gnpcap*URBANIZA*literacy*indlab*govstab +

gnpcap*URBANIZA*LITERACY*indlab*govstab +

gnpcap*urbaniza*literacy*INDLAB*govstab +

gnpcap*URBANIZA*literacy*INDLAB*govstab +

gnpcap*urbaniza*LITERACY*INDLAB*govstab +

gnpcap*URBANIZA*LITERACY*INDLAB*govstab +

gnpcap*URBANIZA*literacy*indlab*GOVSTAB +

gnpcap*URBANIZA*LITERACY*indlab*GOVSTAB +

gnpcap*urbaniza*literacy*INDLAB*GOVSTAB +

gnpcap*URBANIZA*literacy*INDLAB*GOVSTAB +

gnpcap*urbaniza*LITERACY*INDLAB*GOVSTAB +

gnpcap*URBANIZA*LITERACY*INDLAB*GOVSTAB +

GNPCAP*urbaniza*literacy*indlab*govstab +

GNPCAP*URBANIZA*literacy*indlab*govstab +

GNPCAP*urbaniza*LITERACY*indlab*govstab +

GNPCAP*URBANIZA*LITERACY*indlab*govstab +

GNPCAP*urbaniza*literacy*INDLAB*govstab +

GNPCAP*URBANIZA*literacy*INDLAB*govstab

Common configuration: None

3 fuzzy set QCA

3.1 Calibration

Fuzzy set QCA (fsQCA) requires fuzzy set scores, which range from 0 to 1. The fuzzy membership
scores can be directly assigned according to substantive knowledge about the cases at hand.

Often, researchers have interval measures and need to convert such measures into fuzzy mem-
bership scores. This process is called caliberation, which is described in Ragin (2008). The QCA3
package implements the direct method of caliberation. This method requires researchers to choose
three anchors, namely fullin, fullout and crossover values. The fullin value is recoded as fuzzy set
score of 0.953. The fullout value is recoded as fuzzy set score of 0.03, and the crossover value is
recoded as fuzzy set score of 0.5 1. Researchers must choose the three anchors based on substantive
knowledge. One you have the fullin, fullout and corssover values, you can caliberate the fuzzy set
scores by the directCaliberate function.

For example, the data frame of Lipset fs has an interval variable of Developed, and the following
command caliberate it with three anchors of 900 (fullin), 400 (fullout), and 500 (crossover).

> directCalibration(Lipset_fs$Developed,fullin=900,fullout=400, crossover=550)

[1] 0.811798852 0.991092956 0.576774248 0.161762067 0.585147064 0.976411872

[7] 0.891545632 0.038787464 0.073921688 0.723727959 0.340271893 0.980887270

[13] 0.017764604 0.009809787 0.012202676 0.024806018 0.951831001 0.985168469

10.953 and 0.03 are chosen because the log odds of them are 3 and -3 respectively, which are approximate to the
description in Ragin (2008). However, users should note that the result is slightly different from fs/QCA because
exact log odds of the fullin and fullout fuzzy membership scores rather than 3 and -3 are used in the QCA3 package.
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You can also add the returned fuzzy set score to the data frame (Lipset fs) as a variable (DFZ)
by,

> Lipset_fs$DFZ <- directCalibration(Lipset_fs$Developed,900,400, 550)

3.2 Exploratory Analysis

Before jumping into fuzzy set QCA, it is always a good idea to explore the bivariate relationship
between outcome and condition variables. The key measures are sufficiency scores and necessary
scores. The suffnec function takes a data frame as input and produces both sufficiency scores and
necessary scores matrices.

> suffnec(Lipset_fs[,c("Survived.FZ","Developed.FZ","Urban.FZ",

+ "Literate.FZ","Industrial.FZ", "Stable.FZ")])

Necessity Scores Matrix:

'X is necessary condition of Y'

Y

X Survived.FZ Developed.FZ Urban.FZ Literate.FZ Industrial.FZ

Survived.FZ 1.000 0.775 0.771 0.643 0.684

Developed.FZ 0.831 1.000 0.829 0.695 0.862

Urban.FZ 0.539 0.539 1.000 0.436 0.640

Literate.FZ 0.991 0.999 0.961 1.000 0.935

Industrial.FZ 0.669 0.786 0.896 0.593 1.000

Stable.FZ 0.920 0.884 0.852 0.749 0.868

Y

X Stable.FZ

Survived.FZ 0.707

Developed.FZ 0.729

Urban.FZ 0.457

Literate.FZ 0.887

Industrial.FZ 0.652

Stable.FZ 1.000

Sufficiency Scores Matrix:

'X is sufficient condition of Y'

Y

X Survived.FZ Developed.FZ Urban.FZ Literate.FZ Industrial.FZ

Survived.FZ 1.000 0.831 0.539 0.991 0.669

Developed.FZ 0.775 1.000 0.539 0.999 0.786

Urban.FZ 0.771 0.829 1.000 0.961 0.896

Literate.FZ 0.643 0.695 0.436 1.000 0.593

Industrial.FZ 0.684 0.862 0.640 0.935 1.000

Stable.FZ 0.707 0.729 0.457 0.887 0.652

Y

X Stable.FZ

Survived.FZ 0.920

Developed.FZ 0.884

Urban.FZ 0.852

Literate.FZ 0.749

Industrial.FZ 0.868

Stable.FZ 1.000

In the above command, Lipset fs is the name of a data frame. Here I use the ”[” operator to
extract a relevant subset, which is then passed to suffnec.
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You can use a graph to depict the set-theoretic consistency and coverage. The function fsplot
provides a friendly interface. For example, if you want to examine whether development and
urbanization are sufficient for regime survival, you can use the following command.

> fsplot(Survived.FZ~fsand(Developed.FZ, Urban.FZ),data=Lipset_fs)
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Set−theoretic consistency: 0.813  Set−theoretic coverage: 0.471

The fsplot use a formula interface. The left hand side variable is the outcome variable. The
right hand side is explanatory variable. When the explanatory variable is a conjunctural condition,
you can use fsand to get the conjunctural condition before plotting. In the above example, the
right hand side is fsand(Developed.FZ, Urban.FZ), which suggests that Developed.FZ*Urban.FZ
is regarded as a conjunctural condition.

The consistency and coverage scores are displayed in the figure, which eases the interpretation
of the result.

3.3 Fuzzy set truth table and minimization

At this point, we have made up our minds concerning the conditions, and we can construct a fuzzy
set truth table for further analysis. In the textbook example, five conditions are chosen, and the
consistency threshold is set to 0.7.

> conditions <- c("Developed.FZ","Urban.FZ","Literate.FZ","Industrial.FZ", "Stable.FZ")

> fst <- fs_truthTable(Lipset_fs,"Survived.FZ", conditions, consistency=0.7)

> print(fst)

configuration distribution

0 1 Sum
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case distribution

OUT NCase

0 10

1 8

=====

Developed.FZ Urban.FZ Literate.FZ Industrial.FZ Stable.FZ freq1 freq0 NCase

243 1 1 1 1 1 4 0 4

240 1 0 1 1 1 2 0 2

213 1 0 1 0 1 2 0 2

212 0 0 1 0 1 0 1 1

203 0 0 0 0 1 0 2 2

162 1 1 1 1 0 0 1 1

159 1 0 1 1 0 0 1 1

131 0 0 1 0 0 0 2 2

122 0 0 0 0 0 0 3 3

OUT Consistency priConsistency sqrtProduct Cases

243 1 0.9042056 0.88579387 0.80093979 2,3,12,18/

240 1 0.7087719 0.63436123 0.44961744 6,17/

213 1 0.8042705 0.71938776 0.57858232 5,10/

212 0 0.5285714 0.22807018 0.12055138 /4

203 0 0.2780269 0.00000000 0.00000000 /11,15

162 0 0.4452555 0.05000000 0.02226277 /7

159 0 0.3782051 0.03960396 0.01497842 /1

131 0 0.5209003 0.11309524 0.05891135 /9,13

122 0 0.2159763 0.00000000 0.00000000 /8,14,16

The above commands construct a fuzzy set truth table, assign it to an object called fst, and
then print it. Next, we simplify the truth table through Boolean minimization.

> fsans <- reduce(fst)

> print(fsans)

Call:

reduce(x = fst)

----------------

Explaining 3 configuration(s)

----------------

Prime implicant No. 1 with 2 implicant(s)

DEVELOPED.FZ*urban.fz*LITERATE.FZ*STABLE.FZ +

DEVELOPED.FZ*LITERATE.FZ*INDUSTRIAL.FZ*STABLE.FZ

Common configuration: DEVELOPED.FZ*LITERATE.FZ*STABLE.FZ

The print method only shows minimal information, but the summary method shows futher
information on the goodness of fit.

> summary(fsans)

Call:

reduce(x = fst)
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Total number of cases: 18

Number of cases [1]: 8

Number of cases [0]: 10

Explaining [1]

----------------

Prime implicant No. 1 with 2 implicant(s)

DEVELOPED.FZ*urban.fz*LITERATE.FZ*STABLE.FZ +

DEVELOPED.FZ*LITERATE.FZ*INDUSTRIAL.FZ*STABLE.FZ

Goodness of fit

consistency rawCoverage

DEVELOPED.FZ*urban.fz*LITERATE.FZ*STABLE.FZ 0.8092105 0.4330986

DEVELOPED.FZ*LITERATE.FZ*INDUSTRIAL.FZ*STABLE.FZ 0.8426073 0.6220657

[solution] 0.8712500 0.8180751

uniqueCoverage

DEVELOPED.FZ*urban.fz*LITERATE.FZ*STABLE.FZ 0.1960094

DEVELOPED.FZ*LITERATE.FZ*INDUSTRIAL.FZ*STABLE.FZ 0.3849765

[solution] 0.8180751

Number of cases: 4 + 6

Percentage of explained cases: 50% + 75%

Cases covered by multiple PIs: 2 (25%)

Cases: (2)6,17/ (1)5,10/ + (1)2,3,12,18/ (2)6,17/

There is an update method for QCA object, so you can use the following command to get a
result including remainders in the minimization process.

> update(fsans, remainders="include")

Call:

reduce(x = fst, remainders = "include")

----------------

Explaining 3 configuration(s)

----------------

Prime implicant No. 1 with 1 implicant(s)

DEVELOPED.FZ*STABLE.FZ

Common configuration: DEVELOPED.FZ*STABLE.FZ

In fsQCA, it is always a good idea to generate a new variable indicating the fuzzy set mem-
bership in the negation set using fsnot. Using this new fuzzy set score to construct a new fuzzy
set truth table and minimize it.

> Lipset_fs$Not.Survived <- fsnot(Lipset_fs$Survived.FZ)

> fst2 <- fs_truthTable(Lipset_fs,"Not.Survived", conditions, consistency=0.7)

> print(fst2)

configuration distribution

0 1 C Sum
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case distribution

OUT NCase

0 8

1 8

C 2

=====

Developed.FZ Urban.FZ Literate.FZ Industrial.FZ Stable.FZ freq1 freq0 NCase

243 1 1 1 1 1 0 4 4

240 1 0 1 1 1 0 2 2

213 1 0 1 0 1 0 2 2

212 0 0 1 0 1 1 0 1

203 0 0 0 0 1 2 0 2

162 1 1 1 1 0 1 0 1

159 1 0 1 1 0 1 0 1

131 0 0 1 0 0 1 1 2

122 0 0 0 0 0 3 0 3

OUT Consistency priConsistency sqrtProduct Cases

243 0 0.2500000 0.1058496 0.0264624 /2,3,12,18

240 0 0.4947368 0.3656388 0.1808950 /6,17

213 0 0.4982206 0.2806122 0.1398068 /5,10

212 1 0.8607143 0.7719298 0.6644110 4/

203 1 0.9820628 0.9751553 0.9576637 11,15/

162 1 0.9708029 0.9500000 0.9222628 7/

159 1 0.9743590 0.9603960 0.9357705 1/

131 C 0.8553055 0.7321429 0.6262058 13/9

122 1 1.0000000 1.0000000 1.0000000 8,14,16/

> fsans2 <- reduce(fst2)

> summary(fsans2)

Call:

reduce(x = fst2)

Total number of cases: 18

Number of cases [1]: 9

Number of cases [0]: 9

Explaining [1]

----------------

Prime implicant No. 1 with 3 implicant(s)

developed.fz*urban.fz*literate.fz*industrial.fz +

DEVELOPED.FZ*LITERATE.FZ*INDUSTRIAL.FZ*stable.fz +

developed.fz*urban.fz*industrial.fz*STABLE.FZ

Goodness of fit

consistency rawCoverage

developed.fz*urban.fz*literate.fz*industrial.fz 0.9905437 0.4419831

DEVELOPED.FZ*LITERATE.FZ*INDUSTRIAL.FZ*stable.fz 0.9812207 0.2204641

developed.fz*urban.fz*industrial.fz*STABLE.FZ 0.8900000 0.3755274

[solution] 0.9335180 0.7109705

uniqueCoverage

developed.fz*urban.fz*literate.fz*industrial.fz 0.2109705
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DEVELOPED.FZ*LITERATE.FZ*INDUSTRIAL.FZ*stable.fz 0.1244726

developed.fz*urban.fz*industrial.fz*STABLE.FZ 0.1097046

[solution] 0.7109705

Number of cases: 5 + 2 + 3

Percentage of explained cases: 55.556% + 22.222% + 33.333%

Cases covered by multiple PIs: 2 (22.222%)

Cases: (2)11,15/ (1)8,14,16/ + (1)7/ (1)1/ + (1)4/ (2)11,15/

4 Session Information

> sessionInfo()

R version 3.1.0 (2014-04-10)

Platform: i686-pc-linux-gnu (32-bit)

locale:

[1] LC_CTYPE=zh_CN.UTF-8 LC_NUMERIC=C

[3] LC_TIME=zh_CN.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=zh_CN.UTF-8 LC_MESSAGES=zh_CN.UTF-8

[7] LC_PAPER=zh_CN.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=zh_CN.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] QCA3_0.0-7

loaded via a namespace (and not attached):

[1] lpSolveAPI_5.5.2.0-9 tools_3.1.0
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