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EMA method (power.scABEL()) 

Method description in a cook book manner: 

• Evaluate all data (log-transformed) via an ANOVA equal to the classical cross-over design 

with treatment, period, sequence and subject within sequence. 

Get the point estimate (pe) for T-R and the mse from that ANOVA. 

The 90% confidence interval is obtained from pe and mse according to 

���, ��� = ��	± 	(�������),�� ∗
��� ∗ 
	
��
 ∗� 1�� 
The term under the square root is ���, the variance of the pe. 
	
��
 is the design constant in 

terms of �� = number of subjects in the sequence groups.  

The term 
	
��
 ∗ ∑ �

��

  is named C2. 

• Evaluate the data (log-transformed) for the reference only via an ANOVA with period, 

sequence and subject within sequence. The mse of that evaluation is ���
�  (within-subject 

variance for the reference). It has df(RR) degrees of freedom associated. 

• If ���� = ���	(exp����
� �− 1) is greater 0.3 calculate the widened acceptance limits (in the 

log domain) according to ������,������ = ±0.760 ∗ ��� 	If ���� ≤ 0.3 use �−log	(1.25, log	(1.25)�. 
If ���� > 0.5 use the acceptance limits for ���� = 0.5 (cap on widening). 

0.760 is the regulatory constant set by the EMA, derived from log�1.25� /��� = 0.7601283 

at ��� = 0.2935604	, the value of the error standard deviation for ���� = 0.3. 

• Decide BE if the 90% confidence interval is contained in the scaled (widened) acceptance 

limits. 

The covered replicate crossover designs have the following characteristics (N=Σni): 

Design df 
	
��
 
	 df (RR) E(mse) 

2x3x3 (partial replicate) 2*N - 3 1/6 1.5 N-2 (���
� + 2 ∗ ���

� )/3 

2x2x4 (full replicate) 3*N - 4 1/4 1 N-2 (���
� + ���

� )/2 

2x2x3 (TRT|RTR) 2*N - 3 3/6 1.5 N/2 -1 (���
� + ���

� )/2 

 unbalanced    �� − 1 				��(2 ∗ ���
� + ���

� )/3 

+	��(���
� + 2 ∗ ���

� )/3	  
	 is the design constant assuming �� = �/����. ��=n(TRT), ��=n(RTR) and �� = �� 	/(�� + ��). 
E(mse) is the expectation of the mean squared error from a model without subject by treatment 

interaction composed from the intra-subject variabilities of Test  and Reference, respectively. 

 

Simulation implementation 

Instead of simulating subject data
1
 and performing the above described evaluation it would be much 

more efficient according to a suggestion of Zheng et al.
2
 to simulate the needed statistics for the BE 

decision methods via their associated distributions. This gives a boost in respect to the run times of 

the simulations from some hours to fraction of minutes. 
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A first attempt (implemented in PowerTOST V1.1-00, V1.1-02) 

• pe is normal distributed with mean=log(GMR) and sd=sqrt(������ ∗ 	�2) 

GMR is the true (assumed) ratio for the population. 

• ���*df/(E(mse)*C2) is chi-squared distributed and simulated via ��� = ������ ∗ 	�2 ∗ ��ℎ�(�����,� )/�   

• ���
� ∗ � ��/���	

�  is chi-squared distributed and simulated via ���	
� = 	 ���

� ∗ ��ℎ�(�����,� ��)/� �� 

With the so simulated statistics the above described method for the BE decision is performed. The 

cases of BE=TRUE will counted and pBE = count(BE=TRUE)/nsims is calculated. 

The above described simulation attempt proved as too naïve. 

The agreement of the power so calculated with values obtained via the ‘classical’ way of simulating 

subject data was not very satisfactory, especially for the partial replicate (2x3x3) crossover design. 

This holds true regardless of assuming equal variabilities for Test and Reference or not. See 

Appendix. 

The conclusion could only be that the simulation of ��� and ���	
�  via independent chi-square 

distributions is not appropriate. One consequence of this attempt is that studies are simulated in 

which ���	
�  if calculated via the relations given in the Table above becomes negative. 

To avoid this it was simulated (V1.1-03 ff) as following: 

• ���
� ∗ � ��/���	

�  is chi-squared distributed and simulated via ���	
� = 	 ���

� ∗ ��ℎ�(�����,� ��)/� �� 

• ���
� ∗ � ��/���	

�  is chi-squared distributed and simulated via ���	
� = 	 ���

� ∗ ��ℎ�(�����,� ��)/� �� 

• ��� is calculated from the constituents ���
�  and ���

�  according to the relations given in the 

Table above and from that ��� = ��� ∗ �2. 

This approach however has the flaw that we are not able to give the � �� in case of the 2x3x3 design. 

It was choosen equal to 	� ��. So this approach is totally empirical for the 2x3x3 design and only 

justified by the better numeric agreement of the power values compared to those obatined via 

subject data simulations. It has further the flaw that within the EMA approach indeed negative 

variance components are imaginable, analogous to negativ inter-subject variances for the 2x2x2 

crossover design. 

A closer look at the results of V1.1-03 ff showed that the approach via simulations of the	��� 

constituents overcorrects the power values for the 2x2x4 design. The new introduced 2x2x3 design 

showed the same behavior. Therefore it was decided to use the mean from both approaches from 

V1.1-07 on. Indeed this empirical attempt gave the most satisfactory agreement to the power results 

via subject data simulations. See Appendix. 

 

Open questions, understanding problems: 

1. Is there a better way to handle the simulations of ��� and ���	
�  via dependent chi-square 

distributions? 
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2. The E(mse) for the 2x3x3 (partial replicate) design was decided from subject data 

simulations. How can we derive this via theoretically arguments? 

 

3. Is working with different variabilities within the EMA method reasonable at all? Or does the 

model used only allow equal variabilities? 

 

An indication for that is the observation that the EMA method and the FDA method via intra-

subject contrasts (ISC, see next paragraph) lead to different expected standard errors of the 

mean T-R : 

EMA:  ���	(�
�
(���

� + 2 ∗ ���
� ) ∗

�

�
∗ ∑ �

��

) = ���	((���
� /2 + ���

� ) ∗
�

�
∗ ∑ �

��

 

FDA:  ���	((���
� + 	���

� /2) ∗ 	�
�
∗ ∑ �

��

) 

These formulas give only identical results if ���
� = ���

�  is assumed. 

 

A second indication is the poor agreement of the power values compared to those obtained 

via subject data simulations for the “2x3x3” design in case of ���
� ≠ ���

� . 

In case of CVwT < CVwR the power values via subject data simulations are markedly lower 

(more conservative), in case of CVwT > CVwR they are markedly higher (more liberal) compared 

to the simulations of the key statistics pe, ��� and ���
� . 

 

To explore into this the question arose “How performs the EMA recommended evaluation of 

the replicate designs (“Use the same ANOVA model as for the classical 2x2x2 crossover”) 

for deciding pure ABE in terms of type I error (alpha), especially if the homoscedasticity 

assumption is not true?” The following table summarizes the simulated alpha values via 

subject data: 

 

ABE decision, design 2x3x3 (partial replicate) 1E6 sims 

CVwT CVwR 

pooled 

CV n 'alpha' power.TOST 

power.scABEL 

(details=T) 

0.3 0.3 0.3 12 0.0440 0.0445 0.0459 

   24 0.0505 0.0500 0.0505 

   36 0.0500 0.0500 0.0502 

0.4 0.4 0.4 12 0.0164 0.0164 0.0186 

   24 0.0483 0.0482 0.0488 

   36 0.0500 0.0500 0.0502 

0.5 0.5 0.5 12 0.0027 0.0028 0.0038 

   24 0.0323 0.0324 0.0330 

   36 0.0484 0.0484 0.0487 

0.3 0.4 0.3690 12 0.0202 0.0251 0.0294 

   24 0.0361 0.0495 0.0507 

   36 0.0363 0.0500 0.0507 

0.3 0.5 0.4407 12 0.0068 0.0084 0.0140 

   24 0.0267 0.0443 0.0459 

   36 0.0285 0.0498 0.0508 

0.4 0.3 0.3359 12 0.0434 0.0354 0.0362 

   24 0.0659 0.0499 0.0500 

   36 0.0663 0.0500 0.0500 

0.5 0.3 0.3754 12 0.0319 0.0232 0.0241 

   24 0.0757 0.0493 0.0495 

   36 0.0783 0.0500 0.0500 

'alpha' from subject data sims with CV’s as given and GMR=1.25. 

power.TOST results calculated with pooled CV  

(= mse2CV((CV2mse(CVwT) + 2* CV2mse(CVwR))/3)). 
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Wow! While performing almost as expected if ���
� = ���

�  the empirical alpha values are 

much too conservative in case of CVwT < CVwR. In case of CVwT > CVwR they are too liberal up to 

an alpha inflation! 

This observation resembles well known results for one-way or two-way ANOVA, showing that 

the usual F-test for testing effects are no longer valid if the assumption of equal variances is 

violated.  

The only explanation could be that the distributional assumptions (“mse is chi-squared 

distributed”) no longer holds if the homoscedasticity is not true. As far as I know there is no 

way out here since there is no solution to the question of the mse distribution within the 

crossover ANOVA for the case of heteroscedasticity, beside to use mixed model software. 

Moreover the EMA forced us to use this fixed effects ANOVA without allowing mixed models 

evaluation. 

Thus we had to stick with subject data simulations with the burden of very long simulation 

run-times if we wish to calculate empirical power for the EMA method within a 2x3x3 design 

in case of heteroscedasticity, i.e. ���
� ≠ ���

� . 
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FDA method (power.RSABE()) 

Method description in a cook book manner: 

• Calculate the intra-subject contrasts T-R (of the log-transformed PK metrics) and analyze 

them via an ANOVA(1) with sequence as soley effect. The intercept of this ANOVA gives the 

point estimator (pe) of µT - µR. 

The std error associated with the pe is 

�� = ���	(���� ∗ 1����� ∗� 1��) 

The associated degrees of freedom are df=N-seqs. The term 	 �

�����
∗ ∑ �

��

 is named C3. In case 

of equal number of subjects in sequence groups ni=N/seqs the term C3 reduces to 1/N. 

• Calculate the intra-subject contrasts R-R (of the log-transformed PK metrics) and analyze 

them via an ANOVA(2) with sequence as solely effect. The intra-subject variance for the 

reference is ���
� = ����/2. The associated degrees of freedom are also df(RR)=N-seqs. 

• In case of the full replicate design (2x2x4) the previous step can be repeated for T-T  to 

obtain ���
� . But this value isn’t used further down. It’s only a nice to have. 

• If ��� > 0.2935604 calculate the linearized reference scaled ABE criterion ���	 = ��� − ��� − 	 	ℎ�	!� ∗ ���
�  

where theta = log(1.25)/0.25 = 0.8925742 is the regulatory constant set by the FDA. 

Calculate a 95% upper confidence interval of this criterion via Howe
3
 approximation  

according to �� = ��� − ��� �� = (!
�(��) + 	(�������),�� ∗ ��)� �� = 	ℎ�	!� ∗ ���
�  �� = E

�
∗ � ��/�ℎ�(�������),���� 
"��� = �� − �� + ���	(��� − ���� + ��� − ����)  

Decide BE if the upper bound is lower than zero. 

• If ��� ≤ 0.2935604 (����≤ 0.3) then perform ABE evaluation, i.e. calculate 90% confidence 

intervals and decide BE if these are contained in the acceptance range �−log	(1.25, log	(1.25)�. The FDA demands to use the Proc MIXED code
4,5

 for this evaluation, 

regardless of the design.  

 

Simulation implementation 

Instead of simulating via subject data we are simulating the needed statistics via their associated 

distributions: 

• pe is normal distributed with mean=log(GMR) and sd = sqrt(�(����) ∗ 	�3) 

GMR is the true (assumed) ratio for the population. 

• ���*df/(E(mse1)*C3) is chi-squared distributed and simulated via ��� = �(����) ∗ 	�3 ∗ ��ℎ�(�����,� )/�  

• ���
� ∗ � ��/���	

�  is chi-squared distributed and simulated via ���	
� = 	 ���

� ∗ ��ℎ�(�����,� ��)/� �� 

With the so simulated statistics the above described method for the BE decision is performed. The 

cases of BE=TRUE are counted and pBE = count(BE=TRUE)/nsims is calculated. 
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The expectation of the mse1 are taken from the literature about IBE as: 

Design E(mse1) 

2x3x3 (partial replicate) 
6,7

 	���
� + 	���

� /2 

2x2x4 (full replicate) 
8, 9

 (���
� + 	���

� )/2 

2x2x3 (TRT|RTR) (���
� + 	���

� )/2 

 unbalanced 				��(���
� + ���

� /2)+	��(���
� /2 + ���

� ) �� = � �� 	/(� �� + � ��), �� = � �� 	/(� �� + � ��) 
 

Open questions, understanding problems: 

1. The ABE evaluation (90% CI’s) in case of ��� ≤ 0.2935604 (����≤ 0.3) is done via the results 

from the ANOVA(1), i.e. we calculate the 90%CI with pe and �� from that step. How does this 

affect the results? How could we test this? 

If there is a considerable effect, how can we then simulate the ABE decision? 

 

2. The "unknown x", i.e. the term −��� in Em (taken from the SAS code of the progesterone 

guidance
5
): Where did it came from? Have the two Laszlo’s used it in their simulations? Their 

earlier papers do not contain this term. 

Mueller-Cohrs
10

 notes that pe
2
 is only approximately unbiased for (µT-µR)

2
 and a user in the 

BEBA forum (http://forum.bebac.at/mix_entry.php?id=5943) gave the hint that it may be the 

bias correction which is done by subtraction of ���. 

 

The design 2x2x3 (TRT|RTR) has the peculiarity that the intrasubject contrasts for T versus R have 

different variances in the two sequence groups. See Chow & Liu, Chapter 9.3.4.
11

 

Pooling of the sequence groups therefore has the danger that in case of heteroscedasticity the BE 

decision via an ANOVA with sequence as effect may be too conservative or too liberal. 

To explore this some spare subject data sims of the ABE decision (90% CI’s in the usual acceptance 

range 0.8 – 1.25) are performed. The results are shown in the next Table: 

Design 2x2x3 (TRT|RTR), 1E6 sims 

CVwT CVwR n1 n2 

EMA 

ANOVA 

FDA 

ISC 

0.5 0.2 18 18 0.0509 0.0496* 

  21 15 0.0509 0.0559* 

  15 21 0.0507 0.0430
*
 

  24 24 0.0505  

0.5 0.3 18 18 0.0503 0.0502 

  19 17  0.0516 

  21 15 0.0502 0.0541 

  15 21 0.0503 0.0459 

0.2 0.5 18 18 0.0509 0.0500* 

  21 15 0.0511 0.0438
* 

  15 21 0.0506 0.0570* 

  24 24 0.0505  

0.3 0.5 18 18 0.0505 0.0504 

  19 17  0.0490 

  21 15 0.0505 0.0469 

  15 21 0.0503 0.0542 
n1 = n(TRT), n2 = n(RTR) 

* 1E5 sims only 
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There is no hint of an alpha-inflation or too conservative alpha values if one uses the EMA 

recommended evaluation (same ANOVA as for the classical 2x2x2 crossover), regardless of grade of 

heteroscedasticity and unbalancedness analyzed. 

The evaluation via intra-subject contrasts also does not show noticeable deviations from the nominal 

level 0.05 as long as the design is balanced or only slightly unbalanced. Alpha-inflation or too 

conservative type I error values are only observed if the sequence groups are strongly unbalanced. 

Thus this design is much more ‘friendly’ in respect to heteroscedasticity than the 2x3x3 design in the 

EMA evaluation. 

An appreciable effect on the power values of the RSABE method is not observed unless the design is 

very unbalanced. See Appendix. 
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FDA method for NTID’s (power.NTIDFDA()) 

Method description
12

 in a cook book manner, design 2x2x4: 

• Calculate the intra-subject contrasts T-R (of the log-transformed PK metrics) and analyze 

them via an ANOVA(1) with sequence as soley effect. The intercept of this ANOVA gives the 

point estimator (pe) of µT - µR. 

The std error associated with the pe is 

�� = ���	(���� ∗ 1
4
∗� 1��) 

The associated degrees of freedom are df = N-2. The term 	�
�
∗ ∑ �

��

 is named C3. In case of 

equal number of subjects in sequence groups ni=N/2 the term C3 reduces to 1/N. 

• Calculate the intra-subject contrasts R-R (of the log-transformed PK metrics) and analyze 

them via an ANOVA(2) with sequence as soley effect. The intra-subject variance for the 

reference is ���
� = ����/2. The associated degrees of freedom are dfRR = N-2. 

• Repeated the previous step for T-T to obtain ���
� . This variance has the associated degrees of 

freedom dfTT = N-2 (= dfRR). 

• Calculate the linearized reference scaled ABE criterion according to ���	 = ��� − ��� − 	 	ℎ�	!� ∗ ���
�  

where theta = -log(0.9)/0.1 = 1.053605157. 

Calculate a 95% upper confidence interval of this criterion via Howe
3
 approximation  

according to �� = ��� − ��� �� = (!
�(��) + 	(�������),�� ∗ ��)� �� = 	ℎ�	!� ∗ ���
�  �� = E

�
∗ � ��/�ℎ�(�������),���� 
"��� = �� − �� + ���	(��� − ���� + ��� − ����)  

• Decide BE if the upper confidence limit of the linearized reference scaled ABE criterion is ≤0 

and if the conventional ABE test (90% CI of T versus R within ABE acceptance range) shows 

BE. The latter is operational identical to placing a cap at CVwR>=0.2142 

(��� = log	(1.25) 	ℎ�	!⁄ = 0.2117905) on the widening of the implied acceptance limits. 

• Additionally the ratio of ��� ���⁄  should be ≤2.5. This is tested by calculating an upper 

confidence interval of this ratio via 

$� =
��� ���⁄

%&�������/�,����,���� ≤ 2.5 

where &�������/�,����,���� is the value of the F-distribution with ν1=dfTT and ν2=dfRR 

degrees of freedom that has probability 1-alpha/2 to its right (see 
12

). 

In R: Fval=qf(1-alpha/2,dfTT,dfRR,lower.tail=FALSE)).  

Alpha is set =0.1. 
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Simulation implementation 

Instead of simulating via subject data we are simulating the needed statistics via their associated 

distributions: 

• pe is normal distributed with mean=log(GMR) and sd=sqrt(�(����) ∗ 	�3) 

GMR is the true (assumed) ratio for the population. 

• ��� ∗ � /(������� ∗ �3) is chi-squared distributed and simulated via ��� = �(����) ∗ 	�3 ∗ ��ℎ�(�����,� )/�  

• ���
� ∗ � ��/���	

�  is chi-squared distributed and simulated via ���	
� = 	 ���

� ∗ ��ℎ�(�����,� ��)/� �� 

• ���
� ∗ � ��/���	

�  is chi-squared distributed and simulated via ���	
� = 	 ���

� ∗ ��ℎ�(�����,� ��)/� �� 

E(mse1) is taken as ��� + 	(���
� + 	���

� )/2. See above and reference
7
. The subject by formulation 

interaction term ��� is assumed to be zero. It is only present for an eventually enhancement in future. 

The ����  are the population values for the respective variances. 

With the so simulated statistics the above described method for the BE decision is performed. The 

cases of BE=TRUE are counted (implies BE(ABE) =TRUE, BE(scABE)=TRUE and ratio ��� ���⁄ ≤ 2.5). 

From the counts pBE = count(BE=TRUE)/nsims is calculated as ‘empirical’ power. 

 

Open questions, understanding problems: 

• The ABE evaluation (90% CI’s) is done via the results from the ANOVA(1), i.e. we calculate the 

90%CI with pe and �� from that step. The FDA on the other hand recommends to do that by 

the Proc MIXED code for SAS
12

. This is scarcely implementable in R. 

How does this affect the results? How could we test this? 

If there is a considerable effect, how can we then simulate the ABE decision? 
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Appendix: Results of simulations via subject data 

EMA method, GMR=0.95, 5E+5 subject sims if not otherwise given 

power.scABEL() with nsims=1E6 

CVwT CVwR n sims pBE 
power.scABEL 

V1.1-02c Diff. V1.1-07 Diff. 

Design 2x3x3 

0.2 0.2 12  0.7522 0.7517 0.0005 0.7517 0.0005 

  24  0.9617 0.9618 -0.0001 0.9615 0.0002 

0.3 0.3 12  0.4066 0.3958 0.0108 0.4112 -0.0046 

  24  0.7790 0.7714 0.0076 0.7818 -0.0028 

  48  0.9632 0.9698 -0.0066 0.9636 -0.0004 

0.4 0.4 12  0.2899 0.2984 -0.0085 0.2896 0.0003 

  12 1E6 0.2895 0.2984 -0.0089 0.2896 -0.0001 

  24  0.7390 0.7233 0.0157 0.7456 -0.0066 

  24 1E6 0.7398 0.7233 0.0165 0.7456 -0.0058 

  48  0.9597 0.9543 0.0054 0.9612 -0.0015 

0.5 0.5 12  0.1954 0.2202 -0.0248 0.1907 0.0047 

  12 1E6 0.1952 0.2202 -0.0250 0.1907 0.0045 

  24  0.7048 0.6953 0.0095 0.7091 -0.0043 

  48  0.9620 0.9579 0.0041 0.9630 -0.0010 

0.3 0.5 12  0.3762 0.3486 0.0276 0.3497 0.0265 

  24  0.8623 0.8042 0.0581 0.8215 0.0408 

  48  0.9934 0.9810 0.0134 0.9853 0.0081 

0.5 0.3 12  0.1452 0.1625 -0.0173 0.1489 -0.0037 

  24  0.5179 0.5585 -0.0406 0.5652 -0.0473 

  48  0.8284 0.8657 -0.0373 0.8690 -0.0406 

Design 2x2x4 

0.2 0.2 12  0.9024 0.9017 0.0007 0.9031 -0.0007 

  24  0.9948 0.9949 -0.0001 0.9950 -0.0002 

0.3 0.3 12  0.6553 0.6447 0.0106 0.6538 0.0015 

  12 1E6 0.6552 0.6447 0.0105 0.6538 0.0014 

  24  0.9120 0.9080 0.0040 0.9115 0.0005 

  36  0.9771 0.9756 0.0015 0.9770 0.0001 

0.4090 0.4090 12 1E6 0.5482 0.5334 0.0148 0.5446 0.0036 

  24 1E6 0.8878 0.8780 0.0098 0.8852 0.0026 

  36  0.9695 0.9657 0.0038 0.9687 0.0008 

0.5 0.5 12  0.4705 0.4662 0.0043 0.4676 0.0029 

  24  0.8787 0.8718 0.0069 0.8771 0.0016 

  36  0.9710 0.9677 0.0033 0.9706 0.0004 

0.3 0.5 12  0.6955 0.6770 0.0185 0.6920 0.0035 

  24  0.9603 0.9526 0.0077 0.9590 0.0013 

  36  0.9931 0.9916 0.0015 0.9929 0.0003 

0.5 0.3 12  0.3011 0.2971 0.0040 0.2964 0.0047 

  24  0.6974 0.6949 0.0025 0.6976 -0.0002 

  36  0.8586 0.8561 0.0025 0.8576 0.0010 

Red: abs(diff)>0.002; Red, bold: abs(diff)>0.01 

 

Agreement not perfect but – except the calculations with CVwT ≠CVwR for design “2x3x3” – to some 

degree satisfactory for me.
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EMA method 

Design 2x2x3 (TRT|RTR) (new) 

GMR=0.95, 5E+5 subject data sims 

CVwT CVwR n1 n2 pBE power.scABEL() diff 

0.3 0.3 12 12 0.7884 0.7891 -0.0007 

18 18 0.9144 0.9138 0.0006 

21 15 0.9080 0.9084 -0.0004 

0.4 0.4 12 12 0.7137 0.7146 -0.0009 

18 18 0.8803 0.8802 0.0001 

21 15 0.8659 0.8665 -0.0006 

0.5 0.5 12 12 0.6574 0.6579 -0.0005 

18 18 0.8669 0.8672 -0.0003 

21 15 0.8468 0.8476 -0.0008 

15 21 0.8660 0.8649 0.0011 

0.5 0.3 12 12 0.4857 0.4867 -0.0010 

18 18 0.7043 0.7039 0.0004 

21 15 0.6815 0.6817 -0.0002 

  15 21 0.6987 0.6981 0.0006 

 

Agreement totally satisfactory for me. 
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FDA method, GMR=0.95, 1E5 subject data sims if not otherwise given 

CVwT CVwR n sims pBE power.RSABE Diff 

Design 2x3x3 

0.2 0.2 12  0.7106 0.7108 -0.0002 

  24  0.9560 0.9561 -0.0001 

0.3 0.3 12  0.4123 0.4132 -0.0009 

  24  0.7980 0.7990 -0.0010 

  48  0.9700 0.9691 0.0009 

0.40898 0.40898 12  0.3808 0.3801 0.0006 

  24  0.8089 0.8104 -0.0016 

  48  0.9831 0.9827 0.0004 

0.5 0.5 12  0.3795 0.3779 0.0017 

  24  0.8132 0.8153 -0.0020 

  48  0.9763 0.9765 -0.0003 

0.3 0.5 12  0.6296 0.6289 0.0006 

  24  0.9406 0.9416 -0.0009 

  48  0.9962 0.9961 0.0001 

Design 2x2x4 

0.2 0.2 12  0.8737 0.8744 0.0007 

  24  0.9931 0.9933 -0.0002 

0.3 0.3 12  0.6374 0.6321 0.0054 

  12 1E6 0.6355 0.6348 0.0007 

  24  0.9172 0.9165 0.0006 

  48  0.9948 0.9948 0.0000 

0.40898 0.40898 12  0.5933 0.5913 0.0020 

  24  0.9234 0.9231 0.0003 

  48  0.9968 0.9971 -0.0003 

0.5 0.5 12  0.5912 0.5903 0.0009 

  24  0.9238 0.9235 0.0003 

  48  0.9935 0.9938 -0.0002 

0.3 0.5 12  0.7491 0.7483 0.0008 

  24  0.9709 0.9710 -0.0002 

  48  0.9986 0.9990 -0.0004 

0.5 0.3 12  0.3263 0.3264 -0.0002 

  24  0.7264 0.7244 0.0020 

  48  0.9457 0.9444 0.0014 

Red: abs(diff)>0.002 

Agreement totally satisfactory for me. 
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FDA method, Design 2x2x3 (TRT|RTR) (new) 

GMR=0.95, 1E5 subject data sims 

CVwT CVwR n1 n2 pBE power.RSABE diff 

0.3 0.3 12 12 0.7967 0.7955 0.0012 

18 18 0.9204 0.9208 -0.0004 

21 15 0.9133 0.9140 -0.0007 

0.4 0.4 12 12 0.7626 0.7612 0.0014 

18 18 0.9139 0.9133 0.0006 

21 15 0.8971 0.8975 -0.0004 

0.5 0.5 12 12 0.7604 0.7588 0.0016 

18 18 0.9153 0.9145 0.0008 

21 15 0.8969 0.8972 -0.0003 

0.5 0.3 12 12 0.5178 0.5167 0.0011 

18 18 0.7362 0.7355 0.0007 

21 15 0.7278 0.7342 -0.0064 

0.3 0.5 12 12 0.8725 0.8719 0.0006 

18 18 0.9659 0.9653 0.0006 

21 15 0.9572 0.9526 0.0046 

 

 

GMR=1.25, 1E6 subject data sims 

CVwT CVwR n1 n2 pBE power.RSABE diff 

0.5 0.2 18 18 0.0501 

21 15 0.0503 

15 21 0.0499 

0.5 0.3 18 18 0.1127 0.1124 0.0003 

19 17 0.1151 0.1135 0.0016 

21 15 0.1045 0.1138 -0.0093 

15 21 0.1184 0.1094 0.0090 

0.2 0.5 18 18 0.4473 

21 15 0.4318 

15 21 0.4590 

0.3 0.5 18 18 0.4418 0.4417 0.0001 

19 17 0.4366 0.4367 -0.0001 

21 15 0.4232 0.4246 -0.0014 

15 21 0.4527 0.4518 0.0009 

 

Agreement totally satisfactory for me, except the red marked cases of heavy in-balance. 
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FDA method for NTID’s, design 2x2x4, 1E+5 sims if not otherwise given 

GMR=0.95 

CVwT CVwR n sims pBE power.NTIDFDA Diff 

GMR=0.95 

0.05 0.05 12  0.0564 0.0583 -0.0019 

  24  0.0644 0.0633 0.0011 

0.075 0.075 12  0.2492 0.2505 -0.0014 

  24  0.4266 0.4283 -0.0017 

  48  0.6738 0.6707 0.0030 

0.1 0.1 12  0.4037 0.4029 0.0008 

  24  0.6871 0.6865 0.0006 

  48  0.9222 0.9198 0.0023 

0.125 0.125 12  0.4982 0.4968 0.0014 

  24  0.8134 0.8123 0.0012 

  48  0.9774 0.9752 0.0021 

0.15 0.15 12  0.5597 0.5568 0.0029 

  24  0.8762 0.8749 0.0013 

  48  0.9914 0.9911 0.0003 

0.175 0.175 12  0.5954 0.5939 0.0014 

  24  0.9090 0.9094 -0.0004 

  36  0.9804 0.9800 0.0004 

0.2 0.2 12  0.6115 0.6103 0.0012 

  24  0.9288 0.9291 -0.0003 

  36  0.9874 0.9871 0.0003 

0.3 0.3 12  0.4364 0.4357 0.0007 

  24  0.8610 0.8607 0.0003 

  36  0.9638 0.9627 0.0011 

0.125 0.175 12  0.7231 0.7209 0.0022 

  24  0.9526 0.9518 0.0008 

  36  0.9926 0.9925 0.0001 

0.175 0.125 12  0.2861 0.2872 -0.0011 

  24  0.6338 0.6359 -0.0021 

  36  0.8302 0.8306 -0.0004 

Red: abs(diff)>0.002 

Agreement satisfactory for me. 
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